
Received February 1, 2020, accepted February 12, 2020, date of publication February 18, 2020, date of current version February 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974670

The Effects of Static Analysis for Dynamic
Software Updating: An Exploratory Study
BABIKER HUSSIEN AHMED , SAI PECK LEE, AND MOON TING SU
Department of Software Engineering, Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia

Corresponding author: Sai Peck Lee (saipeck@um.edu.my)

ABSTRACT Dynamic software updating (DSU) is the act of modifying software without stopping its
execution. DSU is employed to preserve the high availability in the deployed software systems. Although
significant investigations have been conducted on static analysis (SA) to determine DSU errors, no particular
study exists that explores the effects of SA for dynamic software updating. The objective of the study
presented in this paper is to explore the effects of static analysis for DSU. In this exploration, four evaluation
metrics were declared including the number of update operations, the number of violations, the cyclomatic
complexity, and the patch size. Also, a novel framework was introduced and 18 versions of baseline target
programs were employed to explore the effects of static analysis for DSU. The results have explained that
static analysis can detect violations of DSU. It may affect the complexity of the new versions of the target
programs and having optimization can further reduce those violations. In addition, the results show that the
SAmay change the number of update operations and the patch size for DSU. Overall, the results have proved
that SA for dynamic software updating could affect the complexity of the target programs, the number of
update operations, and the patch size. Furthermore, this exploration has offered a novel framework and four
evaluation metrics for measuring the effects of static analysis for DSU.

INDEX TERMS Dynamic software updating, program analysis, static analysis.

I. INTRODUCTION
Dynamic software updating (DSU) is the act of modify-
ing software systems without having to terminate its execu-
tion [1], [2]. Experts have always considered DSU among
the mandatory techniques for supporting the high availability
of software systems [3], [4]. Recently, multiple solutions
demonstrate DSU approaches [8], including the ability to ana-
lyze DSU statically before the trigger of the actual dynamic
update procedures [6].

Static analysis (SA) is a program analysis approach to
find software flaws without executing the program code [7].
Conspicuously, most early studies show that the SA helps to
prove the correctness of dynamic software updating [8] and
to ensure the safety of DSU [9], [10].

Although extensive research has been carried out on static
analysis for DSU [6], [8]–[10], the effects of SA for dynamic
software updating remain an open question. It is not obvious
which parameters will be affected when applying static anal-
ysis for DSU. In this investigation, an exploratory study has

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

been conducted to explore the effects of static analysis for
dynamic software updating.

For this study, a novel framework was presented and four
evaluation metrics were demonstrated to measure the effects
of static analysis for DSU. The evaluation metrics includes
the number of update operations [62], the number of viola-
tions [11]–[13], the cyclomatic complexity [14]–[16], and the
patch size [17]–[19].

For this study, 18 versions of baseline target pro-
grams [6], [20]–[23] were employed to explore the effects of
static analysis for DSU. The inspected target programs were
extracted from 6 versions of benchmarks software including
Apache SSHD 0.3, Apache SSHD 0.4, Zt-zip 1.4, Zt-zip 1.5,
Apache Tomcat 8.5.37, and Apache Tomcat 8.5.38.

It is apparent from the outcome of this exploration is that
the SA can help to detect violations to DSU. It may affect
the complexity of the new versions of the target programs
and having optimization can further reduce those violations.
In addition, the results show that the static analysis may
change the number of update operations and the patch size
for dynamic software updating.

In overall, this study explored the effects of static analysis
for DSU and has the following contributions:

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 35161

https://orcid.org/0000-0003-3756-112X
https://orcid.org/0000-0003-3264-185X

B. H. Ahmed et al.: Effects of SA for DSU: Exploratory Study

• Demonstrate four evaluation metrics to measure the
effects of static analysis for dynamic software updating.

• Introduce a novel framework for measuring the effects
of static analysis for dynamic software updating.

• Measure the effects of static analysis for DSU.
This paper is organized as follows. Section II highlights

the background and related works. Section III demonstrates
the exploratory study. Section IV presents the conducted
experiments. Section V presents the results and discussion.
Section VI declares the principal findings. Section VII dis-
cusses threats to the validity of this study. Section VIII
presents conclusions and future work.

II. BACKGROUND AND RELATED WORK
This section presents the background of static analysis, static
analysis for dynamic software updating, and the related work.

A. STATIC ANALYSIS
Many works have recognized that program analysis plays an
important role in finding software flaws [7], [26]–[28]. Pro-
gram analysis can be implemented either statically, dynami-
cally, or in a combination of both [24], [25]. Static analysis
is (SA) is a program analysis approach useful in find-
ing software errors without having to execute the program
code [7], [24]. On the other hand, dynamic program analysis
is performed during the program runtime [25].

Several studies have shown that the static analysis assist
in runtime error detection [29], refactoring [30], code com-
pletion [31], and program understanding [31]. In addition,
SA is employed for code conventions [31], code safety [10],
code optimization [33], and measurements [32].

The static analysis could be implemented in three ways:
intraprocedural for analyzing the code of one method [25],
interprocedural for analyzing a program with multiple meth-
ods [25], and local static analysis for analyzing a basic block
code in a method [25].

To perform SA, the target source code should be converted
into a directed graph [34], though some studies also suggested
an undirected graph [35]. In a directed graph, the connections
between vertices are one-way and can be visualized as arrows
linking pairs of vertices [35].

In the light of reported SA, the control flow graph (CFG)
[36]–[38] is utilized for the static analysis. A control flow
graph (CFG) is a directed graph shows program control flows
during the execution of the program [36]–[38]. Fig.1 shows
an example of CFG [38].

In addition, there is a wide choice of graphs demon-
strated in earlier examinations including connection depen-
dence graph [40], program dependence graph [37], flow
dependence graph [37], control dependence graph [37], call
graph [37], and data flow graph [39].

In brief, the static analysis includes control flow analysis
(CFA) [41] and data flow analysis (DFA) [39]. Moreover,
some studies suggested applying optimization in the target
programs is significant to ensure the correctness of the target
programs [10] and for achieving high performance [10].

FIGURE 1. An example of a control flow graph (CFG) [38].

B. STATIC ANALYSIS FOR DYNAMIC SOFTWARE UPDATING
As shown in Fig.2, conceptually, dynamic software updating
consists of two parts [42], the offline preparation part for
preparing the code and the online updating part to handle the
actual run time updating [42].

In the offline preprocessing part, where SA is utilized,
a dynamic patch needs to be prepared to cover the transfor-
mation of the code and data between the old and the new
versions of the target program. In the online updating part,
patch processing will be implemented through data updating,
code updating, and safety checks.

It was reported in the literature that the static analysis
for dynamic software updating is anticipated to achieve the
following objectives but not limited to:
• Predict the exact requirements of an update by knowing

what exactly has been changed in the new version of the
target program [6].

• Ensure utilizing adequate update points [9], [43].
• Guarantee the safety of applying dynamic software

updating [9], [10].
• Prove the correctness of dynamic software

updating [8].
• Predict which dynamic software updating solution

might work better than others [6].

C. RELATED WORK
In recent years, various approaches have been proposed
to utilize static analysis for dynamic software updat-
ing [6], [8], [10], [26]. In this section, we highlight several
studies that are extremely relevant to this study.

Šelajev et al. [6] formalized an approach for SA for
dynamic software updating. The study [6] defined an
approach for producing lists of the exact changes between
versions of Java programs and examined if a given DSU
system supports that update.

Also, Zhenxing et al. [8] proposed a static analysis method
to guarantee the correctness of dynamic software updating
and to make DSU easier and more flexible. In addition,

35162 VOLUME 8, 2020

B. H. Ahmed et al.: Effects of SA for DSU: Exploratory Study

FIGURE 2. Conceptual dynamic software updating [42].

TABLE 1. The research questions and objectives of this study.

Li and Ogawa [26] presented and demonstrated an on-
the-fly interprocedural program analysis algorithm called the
sliding-window algorithm for efficiency and scalability in
whole-program analysis on runtime [26].

Moreover, Sreedhar et al. [10] presented a novel frame-
work called the extant analysis framework for interprocedural
optimization. The study [10] described properties for DSU
safety tests and provided algorithms for their generation and
placement [10].

As presented in the related studies [6], [8], [10], [26],
most studies in the static analysis for DSU are in the business
of proposing a new approach [6], a method [8], an algo-
rithm [26], and a framework [10]. To the best of our knowl-
edge, no study to date has demonstrated evaluation metrics
to measure the effect of static analysis for dynamic software
updating. Respectfully, to highlight the effects of static anal-
ysis for DSU, the research domain requires exploration (such
as this study) to understand more the effects of static analysis
for dynamic software updating.

III. EXPLORATORY STUDY
This section declares the purpose of this exploration and
presents measuring the effects of static analysis for dynamic
software updating.

A. PURPOSE OF THE STUDY
This study aims to explore the effects of static analysis for
dynamic software updating. The research questions (RQ) and
the objective of each RQ are illustrated in Table 1.

B. MEASURING EFFECTS OF STATIC ANALYSIS FOR
DYNAMIC SOFTWARE UPDATING
This sub-section highlights the proposed evaluation metrics
to answer RQ 1 and demonstrates a suggested framework to
respond to RQ 2.

1) EVALUATION METRICS
For this exploration, we borrow the idea of using the com-
puted metrics for two versions of a system to assess the
evolution [44] to measure the effects of static analysis for
dynamic software updating. In addition, we propose to utilize
four evaluation metrics, includes the number of update oper-
ations [62], the number of violations [11]–[13], Cyclomatic
Complexity (CC) [14]–[16], and the patch size [17]–[19].

a: THE NUMBER OF UPDATE OPERATIONS
In this analysis, we propose to compare 2 versions of one
target program for code similarities using the available Diff
algorithms [62] and count the number of update opera-
tions (NOUO) as follows:

NOUO =
∑

Update operations (1)

Throughout this paper, we use the acronym NOUO to refer
to the number of update operations.

b: THE METRIC OF THE NUMBER OF VIOLATIONS
In this analysis, we propose to utilize the metrics of the
number of violations [11] due to the following:
• Measuring the number of violations is a common prac-
tice in assessing coding standards that are strongly
related to latent faults [11]–[13].

• Previous research has emphasized violation measures
for DSU such as evaluating type safety violations 8].

Suppose we analyze the code of the target program which
resulted from the update of old and the new code. The
total number of violations (TNOV) can be calculated as

VOLUME 8, 2020 35163

B. H. Ahmed et al.: Effects of SA for DSU: Exploratory Study

FIGURE 3. Cyclomatic complexity metric examples.

follows:

TNOV =
∑

VAL (2)

where
VAL is a violation of a static analysis rule.

c: THE METRIC OF PATCH SIZE
The patch as a set of changes to a computer program or
its supporting data designed to update, fix, or improve the
program [45], [46]. The patch size is the sum of several
contains including the size of the code being inserted [17],
supplementary inserted codes, and annotations [17], [18].

In this analysis, we suggest to use the metric of the patch
size [17]–[19] due to the following reasons:
• A large number of existing studies in the broader litera-
ture have examined patches in to request and guide the
dynamic updating [42], [47].

• Research has provided evidence for loading time in DSU
is proportional to the patch size [18].

For the current assessment, the metric of the patch size (per
byte) as is calculated as follows:

SP = Size of the patch (per byte) (3)

where
SP is the patch size.

d: CYCLOMATIC COMPLEXITY METRIC
For this examination, we suggest utilizing the cyclomatic or
McCabe complexity (CC) [14]–[16] metric to the following
reasons:
• Cyclomatic complexity is considered to predict software
components that likely have a high defect rate or that
might be difficult to test and maintain [14], [44].

• The majority of prior research has applied complexity
measures to help establish risk and stability estimations
on an item of code [14].

• An increasing number of investigations have explained
that CC is accomplished by measuring the control flow
structure in a directed graph [8], [14], [48], [49].

Previous studies have shown that CC measures the number
of linearly independent paths in a code [8], [14], [48], [49].
CC is defined as the number of edges minus the number of
nodes plus 2 [17] as follows:

CC = e− n+ 2 (4)

where e is the number of edges, n is the number of nodes.
Furthermore, Fig.3 shows examples of CC.

2) FESAD: A FRAMEWORK FOR MEASURING EFFECTS OF
STATIC ANALYSIS FOR DYNAMIC SOFTWARE UPDATING
For this study, we searched for literature to observe how
SA for dynamic software updating is implemented. Our
first set of analyses have examined the related stud-
ies [6], [8], [10], [26], and the second batch of investiga-
tions have inspected additional studies [42], [43], [50], [51]
for more understanding of SA for dynamic software updating.
As an outcome, a novel framework was proposed for utilizing
SA for measuring the effects of static analysis for DSU and
illustrated in Fig. 4.

As displayed in Fig. 4, the proposed framework is contain-
ing three phases as follows:

FIGURE 4. The High-level architecture of FESAD (Framework for measuring Effects of Static Analysis for DSU).

35164 VOLUME 8, 2020

B. H. Ahmed et al.: Effects of SA for DSU: Exploratory Study

TABLE 2. Examples of static analysis rules available in PMD [52],
[52]–[54], [56].

a) Phase 1: Dynamic software updating without SA
In this phase, DSU will be applied without static analysis.
Also, pole position (The start point) measurements [62] will
be utilized to measure the following:

1) The patch size.
2) The number of update operations (NOUO).
3) The cyclomatic complexity for the target program.
b) Phase 2: Static analysis for dynamic software updating

In this phase, the static analysis will be applied for DSU.
Also, the final destination (The endpoint) measurements will
be utilized to measure the following:
A. The number of violations.
B. The patch size.
C. The number of update operations (NOUO).
D. The cyclomatic complexity for the target program.
Currently, a large number of existing studies have utilized

the static analysis rules in static program analyzer tools such
as the programmer mistake detection tool (PMD) [52]–[57].
For example, Table 2 highlights some of the available static
analysis rules in PMD.

A number of authors have recognized static analy-
sis including control flow analysis can be utilized for
dynamic software updating in error prevention, detection, and
removal [6], [8], [10], [26]. For example, recent research
suggests that static analysis rules for DSU can be utilized for
the following:
• Detection and annotating of unsafe update points [59].
• Guarantees about which types will be updatable at
runtime [5].

• Predicts which types are modifiable at each update
point [5].

• Ensure when an item (method, identifiers) will be
removed from a class, any access to the removed item
through the old code after the update is forbidden
because it will lead to a runtime error [59].

• Check the signature of a class constructor which has
parameters to be changed, if there is no implicit type
conversion between the type of the parameters of the old
and new constructor, the update is said to be unsafe [59].

In addition, some authors have driven the further improve-
ment through possible optimization in the target programs

can be included to code smells [59] and to assist in errors
prevention, detection, and removal for dynamic software
updating, such as dead code elimination [58], Inlining [58],
copy propagation [58], constant propagation [58], strength
reduction-induction variable [58], tail recursion elimina-
tion [58], and software pipelining [58].
c) Phase 3: Compare the results of Phase (a) and

Phase (b)
Tomeasure the effects of static analysis for dynamic software
updating, in this investigation, we have suggested the follow-
ing assessments:
A. Compare the difference between the patch size in DSU

without static analysis (Phase 1) against patch size in
SA for dynamic software updating (Phase 2).

B. Compare the difference between NOUO in DSU with-
out static analysis (Phase 1) against NOUO in SA for
dynamic software updating (Phase 2).

C. Compare the difference between the CC of the tar-
get program in DSU without static analysis (Phase 1)
against the CC of the same target program in SA for
dynamic software updating (Phase 2).

For this study, the suggested framework is utilized in the
subsequent sections. Throughout this paper, we will use the
acronym FESAD to refer to the proposed framework.

IV. EXPERIMENTS
This section presents the conducted experiments for measur-
ing the effects of static analysis for DSU.

For this study, the experimental setup was prepared as
follows:
• The operating system is 64-bit Windows 10, with 8 GB
RAM, Intel Core 3.40 GHz, and 8-core CPU.

• Java Development Kit (JDK) 1.8.
For the selections of the experimental subject, the literature
review shows the majority of prior research in DSU utilizing
a group of baseline target programs as a benchmark for the
research in the domain [6], [20]–[23]. Among them, the
following subjects were selected for this study:

1) Apache SSHD [20], [21]: is a Java software sup-
ports SSH protocols on both client and server-side. For
this investigation, 2 versions were selected including
Apache SSHD version 0.3.0 andApache SSHD version
0.4.0.

2) Zt-zip [6]: is a Java software for file compression. For
this examination, 2 versions were selected including
Zt-zip version1.4 and Zt-zip version 1.5.

3) Apache Tomcat [21], [23]: is an open-source Java
HTTP web server. For this exploration, 2 versions were
selected including Apache Tomcat version 8.5.37 and
Apache Tomcat version 8.5.38.

For this exploration, official software releases from the
package repositories of the selected software were copied.
Also, a list of updated programs was identified from each
of the selected subjects utilizing Algorithm 1. The results of
applying Algorithm1 is illustrated in Fig.5.

VOLUME 8, 2020 35165

B. H. Ahmed et al.: Effects of SA for DSU: Exploratory Study

Algorithm 1 Extraction of the Differences Between
2 Software Versions
1: Procedure Differences between 2 software versions.

Input: Directory of old code D1, Directory of new
code D2, Source extensions Ext;

Output: A list of the updated programs;
2: String [] extensions = Ext // examples {"java", "c"}
3: Boolean recursive = true;
4: Collection files = list Files in (D1, Ext, recursive);
5: For (Iterator iter = files. iter; iter. has Next ())
6: File f1 = (File) iter. Next
7: If (f1 exists in D1) and (f1 exists in D2)
8: File f2 =new File (D2, f1. Name)
9: If (f1 <> f2)

10: Save f1 in the list of updated programs;
11: else
12: Save f1 in the list of duplicated

programs;
13: end if
14: else
15: Save f1 in the list of new programs;
16: end if
17: end for
18: end procedure

FIGURE 5. The extraction of the differences between the versions of the
selected subjects.

In addition, the details of the updated target programs as
shown in Fig. 5 are as follows:

• For Apache SSHD version 0.3.0 and Apache SSHD
0.4.0: A total of 104 programs were not updated
(Remains the same), 39 programs were updated, and
18 new programs.

TABLE 3. Selected target programs.

TABLE 4. Results of pole position results when dynamic software
updating without static analysis.

• For Zt-zip version 1.4 and Zt-zip 1.5: An aggregate
of 15 programs were not updated, one program was
updated, and 2 new programs.

• For Tomcat version 8.5.37 and Apache Tomcat
8.5.38: A collection of 2152 programs was not updated,
168 programs were updated, and 6 new programs.

For this study, 18 target programs were selected from
the nominated subjects and presented in Table 3. Also,
the FESAD framework was utilized and the results are pre-
sented and discussed in Section V.

V. RESULTS AND DISCUSSION
This section presents and discusses the experimental results
of this exploration including pole position results, final desti-
nation results, data analysis, and comparison of the collected
results.

A. POLE POSITION RESULTS
As illustrated in the FESAD framework, the initial set of anal-
yses explorers applying DSU without static analysis in the
given experimental subjects. Table 4 presents pole position
results including NOUO (Number of update operations) and
patch size when DSU was implemented in the selected target
programs without static analysis.

Also, Table 5 presents the Cyclomatic Complexity (CC) for
the selected target programs when DSU was implemented in
the selected target programs without SA.

B. FINAL DESTINATION RESULTS
As represented in the FESAD framework, the second batch
of the analyses explores applying SA for dynamic software

35166 VOLUME 8, 2020

B. H. Ahmed et al.: Effects of SA for DSU: Exploratory Study

TABLE 5. Results of pole position results when dynamic software
updating without static analysis.

TABLE 6. Number of violations during a static analysis for DSU.

TABLE 7. Number of violations after utilizing optimization IN static
analysis for DSU.

updating. Therefore, we applied static analysis for DSU uti-
lizing the PMD tool and the static analysis rules in Section III.
As a result, Table 6 shows the number of violations when
static analysis for DSU was implemented in the selected
target programs.

In addition, we have implemented optimizations to fix the
violations of dynamic software updating in the new versions
of the selected target programs. Table 7 shows the number
of violations after optimizations in the new versions of the
selected target programs.

Moreover, Table 8 declares the results of the CC metrics
after SA is utilized for dynamic software updating in the new
versions of the selected target programs.

Furthermore, Table 9 shows NOUO (Number of update
operations) and the patch size when the static analysis for
DSU was implemented in the selected target programs.

C. DATA ANALYSIS
Before proceeding to compare the pole position results
against the final destination results, it will be necessary to

TABLE 8. Results of final destination results after static analysis for DSU
was implemented.

TABLE 9. Results of final destination results when static analysis for DSU
was implemented.

analyze the data. The analysis includes the obtained data of
NOUO, patches size, the number of violations, and CC.

1) THE NUMBER OF UPDATE OPERATIONS
As illustrated in Table 4, the average of the number of update
operations (NOUO) is approximately 19 in the pole position
results. On the other hand, as presented in Table 9, the average
of NOUO is relatively increased to 25 in the final destination
results. In addition, as shown in Fig.6, we exhibited the results
in a Clustered Column Chart.

As displayed in Fig.6, X-axis presents the selected target
programs. Y-axis displays the NOUO. The clustered columns
show the pole position and the final destination results. The
results show that the NOUO numbers are changed in most of
the selected target programs in the final destination results.

2) THE PATCH SIZE
As depicted in Table 4, the max patch size is 1845 bytes
and the minimum patch size is 550 bytes in the pole posi-
tion results. On the other hand, as displayed in Table 9,
the max patch size is 4285 bytes and the minimum patch
size is 619 bytes in the final destination results. Moreover,
as illustrated in Fig.7, we presented the results in a Clustered
Bar Chart.

As demonstrated in Fig.7, Y-axis presents the selected
target programs. X-axis presents the patch size (per byte).
The clustered columns show the pole position and the final
destination results. The results show that the patch size is

VOLUME 8, 2020 35167

B. H. Ahmed et al.: Effects of SA for DSU: Exploratory Study

FIGURE 6. The number of update operations (NOUO) in the selected
target programs.

FIGURE 7. Patch size (Per byte) in the selected target programs.

amended in most of the selected target programs in the final
destination results.

3) THE NUMBER OF VIOLATIONS
As illustrated in Table 6, the average of the number of vio-
lations is 9 when applying SA before optimizations. On the
other hand, as presented in Table 7, the average is relatively
decreased to 2 when applying static analysis with optimiza-
tions. In addition, as presented in Fig.8, we demonstrated the
results in a Clustered Column Chart.

As displayed in Fig.8, X-axis presents the selected target
programs. Y-axis displays the number of violations. The clus-
tered columns show the number of violations before and after
SA and optimizations. The results show that the number of
violations is decreased in all the selected new target programs
after optimizations.

4) CYCLOMATIC COMPLEXITY
As depicted in Table 5, the max number of cyclomatic com-
plexity (CC) in the new versions of the target programs is
277 and the minimum value is 14 in the pole position results.
On the other hand, as shown in Table 8, the max number of
CC in the new versions of the target programs is 275 and the

FIGURE 8. The number of violations in the selected target programs.

FIGURE 9. Cyclomatic Complexity (CC) of the new versions of selected
target programs.

minimum value is 14 in the final destination results. Further-
more, as demonstrated in Fig.9, we presented the results in a
Clustered Bar Chart.

As displayed in Fig.9, X-axis presents the selected target
programs. Y-axis displays the CC of the new versions of the
target programs. The clustered columns show the pole posi-
tion and the final destination results. The results show that the
values of CC are changed in the final destination results for
4 target programs including the new versions of ClientSes-
sionImpl, ChannelSession, JNDIRealm, and ZipUtil.

D. COMPARE THE POLE POSITION RESULTS AND
THE FINAL DESTINATION RESULTS
As demonstrated in the FESAD framework, the third batch
of the analyses compares the results of pole position
results against the final destination results. As an outcome,
we observed the following:

• As shown in Table 4, Table 9 and Fig.7, the sizes of
patches are changed after SA for most of the selected
target programs except for WsServerContainer and
WsHttpUpgradeHandler. Overall, out of 9 patches,
only 2 remains in the same size. Thus, the data supports
the premise that the static analysis may change the
patch size for dynamic software updating.

• As presented in Table 6, Table 7, and Fig.8, the num-
ber of violations for the same target programs were
changed which determines that the static analy-
sis is identifying violations (Table 6) to DSU and

35168 VOLUME 8, 2020

B. H. Ahmed et al.: Effects of SA for DSU: Exploratory Study

having optimization (Table 7) can further reduce those
violations.

• As presented in Table 4, Table 9 and Fig.6, the NOUO
are changed after SA was implemented for most of the
selected target programs except forWsServerContainer
and WsHttpUpgradeHandler. From the results, it is
clear that the static analysis may change the number
of update operations for dynamic software updating.

• As displayed in Table 5, Table 8, and Fig.9, the CC
values were not modified after static analysis for DSU
was implemented for 4 new versions of target pro-
grams including, ZipUtil, ClientSessionImpl, Chan-
nelSession, and, JNDIRealm. The most striking result
to emerge from the data is that the SA for dynamic
software updating may change the complexity of the
new versions of the target programs.

VI. PRINCIPAL FINDINGS
Our results cast a new light on static analysis for dynamic
software updating through an exploratory study where four
evaluation metrics were declared, a novel framework was
introduced, and 18 versions of baseline target programs were
employed to explore the effects of static analysis for DSU.
Based on our results, we declare the main findings of our
exploration as follows:
• The results verified that static analysis for dynamic

software updating determines violations of DSU. This
key conclusion validates the usefulness of investigating
and fixing errors early to reduce violations when apply-
ing DSU. The present finding seems to be consistent
with other research that found that static analysis will
help to prove the correctness of DSU [8] and to ensure
the safety of DSU [9], [10].

• The most remarkable finding was that SA for dynamic
software updating may change the patch size. As a con-
sequence, this finding is in accordance with findings
that measure the update loading time based on the size
of the patch [18].

• The most interesting finding was that SA for dynamic
software updating may affect the complexity of the
target programs. The present findings are directly in
line with previous findings that found the changes in
the complexity of the program will affect the main-
tainability of the program [16], and will directly affect
the eligibility and the reliability of the software [16].
Also, this finding can be compared with an argument
made by Bierman et al. [60] that updatable programs
must be reliable, yet updating itself introduces further
complexity, also, Bierman et al. [60] reveals that to
prevent total confusion, techniques are required for
ensuring that the dynamic updates are in some sense
safe [60].

VII. THREATS TO VALIDITY
Although this study shows the core of our exploration of
the effects of static analysis for dynamic software updating,

there are threats to the validity of the results that readers
should take into account when interpreting the outcome. The
threats include the conclusion, internal and external validity.
This section clarifies threats to the validity of this study.

A. INTERNAL VALIDITY
Internal validity takes place when it implies that we pro-
posed a framework based on our experience in dynamic
software updating. To mitigate this threat, we intro-
duced our framework (FESAD) based on several investi-
gations [6], [8], [10], [26] , [42], [43], [50], [51] to
identify how static analysis for DSU was demonstrated in
those studies.

B. EXTERNAL VALIDITY
External validity takes place when it implies the validity
of our target programs, the way the target programs were
updated, and the code patches utilized, whereby the results
might be dissimilar if different parameters are used and limit
the generalization of our results.

We cannot claim that the results presented in Java programs
are valid for other target programs than Java. To minimize
those threats, in our exploratory study, we used 18 real target
programs with a real update that was used before in other
dynamic software updating studies [6], [20]–[23].

C. CONCLUSION VALIDITY
For conclusion validity, we are not aware of biases we may
have had when interpreting the results. The reader should be
aware of the impact of our interests on the study. To mitigate
this threat, four evaluationmetrics were demonstrated to draw
the conclusion utilizing well-known metrics including the
number of violations [11]–[13], the cyclomatic complex-
ity [14]–[16], and the patch size [17]–[19].

VIII. CONCLUSION AND FUTURE WORK
In recent years, there has been increasing interest in mod-
ifying software systems without termination, i.e. dynamic
software updating (DSU) [1], [2]. One of the respected
examinations in this domain is the static analysis for
DSU [5], [6], [8], [10], [26]. Experts have always considered
DSU among the mandatory techniques for supporting the
high availability of software systems [3], [4].

Although significant investigations have been conducted
on static analysis (SA) to determine DSU errors, no particular
study exists that explores the effects of SA for dynamic soft-
ware updating. Respectfully, this study explored the effects
of static analysis for dynamic software updating.

Static analysis (SA) is a program analysis approach to
find software flaws without executing the program code [7].
Conspicuously, most early studies show that the SA helps to
prove the correctness of dynamic software updating [8] and
to ensure the safety of DSU [9], [10].

In this study, a novel framework was presented and four
evaluation metrics were demonstrated to measure the effects
of static analysis for DSU. The evaluation metrics includes

VOLUME 8, 2020 35169

B. H. Ahmed et al.: Effects of SA for DSU: Exploratory Study

the number of update operations [62], the number of viola-
tions [11]–[13], the cyclomatic complexity [14]–[16], and the
patch size [17]–[19].

In this study, 18 versions of baseline target pro-
grams [6], [20], [21]–[23] were employed to explore the
effects of static analysis for DSU. The inspected target pro-
grams are extracted from 6 versions of benchmarks soft-
ware including Apache SSHD 0.3, Apache SSHD 0.4, Zt-zip
1.4, Zt-zip 1.5, Apache Tomcat 8.5.37, and Apache Tomcat
8.5.38.

It is apparent from the outcome is that the SA can help to
detect violations to DSU. It may affect the complexity of the
new versions of the target programs and having optimization
can further reduce those violations. In addition, the results
show that the static analysis may change the number of update
operations and the patch size for dynamic software updating.

Looking forward, further attempts could prove quite bene-
ficial to search to reduce the potential effects of static analysis
for dynamic software updating. Overall, the results of this
study will help the researchers and practitioners in carrying
out static analysis for dynamic software updating with more
understanding of its effects.

REFERENCES
[1] C. M. Hayden, K. Saur, M. Hicks, and J. S. Foster, ‘‘A study of dynamic

software update quiescence for multithreaded programs,’’ in Proc. 4th Int.
Workshop Hot Topics Softw. Upgrades (HotSWUp), Jun. 2012, pp. 6–10.

[2] H. Seifzadeh, H. Abolhassani, and M. S. Moshkenani, ‘‘A survey of
dynamic software updating,’’ J. Softw., Evol. Process, vol. 25, no. 5,
pp. 535–568, May 2013.

[3] M. Weisbach, N. Taing, M. Wutzler, T. Springer, A. Schill, and S. Clarke,
‘‘Decentralized coordination of dynamic software updates in the Internet
of things,’’ in Proc. IEEE 3rd World Forum Internet Things (WF-IoT),
Dec. 2016, pp. 171–176.

[4] M. Neumann, C. Bach, A. Miclaus, T. Riedel, and M. Beigl, ‘‘AlwaysOn
Web of things infrastructure using dynamic software updating,’’ in Proc.
7th Int. Workshop Web Things (WoT), Stuttgart, Germany, 2016, pp. 1–6.

[5] G. Stoyle, ‘‘A theory of dynamic software updates,’’ Tech. Rep., 2007.
[6] O. Šelajev, R. Raudjärv, and J. Kabanov, ‘‘Static analysis for dynamic

updates,’’ in Proc. 9th Central Eastern Eur. Softw. Eng. Conf. Russia (CEE-
SECR), Oct. 2013, p. 7.

[7] N. Truong, P. Roe, P. Bancroft, ‘‘Static analysis of students’ Java pro-
grams,’’ in Proc. 6th Australas. Conf. Comput. Educ., vol. 30, Jan. 2004,
pp. 317–325.

[8] Y. Zhenxing, Z. Zhixiang, and B. Kerong, ‘‘An approach to dynamic
software updating for java,’’ inProc. IEEE Pacific-AsiaWorkshop Comput.
Intell. Ind. Appl., Dec. 2008, pp. 930–934.

[9] M. Hicks and S. Nettles, ‘‘Dynamic software updating,’’ ACM Trans.
Program. Lang. Syst., vol. 27, no. 6, pp. 1049–1096, Nov. 2005.

[10] V. C. Sreedhar,M. Burke, and J. D. Choi, ‘‘A framework for interprocedural
optimization in the presence of dynamic class loading,’’ ACM SIGPLAN
Notices, Vol. 35, no. 5, pp. 196–207, Aug. 2000.

[11] Y. Takai, T. Kobayashi, and K. Agusa, ‘‘Software metrics based on coding
standards violations,’’ in Proc. Joint Conf. 21st Int. Workshop Softw. Meas.
6th Int. Conf. Softw. Process Product Meas., Nov. 2011, pp. 273–278.

[12] Z. Lin, D. Marinov, H. Zhong, Y. Chen, and J. Zhao, ‘‘JaConTeBe:
A benchmark suite of real-world java concurrency bugs (T),’’ in Proc.
30th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2015,
pp. 178–189.

[13] B. Lucia, J. Devietti, L. Ceze, and K. Strauss, ‘‘Atom-aid: Detecting and
surviving atomicity violations,’’ IEEE Micro, vol. 29, no. 1, pp. 73–83,
Jan. 2009.

[14] C. Ebert and J. Cain, ‘‘Cyclomatic complexity,’’ IEEE Softw., vol. 33, no. 6,
pp. 27–29, Nov. 2016.

[15] D. Landman, A. Serebrenik, and J. Vinju, ‘‘Empirical analysis of the
relationship between CC and SLOC in a large corpus of java methods,’’ in
Proc. IEEE Int. Conf. Softw. Maintenance Evol., Sep. 2014, pp. 221–230.

[16] T. Honglei, S. Wei, and Z. Yanan, ‘‘The research on software metrics and
software complexity metrics,’’ in Proc. Int. Forum Comput. Sci.-Technol.
Appl., Dec. 2009, pp. 131–136.

[17] A. Tamches and B. P. Miller, ‘‘Fine-grained dynamic instrumentation of
commodity operating system kernels,’’ in Proc. 3rd Symp. Oper. Syst.
Design Implement. (OSDI), Berkeley, CA, USA, Feb. 1999, pp. 117–130.

[18] I. Neamtiu and M. Hicks, ‘‘Safe and timely updates to multi-threaded
programs,’’ ACM SIGPLAN Notices, vol. 44, no. 6, p. 13, May 2009.

[19] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, ‘‘Practical dynamic soft-
ware updating for c,’’ ACM SIGPLAN Notices, vol. 41, no. 6, p. 72,
Jun. 2006.

[20] H. Chen, J. Yu, C. Hang, B. Zang, and P.-C. Yew, ‘‘Dynamic software
updating using a relaxed consistency model,’’ IEEE Trans. Softw. Eng.,
vol. 37, no. 5, pp. 679–694, Sep. 2011.

[21] T. Gu, C. Cao, C. Xu, X. Ma, L. Zhang, and J. Lü, ‘‘Low-disruptive
dynamic updating of java applications,’’ Inf. Softw. Technol., vol. 56, no. 9,
pp. 1086–1098, Sep. 2014.

[22] J. Shen and R. A. Bazzi, ‘‘A formal study of backward compatible dynamic
software updates,’’ in Software Engineering and Formal Methods. Cham,
Switzerland: Springer, 2015, pp. 231–248.

[23] T. Gu, C. Cao, C. Xu, X. Ma, L. Zhang, and J. Lu, ‘‘Javelus:
A low disruptive approach to dynamic software updates,’’ in Proc. 19th
Asia–Pacific Softw. Eng. Conf., Dec. 2012, pp. 527–536.

[24] C. Wang, J. Hill, J. Knight, and J. Davidson, ‘‘Software tamper resistance:
Obstructing static analysis of programs,’’ Univ. Virginia, Charlottesville,
VA, USA, Tech. Rep. CS-2000-12, 2000, pp. 1–18.

[25] C. Artho and A. Biere, ‘‘Combined static and dynamic analysis,’’ Electron.
Notes Theor. Comput. Sci., vol. 131, pp. 3–14, May 2005.

[26] X. Li and M. Ogawa, ‘‘A sliding-window algorithm for on-the-fly inter-
procedural program analysis,’’ in Proc. Int. Conf. Formal Eng. Methods.
Cham, Switzerland: Springer, 2017, pp. 281–297.

[27] A. Tomb, G. Brat, and W. Visser, ‘‘Variably interprocedural program
analysis for runtime error detection,’’ in Proc. Int. Symp. Softw. Test. Anal.
(ISSTA), Jul. 2007, pp. 97–107.

[28] R. Lounas, M. Mezghiche, and J.-L. Lanet, ‘‘Towards a general frame-
work for formal reasoning about java bytecode transformation,’’ 2013,
arXiv:1307.8212. [Online]. Available: http://arxiv.org/abs/1307.8212

[29] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin,
and C. Unkel, ‘‘Context-sensitive program analysis as database queries,’’ in
Proc. 24th ACM SIGMOD-SIGACT-SIGART Symp. Princ. Database Syst.
(PODS), Jun. 2005, pp. 1–12.

[30] F. Wedyan, D. Alrmuny, and J. M. Bieman, ‘‘The effectiveness of auto-
mated static analysis tools for fault detection and refactoring predic-
tion,’’ in Proc. Int. Conf. Softw. Test. Verification Validation, Apr. 2009,
pp. 141–150.

[31] V. Raychev, M. Vechev, and E. Yahav, ‘‘Code completion with statistical
language models,’’ ACM SIGPLAN Notices, vol. 49, no. 6, pp. 419–428,
Jun. 2014.

[32] G. Altekar, I. B. P. Bagrak, A. Schultz, ‘‘OPUS: Online patches and updates
for security,’’ in Proc. USENIX Secur. Symp., Aug. 2005, pp. 287–302.

[33] R. Heckmann and C. Ferdinand, ‘‘Worst-case execution time prediction by
static program analysis,’’ in Proc. 18th Int. Parallel Distrib. Process. Symp.
(IPDPS), Apr. 2004, pp. 26–30.

[34] J. Dean, D. Grove, and C. Chambers, ‘‘Optimization of object-oriented
programs using static class hierarchy analysis,’’ in Proc. Eur. Conf. Object-
Oriented Program. Berlin, Germany: Springer, 1995, pp. 77–101.

[35] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, ‘‘Graph structure in the Web,’’ Comput. Netw.,
vol. 33, nos. 1–6, pp. 309–320, Jun. 2000.

[36] E. Hosnieh and H. Haga, ‘‘A novel approach to program comprehension
process using slicing techniques,’’ J. Comput., vol. 11, no. 5, pp. 353–365,
2016.

[37] C. Sandberg, A. Ermedahl, J. Gustafsson, and B. Lisper, ‘‘Faster WCET
flow analysis by program slicing,’’ ACM SIGPLAN Notices, vol. 41, no. 7,
pp. 103–112, Jul. 2006.

[38] J. Cardoso, ‘‘How to measure the control-flow complexity of Web pro-
cesses and workflows,’’ inWorkflowHandbook, L. Fischer, Ed. Lighthouse
Point, FL, USA: Future Strategies, 2005, pp. 199–212.

[39] T. Reps, S. Horwitz, and M. Sagiv, ‘‘Precise interprocedural dataflow
analysis via graph reachability,’’ in Proc. 22nd ACM SIGPLAN-SIGACT
Symp. Princ. Program. Lang. (POPL), Jan. 1995, pp. 49–61.

35170 VOLUME 8, 2020

B. H. Ahmed et al.: Effects of SA for DSU: Exploratory Study

[40] R. A. Ballance and A. B. Maccabe, ‘‘Program dependence graphs for the
rest of us,’’ Ph.D. dissertation, Dept. Comput. Sci., College Eng., Univ.
New Mexico, Albuquerque, NM, USA, 1992.

[41] F. Nielson and H. R. Nielson, ‘‘Interprocedural control flow analy-
sis,’’ in Proc. Eur. Symp. Program. Berlin, Germany: Springer, 2002,
pp. 20–39.

[42] V. Ilvonen, P. Ihantola, and T. Mikkonen, ‘‘Dynamic software updating
techniques in practice and Educator’s guides: A review,’’ in Proc. IEEE
29th Int. Conf. Softw. Eng. Edu. Training (CSEET), Apr. 2016, pp. 86–90.

[43] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu, ‘‘Mutatis
mutandis: Safe and predictable dynamic software updating,’’ ACM SIG-
PLAN Notices, vol. 40, no. 1, pp. 183–194.

[44] H. Kagdi, M. L. Collard, and J. I. Maletic, ‘‘A survey and taxonomy of
approaches for mining software repositories in the context of software evo-
lution,’’ J. Softw.Maintenance Evol., Res. Pract., vol. 19, no. 2, pp. 77–131,
Mar. 2007.

[45] Patch (Computing). (Nov. 19, 2019). Wikipedia. [Online]. Available:
https://en.wikipedia.org/wiki/Patch_(computing)

[46] What is a Bug Fix?—Definition from Techopedia. Accessed:
Jul. 29, 2015. [Online]. Available: https://www.techopedia.com/definition/
18105/bug-fix

[47] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[48] R. Ghiya and L. J. Hendren, ‘‘Is it a tree, a DAG, or a cyclic graph? A shape
analysis for heap-directed pointers in,’’ in Proc. 23rd ACM SIGPLAN-
SIGACT Symp. Princ. Program. Lang., Jan. 1996, pp. 1–15,

[49] M. W. Hall and K. Kennedy, ‘‘Efficient call graph analysis,’’ ACM Lett.
Program. Lang. Syst., vol. 1, no. 3, pp. 227–242, Sep. 1992.

[50] E. K. Smith,M.Hicks, and J. S. Foster, ‘‘Towards standardized benchmarks
for dynamic software updating systems,’’ in Proc. 4th Int. Workshop Hot
Topics Softw. Upgrades (HotSWUp), Jun. 2012, pp. 11–15.

[51] Y. Zhauniarovich, M. Ahmad, O. Gadyatskaya, B. Crispo, and F.Massacci,
‘‘StaDynA: Addressing the problem of dynamic code updates in the secu-
rity analysis of android applications,’’ in Proc. the 5th ACM Conf. Data
Appl. Secur. Privacy, Mar. 2015, pp. 37–48.

[52] E. Söderberg, T. Ekman, G. Hedin, and E. Magnusson, ‘‘Extensible
intraprocedural flow analysis at the abstract syntax tree level,’’ Sci. Com-
put. Program., vol. 78, no. 10, pp. 1809–1827, Oct. 2013.

[53] P. Louridas, ‘‘Static code analysis,’’ IEEE Softw., vol. 23, no. 4, pp. 58–61,
Jul. 2006.

[54] S. Herbold, J. Grabowski, and S. Waack, ‘‘Calculation and optimization
of thresholds for sets of software metrics,’’ Empirical Softw. Eng., vol. 16,
no. 6, pp. 812–841, Dec. 2011.

[55] H. Prahofer, F. Angerer, R. Ramler, H. Lacheiner, and F. Grillenberger,
‘‘Opportunities and challenges of static code analysis of IEC 61131-3
programs,’’ in Proc. IEEE 17th Int. Conf. Emerg. Technol. Factory Autom.
(ETFA), Sep. 2012, pp. 1–8.

[56] PMD Source Code Analyzer Project. Accessed: Jan. 2, 2019. [Online].
Available: https://pmd.github.io/latest/pmd_userdocs_making_rulesets
.html

[57] V. Balachandran,‘‘Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer recom-
mendation,’’ in Proc. 35th Int. Conf. Softw. Eng. (ICSE), May 2013,
pp. 931–940.

[58] J. S. Seng and D. M. Tullsen, ‘‘The effect of compiler optimizations on
Pentium 4 power consumption,’’ in Proc. 7th Workshop Interact. Between
Compilers Comput. Archit., Feb. 2003, pp. 51–56.

[59] M. J. Kordkandi, ‘‘Towards change validation in dynamic system updating
frameworks,’’ Ph.d. dissertation, Università degli Studi di Milano, Milan,
Italy, 2018.

[60] S. Zhang and L. Huang, ‘‘Formalizing class dynamic software updating,’’
in Proc. Sixth Int. Conf. Qual. Softw. (QSIC), Oct. 2006, pp. 1–17.

[61] J. C. Munson and T. M. Khoshgoftaar, ‘‘Measuring dynamic program
complexity,’’ IEEE Softw., vol. 9, no. 6, pp. 48–55, Nov. 1992.

[62] G. Canfora, L. Cerulo, and M. D. Penta, ‘‘Identifying changed source code
lines from version repositories,’’ in Proc. 4th Int. Workshop Mining Softw.
Repositories, May 2007, p. 14.

[63] M. Pukall, C. Kästner, W. Cazzola, S. Götz, A. Grebhahn, R. Schröter,
and G. Saake, ‘‘JavAdaptor-flexible runtime updates of java applications,’’
Softw., Pract. Exper., vol. 43, no. 2, pp. 153–185, Feb. 2013.

BABIKER HUSSIEN AHMED received the Bach-
elor of Computer Science degree (Hons.) and the
Master of Science degree in software engineer-
ing from the Sudan University of Science and
Technology (SUST), Sudan, in 2004 and 2009,
respectively. He is currently pursuing the Ph.D.
degree with the Department of Software Engi-
neering, Faculty of Computer Science and Infor-
mation Technology, University of Malaya (UM).
His research interests include dynamic software

updating, graph theory, program analysis, software containers, and cloud
computing.

SAI PECK LEE received the master’s degree in
computer science from the University of Malaya,
the Diplôme d’études approfondies (D.E.A.)
degree in computer science from the Université
Pierre et Marie Curie (Paris VI), and the Ph.D.
degree in computer science from Université Pan-
théonSorbonne (Paris I). She is currently a Pro-
fessor with the Faculty of Computer Science and
Information Technology, University of Malaya.
She has authored or coauthored an academic book,

a few book chapters, and over 100 articles in various local and international
conferences and journals. Her current research interests in software engi-
neering include object-oriented techniques and CASE tools, software reuse,
software fault localization, requirements engineering, application and per-
sistence frameworks, and software traceability and clustering. She has been
an Active Member in the reviewer committees and programme committees
of several local and international conferences. She is also in several Experts
Referee Panels, both locally and internationally.

MOON TING SU received the Bachelor of Com-
puter Science degree (Hons.) and the Master of
Science degree in computer science from Uni-
versity Putra Malaysia, and the Ph.D. degree in
computer science from The University of Auck-
land. She is currently a Senior Lecturer with the
Department of Software Engineering, Faculty of
Computer Science and Information Technology
(FCSIT), University of Malaya (UM), Malaysia.
Her research interests are architecture knowledge,

e-learning, web services, microservices, virtual reality for the Internet, com-
puter aided software engineering (CASE) tools (syntax-directed program-
ming editor/programming environment), end-user programming, reusable
requirements, object-oriented software systems, and cloud computing.

VOLUME 8, 2020 35171

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	STATIC ANALYSIS
	STATIC ANALYSIS FOR DYNAMIC SOFTWARE UPDATING
	RELATED WORK

	EXPLORATORY STUDY
	PURPOSE OF THE STUDY
	MEASURING EFFECTS OF STATIC ANALYSIS FOR DYNAMIC SOFTWARE UPDATING
	EVALUATION METRICS
	FESAD: A FRAMEWORK FOR MEASURING EFFECTS OF STATIC ANALYSIS FOR DYNAMIC SOFTWARE UPDATING

	EXPERIMENTS
	RESULTS AND DISCUSSION
	POLE POSITION RESULTS
	FINAL DESTINATION RESULTS
	DATA ANALYSIS
	THE NUMBER OF UPDATE OPERATIONS
	THE PATCH SIZE
	THE NUMBER OF VIOLATIONS
	CYCLOMATIC COMPLEXITY

	COMPARE THE POLE POSITION RESULTS AND THE FINAL DESTINATION RESULTS

	PRINCIPAL FINDINGS
	THREATS TO VALIDITY
	INTERNAL VALIDITY
	EXTERNAL VALIDITY
	CONCLUSION VALIDITY

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	BABIKER HUSSIEN AHMED
	SAI PECK LEE
	MOON TING SU

