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ABSTRACT Eccentric magnetic harmonic gears (EMHG) can achieve high speed ratio transmission and
large torque output by modulating the air gap length between permanent magnets (PM). The analytical
method is based on the boundary perturbation method. The vector magnetic potential perturbation equation
in the air gap region is established, and the general solution is obtained using the boundary conditions.
According to the superposition principle, the air gap flux density of stator and rotor PMs acting alone is
synthesized, and the electromagnetic torque and unbalanced magnetic pull are calculated. Last, we com-
pare magnetic field distributions, electromagnetic torque and unbalanced magnetic pull computed by the
analytical method with those obtained from finite-element method (FEM).

INDEX TERMS Eccentric magnetic harmonic gear, analytical method, magnetic field, electromagnetic
torque, FEM.

I. INTRODUCTION
Compared with mechanical gears, magnetic gears (MG) can
offer several advantages, namely, low noise, less friction,
no lubrication, high reliability etc. MG is a device that
transfers torque and speed by magnetic coupling instead of
mechanical gear meshing. The torque density of concentric
magnetic gear (CMG) can be up to 100kN·m/m3 [1], [2].
In recent years, eccentric magnetic harmonic gear (EMHG)
has been proposed, their torque density and transmission ratio
are much larger than CMGs [3], [4]. It is particularly suitable
for gear ratios higher than about 20:1, the transmitted torque
is ripple free and torque density can be up to 150kN·m/m3.
Therefore, more and more scholars are paying attention to
the EMHG.

Accurate calculation of air gap magnetic field is the key
to optimum design of EMHG, whose structure is shown
in Fig. 1. Because of the eccentric rotor revolution and rota-
tion, the analysis of magnetic field will be more complicated.
The calculation of air gap magnetic field includes finite
element method (FEM) and analytical method. Although
the FEM has high accuracy, it takes a long time and the
mesh needs to be reconstructed when the rotor rotates.
The analytical method has the advantages of fast calculation
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FIGURE 1. Geometry of the studied EMHG.

and clear physical concepts [5]–[9]. The free rotation of the
rotor can be achieved without the constraint of meshing.
Therefore, it is also suitable for calculating the magnetic
field of magnetic gear with eccentric rotor. In the calculation
and analysis of electromagnetic field, because of the com-
plexity of boundary shape or medium characteristics in the
analytical region, it is difficult to obtain exact analytical solu-
tion for the analytical calculation of air gap magnetic field,
so it is necessary to adopt approximate analytical method.
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The boundary perturbation theory is used for the first time
to analytically calculate the magnetic field of the rotor eccen-
tricity of PM motor [10], [11]. In [12], Lubin proposed an
analytical computation of the magnetic field distribution in
a CMG, which is based on the resolution of Laplace’s and
Poisson’s equations for each subdomain. The configuration
and theoretical analysis of the CMGwith Halbach PMArrays
has been discussed in [13], some parameters of CMG with
Halbach PM Arrays have been optimized, and flux density
and torque of CMG have been computed by an exact analyt-
ical method. Ref [14] analyzes and calculates the magnetic
field and the electromagnetic torque of the CMG by adopt-
ing the exact analytical method, and optimizes the design
of a CMG based on genetic algorithm toolbox of Matlab.
In [15], Prof. Zhang proposed an analytical model of mag-
netic fields for magnetic harmonic gears, which is developed
by the fractional linear transformation (FLT) method. In [16],
the authors introduced new concept of complex relative
air-gap permeance related to analytical field calculations in
surface PMmotors, which is developed from conformal trans-
formation of the slot opening and used to accurately calculate
the air-gap field for both radial and tangential components of
the flux density in the slotted air gap. In [17], an analytical
model is developed for the prediction of the air gap flux
density in the eccentric permanent magnet inset machines at
no-load and on-load conditions, which is fast and accurate.

In this paper, an analytical model of air gap magnetic field
perturbation for EMHG is established. The eccentric pertur-
bation ε in the analytical model is dimensionless. Firstly,
when the PM on the low-speed rotor acts alone, according
to the boundary conditions, the equation is solved in the
rotor reference coordinate system, and the air gap flux den-
sity expression of the PM on the low-speed rotor can be
obtained. Secondly, when the PM on the stator acts alone,
the expression of the air gap flux density on the PM on
the stator acts alone can be obtained in the stator reference
coordinate system. Thirdly, according to the superposition
principle, the air gap magnetic field of EMHG is synthesized
and the electromagnetic torque and unbalanced magnetic pull
are calculated. Finally, the analytical results are then verified
with the finite-element method (FEM).

FIGURE 2. The EMHG with one sinusoidal cycle in the air-gap.
(a) Construction of the EMHG, (b) Exploded view of (a).

II. ANALYTICAL MODEL
As shown in Fig. 2, the EMHG is composed of 3 parts, a high-
speed inner rotor, a low-speed outer rotor and a stator.

The low-speed rotor is mounted on the high-speed rotor
through the bearing, the high-speed rotor and low-speed rotor
rotate eccentrically relative to the stator, and the motion
paths are the same. There is a sinusoidal time-varying air
gap length between the low-speed rotor and the stator. The
magnetic field produced by two groups of PMs will be mod-
ulated, the pole pairs of the asynchronous space harmonics
formed by one group of PMs is equal to that of the other
group of PMs, so that the torque transmission and speed
can be realized. In order to maximize the torque transfer
ability of EMHG and according to the principle of magnetic
field modulation, the polar pairs of stator permanent magnet
should be equal to that of space harmonic magnetic field,
the relationship between the polar pairs of the two parts is as
follows,

ps = pr + 1 (1)

where ps and pr are the number of pole pairs of sta-
tor and rotor, respectively. The gear ratio (Gr ) is then
given by,

Gr = −
1
Pr

(2)

A. ANALYTICAL MODEL OF EMHG
For simplicity of analysis, the following assumptions are
adopted:

1) The analytical field is a 2-D plane, and the end effects
are neglected.

2) The demagnetization curve of the PM is linear with
relative permeability µr = 1.

3) The permeability of stator and rotor iron is infinite.
Fig. 1 shows the structure model of EMHG, which is

divided into stator yoke subdomain I, stator PM subdomain
II, air gap subdomain III, rotor PM subdomain IV and rotor
yoke subdomain V. The meaning of each parameter is as
follows: Rrin indicates the inner radius of the iron yoke of
high-speed rotor; Rrout is the outer radius of the yoke of the
low-speed rotor; Rmr represents the outer radius of PM of low
speed rotor; Rms is the inner radius of stator PM; Rs indicates
the inner radius of stator iron yoke; Or is the center of the
rotor; Os is the center of the stator.
Fig. 3 shows the analytical model of the EMHG. The

analytical domain includes air gap subdomain III, stator PM
subdomain II and rotor PM subdomain IV.

As shown in Fig. 3(a), when the low-speed rotor PMs
act alone, the equivalent air gap domain includes air gap
subdomain III and stator PM subdomain II. The X-Y coor-
dinate system is established with the stator center Os as the
coordinate origin, any point P in the domain of the equivalent
eccentric air gap can be represented by the r-θ cylindrical
coordinate system with the rotor center Or as the coordinate
origin. The eccentricity distance between the rotor center
and the stator center is a, and the eccentricity angle is ϕ.
In Fig. 3(b), when the stator PMs act alone, the equivalent air
gap domain includes the air gap subdomain III and the rotor
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FIGURE 3. Analytical model of EMHG. (a) Rotor PM acts alone, (b) Stator
PM acts alone.

PM subdomain IV. The X-Y coordinate system is established
with the rotor center Or as the coordinate origin, any point P
in the equivalent eccentric air gap domain can be represented
by ξ -ψ cylindrical coordinate system with the stator center
Os as the coordinate origin. The eccentricity distance between
the rotor center and the stator center is a, and the eccentricity
angle is ϕ.

B. PARTIAL DIFFERENTIAL EQUATIONS AND
BOUNDARY CONDITIONS
When the low-speed rotor PMs act alone, from the geometric
relationship [18], the equation of the inner circle track of the
stator can be obtained as follows:

r =
√
R2s − (a sin(θ − φ))2 − a cos(θ − φ)

≈ Rs −
1
2
a2

Rs
sin2(θ − φ)− a cos(θ − φ) (3)

Let r = Rs + εδ(θ ), let the eccentric disturbance ε = a
Rs
,

and it is dimensionless, so,

δ(θ ) = −
1
2
a sin2(θ − φ)− Rs cos(θ − φ)

= −
1
4
a+

1
4
a cos 2(θ − φ)− Rs cos(θ − φ) (4)

The stator boundary can be expressed as:

f (θ ) = r − Rs − εδ(θ )

= r − Rs +
1
4
εa−

1
4
εa cos 2(θ − φ)

+ εRs cos(θ − φ) = 0 (5)

The gradient solution of formula (5) can be obtained,

∇f (θ ) =
∂f
∂r
er +

1
r
∂f
∂θ
eθ

= er +
ε

r
[
1
2
a sin 2(θ − φ)− Rs sin(θ − φ)]eθ (6)

where er and eθ are unit vectors in radial and tangential
directions, respectively.

In order to obtain the normal vector at the inner radius of
stator yoke, the module of formula 6 can be calculated,

n=
∇f
|∇f |
=er+

ε

r
[
1
2
a sin 2(θ−φ)−Rs sin(θ−φ)]eθ (7)

The boundary condition of inner radius of stator yoke is as
follows:

n× (Hr,ier + Hθ,ieθ ) = 0 (8)

where r and θ represent radial and tangential components,
respectively. i = 1 and i = 2 are the analytical domain of air
gap and PMs, respectively.

By substituting formula (7) with formula (8), the boundary
conditions at the inner radius of stator yoke can be obtained,

Hθ,1(r, θ, ε)−
ε

r
[
1
2
a sin 2(θ − φ)− Rs sin(θ − φ)]

· Hr,1(r, θ, ε)
∣∣r=Rs+εδ(θ ) = 0 (9)

The radial flux density at the outer radius of the rotor is
zero, and its boundary condition is,

Hθ,2(r, θ, ε)
∣∣r=Rrout = 0 (10)

The radial and the tangential magnetic field strength at the
interface of the PM surface are continuous, respectively. The
boundary conditions at the interface are as follows:

Br,1(r, θ, ε)
∣∣r=Rmr = Br,2(r, θ, ε)

∣∣r=Rmr (11)

Hθ,1(r, θ, ε)
∣∣r=Rmr = Hθ,2(r, θ, ε)

∣∣r=Rmr (12)

According to perturbation theory, vector magnetic poten-
tial A, magnetic flux density B and magnetic field inten-
sity H can be expanded by power series of eccentric
disturbance ε [19]

Ai = A(0)i + εA
(1)
i + O(ε

2) (13)

Bi = B(0)i + εB
(1)
i + O(ε

2) (14)

Hi = H (0)
i + εH

(1)
i + O(ε

2) (15)

where i = 1 indicates the air gap domain, i = 2 indicates the
PM domain.
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In r-θ polar coordinate system, vector magnetic potential
A satisfies Laplace equation and Poisson equation:

∂2A(j)1
∂r2

+
1
r

∂A(j)1
∂r
+

1
r2
∂2A(j)1
∂θ2

= 0 j = 0, 1

∂2A(j)2
∂r2
+
1
r

∂A(j)2
∂r
+

1
r2
∂2A(j)2
∂θ2
=

−
1
ν
∇×M , j=0

0, j=1
(16)

where v is the magnetoresistance, M is the magnetization of
the PM, and its expression can be written,

M (r, θ) = Mr (θ )
−→r =

∞∑
n=1,3,5...

Mn cos np(θ − θ0)
−→r (17)

where Mn =
2Br
µ0
αp

sin(nπαp/2)
nπαp/2

, Br is the remanence of PM,
µ0 is the vacuum permeability, αP is the polar arc coefficient,
P is the number of poles of PM, θ0 is the initial rotor deviation
angle.

Equation (9) is expanded by Taylor series at r = Rs, and
the boundary conditions of the zero order and the first order
equations at the inner radius of stator yoke can be obtained,

∂A(0)1 (r, θ)

∂r

∣∣r=Rs
= 0 (18)
∂A(1)1 (r, θ)

∂r

∣∣r=Rs
= −

1
R2s

[
1
2
a sin 2(θ − φ)− Rs sin(θ − φ)]

∂A(0)1 (Rs, θ)

∂θ

− [−
1
4
a+

1
4
a cos 2(θ−φ)−Rs cos(θ−φ)]·

∂2A(0)1 (Rs, θ)

∂r2
(19)

III. EXPRESSION OF AIR GAP FLUX DENSITY
A. MAGNETIC FIELD ANALYSIS
The boundary condition of the zero order equation of the
eccentric air gap magnetic field is,

∂A(0)1 (r, θ)

∂r

∣∣r=Rs = 0

−
1
µ0

∂A(0)2 (r, θ)

∂r

∣∣r=Rrout = 0

1
r

∂A(0)1 (r, θ)

∂θ

∣∣r=Rmr = 1
r

∂A(0)2 (r, θ)

∂θ

∣∣r=Rmr
−

1
µ0

∂A(0)1 (r, θ)

∂r

∣∣r=Rmr = − 1
µ0

∂A(0)2 (r, θ)

∂r

∣∣r=Rmr
(20)

According to the boundary conditions, the equations (16)
are solved. The analytical expressions of the zero order vector
magnetic potential and the radial and tangential magnetic flux
density in the air gap domain are as follows,

A(0)1 (r, θ)

=

∞∑
n=1,3,5...

[A(0)1n (r
npr + R2nprs r−npr ) cos nprθ

+C (0)
1n (r

npr + R2nprs r−npr ) sin nprθ ] (21)

B(0)r,1(r, θ)

=

∞∑
n=1,3,5...

npr [−A
(0)
1n (r

npr−1 + R2nprs r−npr−1) sin nprθ

+ C (0)
1n (r

npr−1 + R2nprs r−npr−1) cos nprθ ] (22)

B(0)θ,1(r, θ)

= −

∞∑
n=1,3,5...

npr[A
(0)
1n (r

npr−1 − R2nprs r−npr−1) cos nprθ

+C (0)
1n (r

npr−1 − R2nprs r−npr−1) sin nprθ ] (23)

where A(0)1n , B
(0)
1n , C

(0)
1n ,D

(0)
1n are undetermined coefficients, see

Appendix A for specific expressions.
The boundary condition of the first order equation of

eccentric air gap magnetic field is,

∂A(1)1 (r, θ)

∂r

∣∣r=Rs
=−

1
R2s

[
1
2
a sin 2(θ−φ)−Rs sin(θ−φ)]

∂A(0)1 (r, θ)

∂θ

∣∣r=Rs
−[−

1
4
a+

1
4
a cos 2(θ−φ)−Rs cos(θ−φ)]

∂2A(0)1 (r, θ)

∂r2
∣∣r=Rs

−
1
µ0

∂A(1)2 (r, θ)

∂r

∣∣r=Rrout = 0

1
r

∂A(1)1 (r, θ)

∂θ

∣∣r=Rmr = 1
r

∂A(1)2 (r, θ)

∂θ

∣∣r=Rmr
−

1
µ0

∂A(1)1 (r, θ)

∂r

∣∣r=Rmr = − 1
µ0

∂A(1)2 (r, θ)

∂r

∣∣r=Rmr
(24)

Similarly, the expression of the first order vector magnetic
potential in the air gap domain is as follows,

A(1)1 (r, θ) =
∞∑

n=1,3,5...

[(M (1)
1n r

npr + N (1)
1n r
−npr ) cos nprθ

+ (P(1)1n r
npr + Q(1)

1n r
−npr ) sin nprθ

+ (A(1)1n r
npr−1 + B(1)1n r

−(npr−1)) cos(npr − 1)θ

+ (C (1)
1n r

npr−1 + D(1)
1n r
−(npr−1)) sin(npr − 1)θ

+ (E (1)
1n r

npr+1 + F (1)
1n r
−(npr+1)) cos(npr + 1)θ

+ (G(1)
1n r

npr+1 + H (1)
1n r
−(npr+1)) sin(npr + 1)θ

+ (S(1)1n r
npr−2 + T (1)

1n r
−(npr−2)) cos(npr − 2)θ

+ (U (1)
1n r

npr−2 + V (1)
1n r
−(npr−2)) sin(npr − 2)θ

+ (W (1)
1n r

npr+2 + X (1)
1n r
−(npr+2)) cos(npr + 2)θ

+ (Y (1)
1n r

npr+2 + Z (1)
1n r
−(npr+2)) sin(npr + 2)θ ]

(25)

where M (1)
1n ,N

(1)
1n ,P

(1)
1n ,Q

(1)
1n ,A

(1)
1n , B

(1)
1n ,C

(1)
1n , D

(1)
1n ,E

(1)
1n ,F

(1)
1n ,

G(1)
1n , H

(1)
1n , S

(1)
1n ,T

(1)
1n ,U

(1)
1n , V

(1)
1n ,W

(1)
1n , X

(1)
1n ,Y

(1)
1n , and Z (1)

1n
are undetermined coefficients, see Appendix A for specific
expressions.
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Therefore, the expressions of radial and tangential flux
density in the first order air gap domain are as follows:

B(1)r,1(r, θ)

=
1
r

∂A(1)1

∂θ

=

∞∑
n=1,3.5...

[−npr(M
(1)
1n r

npr−1 + N (1)
1n r
−npr−1) sin nprθ

+ npr(P
(1)
1n r

npr−1 + Q(1)
1n r
−npr−1) cos nprθ

− (npr − 1)(A(1)1n r
npr−2 + B(1)1n r

−npr ) sin(npr − 1)θ

+ (npr − 1)(C (1)
1n r

npr−2 + D(1)
1n r
−npr ) cos(npr − 1)θ

− (npr + 1)(E (1)
1n r

npr + F (1)
1n r
−npr−2) sin(npr + 1)θ

+ (npr + 1)(G(1)
1n r

npr + H (1)
1n r
−npr−2) cos(npr + 1)θ

− (npr − 2)(S(1)1n r
npr−3 + T (1)

1n r
−npr+1) sin(npr − 2)θ

+ (npr − 2)(U (1)
1n r

npr−3 + V (1)
1n r
−npr+1) cos(npr − 2)θ

− (npr + 2)(W (1)
1n r

npr+1 + X (1)
1n r
−npr−3) sin(npr + 2)θ

+ (npr + 2)(Y (1)
1n r

npr+1 + Z (1)
1n r
−npr−3) cos(npr + 2)θ ]

(26)

B(1)θ,1(r, θ)

= −
∂A(1)1

∂r

= −

∞∑
n=1,3,5...

[npr(M
(1)
1n r

npr−1 − N (1)
1n r
−npr−1) cos nprθ

+ npr(P
(1)
1n r

npr−1 − Q(1)
1n r
−npr−1) sin nprθ

+ (npr − 1)(A(1)1n r
npr−2 − B(1)1n r

−npr ) cos(npr − 1)θ

+ (npr − 1)(C (1)
1n r

npr−2 − D(1)
1n r
−npr ) sin(npr − 1)θ

+ (npr + 1)(E (1)
1n r

npr − F (1)
1n r
−npr−2) cos(npr + 1)θ

+ (npr + 1)(G(1)
1n r

npr − H (1)
1n r
−npr−2) sin(npr + 1)θ

+ (npr − 2)(S(1)1n r
npr−3 − T (1)

1n r
−npr+1) cos(npr − 2)θ

+ (npr − 2)(U (1)
1n r

npr−3 − V (1)
1n r
−npr+1) sin(npr − 2)θ

+ (npr + 2)(W (1)
1n r

npr+1 − X (1)
1n r
−npr−3) cos(npr + 2)θ

+ (npr + 2)(Y (1)
1n r

npr+1 − Z (1)
1n r
−npr−3) sin(npr + 2)θ ]

(27)

According to equation (14), we add the zero order air
gap flux density and the first order air gap flux density,
and eliminate the higher order infinitesimal of the eccentric
disturbance ε. So the air gap flux density produced by the PM
of the low speed rotor in the EMHG can be obtained,

Br,1 = B(0)r,1 + εB
(1)
r,1

Bθ,1 = B(0)θ,1 + εB
(1)
θ,1 (28)

B. AIR GAP FLUX DENSITY PRODUCED BY STATOR PM
When the stator PM acts alone, the eccentric air gap magnetic
field can also be obtained similarly. Set the pole pairs of the

PMs to ps. The eccentricity angle is ϕ, and the eccentricity
disturbance ε = a/Rrout . The radial flux density Bξ,1 and the
tangential flux density Bψ,1 produced by the stator PM acting
alone are as follows,

Bξ,1(ξ, ψ)

=

∞∑
n=1,3,5...

nps[−A
(0)
2n (ξ

nps−1 + R2npsrout ξ
−nps−1) sin npsψ

+C (0)
2n (ξ

nps−1 + R2npsrout ξ
−nps−1) cos npsψ]

+ ε

∞∑
n=1,3,5...

[−nps(M
(1)
2n ξ

nps−1 + N (1)
2n ξ
−nps−1) sin npsψ

+ nps(P
(1)
2n ξ

nps−1 + Q(1)
2n ξ
−nps−1) cos npsψ

− (nps − 1)(A(1)2n ξ
nps−2 + B(1)2n ξ

−nps ) sin(nps − 1)ψ

+ (nps − 1)(C (1)
2n ξ

nps−2 + D(1)
2n ξ
−nps ) cos(nps − 1)ψ

− (nps + 1)(E (1)
2n ξ

nps + F (1)
2n ξ
−nps−2) sin(nps + 1)ψ

+ (nps + 1)(G(1)
2n ξ

nps + H (1)
2n ξ
−nps−2) cos(nps + 1)ψ

− (nps − 2)(S(1)2n ξ
nps−3 + T (1)

2n ξ
−nps+1) sin(nps − 2)ψ

+ (nps − 2)(U (1)
2n ξ

nps−3 + V (1)
2n ξ
−nps+1) cos(nps − 2)ψ

− (nps + 2)(W (1)
2n ξ

nps+1 + X (1)
2n ξ
−nps−3) sin(nps + 2)ψ

+ (nps + 2)(Y (1)
2n ξ

nps+1 + Z (1)
2n ξ
−nps−3) cos(nps + 2)ψ]

(29)

Bψ,1(ξ, ψ)

= −

∞∑
n=1,3,5...

nps[A
(0)
2n (ξ

nps−1 − R2npsrout ξ
−nps−1) cos npsψ

+C (0)
2n (ξ

nps−1 − R2npsrout ξ
−nps−1) sin npsψ]

− ε

∞∑
n=1,3,5...

[nps(M
(1)
2n ξ

nps−1 − N (1)
2n ξ
−nps−1) cos npsψ

+ nps(P
(1)
2n ξ

nps−1 − Q(1)
2n ξ
−nps−1) sin npsψ

+ (nps − 1)(A(1)2n ξ
nps−2 − B(1)2n ξ

−nps ) cos(nps − 1)ψ

+ (nps − 1)(C (1)
2n ξ

nps−2 − D(1)
2n ξ
−nps ) sin(nps − 1)ψ

+ (nps + 1)(E (1)
2n ξ

nps − F (1)
2n ξ
−nps−2) cos(nps + 1)ψ

+ (nps + 1)(G(1)
2n ξ

nps − H (1)
2n ξ
−nps−2) sin(nps + 1)ψ

+ (nps − 2)(S(1)2n ξ
nps−3 − T (1)

2n ξ
−nps+1) cos(nps − 2)ψ

+ (nps − 2)(U (1)
2n ξ

nps−3 − V (1)
2n ξ
−nps+1) sin(nps − 2)ψ

+ (nps + 2)(W (1)
2n ξ

nps+1 − X (1)
2n ξ
−nps−3) cos(nps + 2)ψ

+ (nps + 2)(Y (1)
2n ξ

nps+1 − Z (1)
2n ξ
−nps−3) sin(nps + 2)ψ]

(30)

where A(0)2n ,B
(0)
2n ,C

(0)
2n ,D

(0)
2n ,M

(1)
2n ,N

(1)
2n ,P

(1)
2n ,Q

(1)
2n ,A

(1)
2n ,B

(1)
2n ,

C (1)
2n , D

(1)
2n ,E

(1)
2n ,F

(1)
2n ,G

(1)
2n ,H

(1)
2n , S

(1)
2n ,T

(1)
2n , U

(1)
2n ,V

(1)
2n ,W

(1)
2n ,

X (1)
2n ,Y

(1)
2n ,Z

(1)
2n are undetermined coefficients, seeAppendixB

for specific expressions.
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C. COMPOSITE AIR GAP FLUX DENSITY OF EMHG
By superposition of the air gap flux density when the stator
PMs act alone and the air gap flux density when the rotor PMs
acts alone, the superposition of flux density is shown in Fig. 4.

FIGURE 4. Superposition of flux density.

The radial and tangential air gap flux density expressions
Br and Bθ of the EMHG are obtained as follows,

Br = Br,1 + Bξ,1 cos k + Bψ,1 sin k

Bθ = Bθ,1 + Bψ,1 cos k − Bξ,1 sin k (31)

where k = θ − ψ .

D. UNBALANCED MAGNETIC PULL AND
ELECTROMAGNETIC TORQUE
According to the Maxwell stress tensor method, the unbal-
anced magnetic pull in the x-axis and y-axis direction can
be obtained by integrating along the circular path through
coordinate transformation.

Fx =
∫ Lef

0

∫ 2π

0
fxrdθdz

= Lef r
∫ 2π

0
[

1
2µ0

(B2r − B
2
θ ) cos θ −

1
µ0

(BrBθ ) sin θ ]dθ

(32)

Fy =
∫ Lef

0

∫ 2π

0
fyrdθdz

= Lef r
∫ 2π

0
[

1
2µ0

(B2r − B
2
θ ) sin θ +

1
µ0

(BrBθ ) cos θ ]dθ

(33)

The expression of electromagnetic torque is,

T =
Lef r2

µ0

2π∫
0

(BrBθ )dθ (34)

where Lef is the axial length of EMHG.

IV. APPLICATION EXAMPLE
In order to verify the correctness of the analytical model,
an EMHG with a transmission ratio of 8:1 is used for the

TABLE 1. Parameters of EMHG.

finite element modeling in this paper. In this study, when the
eccentricity is about 0.57, ϕ = 0, the magnetic density at the
radius r = Rmr+ (g-a)/2 is studied with the center of the low-
speed rotor as the center. Table 1 lists the specific parameters
of the EMHG.

A. AIR GAP MAGNETIC DENSITY AND
HARMONIC ANALYSIS
Fig. 5 shows the distribution of magnetic flux lines in the air
gap domain of the EMHG.

FIGURE 5. Magnetic flux lines.

Fig. 6 shows the radial and tangential components of the
magnetic field in the air gap of the EMHG. It can be seen that
the analytical results of the magnetic density in the radial and
tangential air gap are in good agreement with the results of
the FEM.

Fig. 7 shows the harmonic number of radial air gap flux
density. It is obvious that the harmonic amplitude correspond-
ing to the 8th harmonic is the largest, which corresponds to
the pole pairs of the rotor PM, and the harmonic amplitude
corresponding to the 9th harmonic is the second, which cor-
responds to the pole pairs of the stator PM. In order to achieve
the maximum torque transmission of the EMHG, the pole
pairs of the stator PM should meet Ps = Pr + 1.
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FIGURE 6. Flux density distribution in the air gap. (a) Radial component,
(b) Tangential component.

FIGURE 7. Harmonic spectrum.

B. TORQUE AND UNBALANCED MAGNETIC PULL
Fig. 8 shows the static torque of the low speed rotor.
In FEM, rotate the phase angle of the high-speed rotor from
0◦ to 360◦ and keep the position of the PM on the low-speed
rotor unchanged. Calculate the electromagnetic torque every
10◦ interval, and a total of 37 electromagnetic torque val-
ues are obtained. The analytical solution of static torque is
obtained by formula (34). As can be seen from Fig. 8, the
results of analytical method are in good agreement with those
of FEM.

Set the rotation angles of high-speed rotor and low-
speed rotor, respectively. When the eccentricity angle of the

FIGURE 8. Static torque exerted on the low-speed rotor.

FIGURE 9. Output torque exerted on the low-speed rotor.

FIGURE 10. Unbalanced magnetic pull.

high-speed rotor is changed from 0◦ to 360◦, and the low-
speed rotor rotates (ϕ/8)◦ in the opposite direction to the
high-speed rotor, the output constant electromagnetic torque
of the low-speed rotor at various ϕ angles can be obtained.
Fig. 9 shows the output constant torque of the low-speed rotor.
The torque calculation result is 13.63N·m. It can be seen that
the analytical results of the constant torque of the low-speed
rotor are consistent with the wave trend of the FEM results.

Fig. 10 shows the curve of unbalanced magnetic pull Fx
and Fy, which are the unbalanced magnetic pull of low-speed
rotor along the x-axis and y-axis, respectively. As shown
in Fig. 10, the analytical results of unbalanced magnetic pull
are in good agreement with the results of FEM.
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FIGURE 11. Variation of torque with different of eccentricity.

Fig. 11 shows the output torque of the low-speed rotor
of the EMHG calculated by the analytical method under
different eccentricity. As can be seen from that the torque
value increases gradually with the increase of eccentricity.
The torque ripple is very small in the transmitted torque.

Table 2 shows the calculation time of analytical method
and FEM. It can be seen from the Table that the time of
analytical method is much less than that of FEM.

TABLE 2. Comparison of analytical method and FEM.

V. CONCLUSION
In this paper, a perturbation analytical method is proposed to
compute the distribution of the air gap magnetic field and the
electromagnetic torque for EMHG. The expressions of air gap
magnetic field are determined by solving two-dimensional
Laplace equation and Poisson equation. The eccentric cir-
cle trajectory equation can accurately describe the bound-
ary conditions of inner radius of stator and outer radius of
rotor, which takes the eccentric disturbing momentum as
the perturbation variable. The correctness of the analytical
method is verified by comparing the results of the analytical
method with those of the FEM. The physical concept of the
analytical model is clear and the calculation is convenient,
which provides an effective method for the magnetic field
calculation and optimization design of the EMHG.

APPENDIXES
APPENDIX A
When the rotor PMs act alone, the expression of undeter-
mined coefficient of the zero order equation,

A(0)
1n ,B

(0)
1n ,C

(0)
1n ,D

(0)
1n are:

A(0)1n =
µ0Mn sin nprθ0

2[(npr )2 − 1](R2nprs − R2nprrout )

·

[
(1− npr )Rnpr+1mr + (npr + 1)R2nprrout R

−npr+1
mr

− 2Rnpr+1rout

]
(A.1)

B(0)1n =
µ0Mn sin nprθ0R

2npr
s

2[(npr )2 − 1](R2nprs − R2nprrout )

·

[
(1− npr )Rnpr+1mr + (npr + 1)R2nprrout R

−npr+1
mr

− 2Rnpr+1rout

]
(A.2)

C (0)
1n =

µ0Mn cos nprθ0

2[(npr )2 − 1](R2nprs − R2nprrout )

·

[
(npr − 1)Rnpr+1mr − (npr + 1)R2nprrout R

−npr+1
mr

+ 2Rnpr+1rout

]
(A.3)

D(0)
1n =

µ0MnR
2npr
s cos nprθ0

2[(npr )2 − 1](R2nprs − R2nprrout )

·

[
(npr − 1)Rnpr+1mr − (npr + 1)R2nprrout R

−npr+1
mr

+ 2Rnpr+1rout

]
(A.4)

The expression of undetermined coefficient of the first order
equation, M (1)

1n ,N
(1)
1n ,P

(1)
1n ,Q

(1)
1n ,A

(1)
1n ,B

(1)
1n ,C

(1)
1n , D(1)

1n ,E
(1)
1n ,

F (1)
1n , G

(1)
1n , H

(1)
1n , S

(1)
1n , T

(1)
1n , U

(1)
1n , V

(1)
1n , W

(1)
1n , X

(1)
1n , Y

(1)
1n ,

and Z (1)
1n :

M (1)
1n =

1
2anprR

2npr−1
s A(0)1n

R2nprs − R2nprrout

(A.5)

N (1)
1n =

1
2anprR

2npr
routR

2npr−1
s A(0)1n

R2nprs − R2nprrout

(A.6)

P(1)1n =

1
2anprR

2npr−1
s C (0)

1n

R2nprs − R2nprrout

(A.7)

Q(1)
1n =

1
2anprR

2npr
routR

2npr−1
s C (0)

1n

R2nprs − R2nprrout

(A.8)

A(1)1n =
nprR

2npr−1
s (A(0)1n cosφ + C

(0)
1n sinφ)

R2npr−2s − R2npr−2rout

(A.9)

B(1)1n =
nprR

2npr−2
rout R2npr−1s (A(0)1n cosφ + C

(0)
1n sinφ)

R2npr−2s − R2npr−2rout

(A.10)

C (1)
1n =

nprR
2npr−1
s (−A(0)1n sinφ + C

(0)
1n cosφ)

R2npr−2s − R2npr−2rout

(A.11)

D(1)
1n =

nprR
2npr−2
rout R2npr−1s (−A(0)1n sinφ + C

(0)
1n cosφ)

R2npr−2s − R2npr−2rout
(A.12)

E (1)
1n =

nprR
2npr+1
s (A(0)1n cosφ − C

(0)
1n sinφ)

R2npr+2s − R2npr+2rout

(A.13)

F (1)
1n =

nprR
2npr+2
rout R2npr+1s (A(0)1n cosφ − C

(0)
1n sinφ)

R2npr+2s − R2npr+2rout

(A.14)

G(1)
1n =

nprR
2npr+1
s (A(0)1n sinφ + C

(0)
1n cosφ)

R2npr+2s − R2npr+2rout

(A.15)
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H (1)
1n =

nprR
2npr+2
r R2npr+1s (A(0)1n sinφ + C

(0)
1n cosφ)

R2npr+2s − R2npr+2rout

(A.16)

S(1)1n =
−

1
4anprR

2npr−3
s (A(0)1n cos 2φ + C

(0)
1n sin 2φ)

R2npr−4s − R2npr−4rout

(A.17)

T (1)
1n =

−
1
4anprR

2npr−4
rout R2npr−3s (A(0)1n cos 2φ + C

(0)
1n sin 2φ)

R2npr−4s − R2npr−4rout
(A.18)

U (1)
1n =

−
1
4anprR

2npr−3
s (−A(0)1n sin 2φ + C

(0)
1n cos 2φ)

R2npr−4s − R2npr−4rout
(A.19)

V (1)
1n =

−
1
4anprR

2npr−4
rout R2npr−3s (−A(0)1n sin 2φ + C

(0)
1n cos 2φ)

R2npr−4s − R2npr−4rout
(A.20)

W (1)
2n =

−
1
4anprR

2npr+1
s (A(0)1n cos 2φ − C

(0)
1n sin 2φ)

R2npr+4s − R2npr+4rout
(A.21)

X (1)
1n =

−
1
4anprR

2npr+4
rout R2npr+1s (A(0)1n cos 2φ − C

(0)
1n sin 2φ)

R2npr+4s − R2npr+4rout
(A.22)

Y (1)
1n =

−
1
4anprR

2npr+1
s (A(0)1n sin 2φ + C

(0)
1n cos 2φ)

R2npr+4s − R2npr+4rout
(A.23)

Z (1)
1n =

−
1
4anprR

2npr+4
rout R2npr+1s (A(0)1n sin 2φ + C

(0)
1n cos 2φ)

R2npr+4s − R2npr+4rout
(A.24)

APPENDIX B
When the stator PMs act alone, the expression of undeter-
mined coefficient of the zero order equation,

A(0)
2n ,B

(0)
2n ,C

(0)
2n ,D

(0)
2n are:

A(0)2n =
µ0Mn sin npsψ0

2[(nps)2 − 1](R2npsrout − R
2nps
s )

·

[
(1− nps)Rnps+1ms + (nps + 1)R2npss R−nps+1ms

− 2Rnps+1s

]
(B.1)

B(0)2n =
µ0Mn sin npsψ0R

2nps
rout

2[(nps)2 − 1](R2npsrout − R
2nps
s )

·

[
(1− nps)R

nps+1
ms + (nps + 1)R2npss R−nps+1ms

− 2Rnps+1s

]
(B.2)

C (0)
2n =

µ0Mn cos npsψ0

2[(nps)2 − 1](R2npsrout − R
2nps
s )

·

[
(nps − 1)Rnps+1ms − (nps + 1)R2npss R−nps+1ms

+ 2Rnps+1s

]
(B.3)

D(0)
2n =

µ0MnR
2nps
rout cos npsψ0

2[(nps)2 − 1](R2npsrout − R
2nps
s )

·

[
(nps − 1)Rnps+1ms − (nps + 1)R2npss R−nps+1ms

+ 2Rnps+1s

]
(B.4)

The expression of undetermined coefficient of the first
order equation, A(0)2n ,B

(0)
2n ,C

(0)
2n , D

(0)
2n ,M

(1)
2n , N

(1)
2n ,P

(1)
2n ,Q

(1)
2n ,

A(1)2n ,B
(1)
2n , C

(1)
2n ,D

(1)
2n ,E

(1)
2n , F

(1)
2n ,G

(1)
2n ,H

(1)
2n , S

(1)
2n ,T

(1)
2n ,U

(1)
2n ,

V (1)
2n ,W

(1)
2n ,X

(1)
2n , Y

(1)
2n ,Z

(1)
2n are:

M (1)
2n =

1
2anpsR

2nps−1
rout A(0)2n

R2npsrout − R
2nps
s

(B.5)

N (1)
2n =

1
2anpsR

2nps
s R2nps−1rout A(0)2n

R2npsrout − R
2nps
s

(B.6)

P(1)2n =

1
2anpsR

2nps−1
rout C (0)

2n

R2npsrout − R
2nps
s

(B.7)

Q(1)
2n =

1
2anpsR

2nps
s R2nps−1rout C (0)

2n

R2npsrout − R
2nps
s

(B.8)

A(1)2n = −
npsR

2nps−1
rout (A(0)2n cosφ + C

(0)
2n sinφ)

R2nps−2rout − R2nps−2s

(B.9)

B(1)2n = −
npsR

2nps−2
s R2nps−1rout (A(0)2n cosφ + C

(0)
2n sinφ)

R2nps−2rout − R2nps−2s
(B.10)

C (1)
2n = −

npsR
2nps−1
rout (−A(0)2n sinφ + C

(0)
2n cosφ)

R2nps−2rout − R2nps−2s

(B.11)

D(1)
2n = −

npsR
2nps−2
s R2nps−1rout (−A(0)2n sinφ + C

(0)
2n cosφ)

R2nps−2rout − R2nps−2s
(B.12)

E (1)
2n = −

npsR
2nps+1
rout (A(0)2n cosφ − C

(0)
2n sinφ)

R2nps+2rout − R2nps+2s

(B.13)

F (1)
2n = −

npsR
2nps+2
s R2nps+1rout (A(0)2n cosφ − C

(0)
2n sinφ)

R2nps+2rout − R2nps+2s
(B.14)

G(1)
2n = −

npsR
2nps+1
rout (A(0)2n sinφ + C

(0)
2n cosφ)

R2nps+2rout − R2nps+2s

(B.15)

H (1)
2n = −

npsR
2nps+2
s R2nps+1rout (A(0)2n sinφ + C

(0)
2n cosφ)

R2nps+2rout − R2nps+2s
(B.16)

S(1)2n =
−

1
4anpsR

2nps−3
rout (A(0)2n cos 2φ + C

(0)
2n sin 2φ)

R2nps−4rout − R2nps−4s

(B.17)

T (1)
2n =

−
1
4anpsR

2nps−4
s R2nps−3rout (A(0)2n cos 2φ + C

(0)
2n sin 2φ)

R2nps−4rout − R2nps−4s
(B.18)
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U (1)
2n =

−
1
4anpsR

2nps−3
rout (−A(0)2n sin 2φ + C

(0)
2n cos 2φ)

R2nps−4rout − R2nps−4s
(B.19)

V (1)
2n =

−
1
4anpsR

2nps−4
s R2nps−3rout (−A(0)2n sin 2φ + C

(0)
2n cos 2φ)

R2nps−4rout − R2nps−4s
(B.20)

W (1)
2n =

−
1
4anpsR

2nps+1
rout (A(0)2n cos 2φ − C

(0)
2n sin 2φ)

R2nps+4rout − R2nps+4s
(B.21)

X (1)
2n =

−
1
4anpsR

2nps+4
s R2nps+1rout (A(0)2n cos 2φ − C

(0)
2n sin 2φ)

R2nps+4rout − R2nps+4s
(B.22)

Y (1)
2n =

−
1
4anpsR

2nps+1
rout (A(0)2n sin 2φ + C

(0)
2n cos 2φ)

R2nps+4rout − R2nps+4s
(B.23)

Z (1)
2n =

−
1
4anpsR

2nps+4
s R2nps+1rout (A(0)2n sin 2φ + C

(0)
2n cos 2φ)

R2nps+4rout − R2nps+4s
(B.24)
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