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ABSTRACT Aiming at the multi-motor coordinated control of intelligent robots, cross-coupling ring control
based on fuzzy theory (CRCF) is proposed. Each motor is cross-coupled with two adjacent motors to form
a multi-motor ring network structure that eliminates lag in speed tracking between motors and enhances
synchronization between motors. Applying fuzzy control to the cross-coupling control of the proposed
control strategy, the speed error and change in speed error of two adjacent motors are used as the input of
the fuzzy controller, and its output is used as the input of the second of the two adjacent motors. The fuzzy
controller achieves real-time tracking adjustment of the speed error between motors. The controllability
and observability of the proposed control strategy are verified by the theorem of the Kalman matrix rank
criterion. The external stability and internal stability are verified using an impulse response matrix. The
theoretical analysis of the lag is verified by establishing a physical and mathematical model. Finally, a four-
motor coordination control system model is built. By comparison with the non-ring network proportional
cross-coupling control method, the effectiveness of the proposed control strategy is experimentally verified
by the MATLAB/Simulink and the RT-LAB real-time simulation platform.

INDEX TERMS Multi-motor coordinated control, ring network control, fuzzy control, stability analysis,
lag analysis.

I. INTRODUCTION
In the past 10 years, considerable attention has been paid to
artificial intelligence robotic technology, and a large num-
ber of repetitive and complex mechanical procedures have
gradually been replaced by intelligent robots [1]–[2]. The
demand for intelligent robots in various industries is increas-
ing. By performing coordination control, multiple motors
can reach higher requirements for tracking, synchronization
and position accuracy to drive the robot to achieve similar
functions to a human.

To improve synchronization accuracy, early motor coordi-
nation control used the load compensation controller method
to reduce the asynchronous phenomenon caused by load and
torque imbalance [3]. With the continuous development of
electronic technology and control theory, some control meth-
ods combined with advanced control theory have been used
for multi-motor coordination control. High precision and sta-
bility are the development trends of multi-motor coordination
control. In multi-motor drive industrial production, the stable
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coordination of the system directly affects the quality of the
product. At present, the coordinated control of multi-motor
drive systems in industrial production is mainly divided
into uncoupled control modes and coupled control modes.
Common non-coupling coordinated control methods are the
master coordination control method [4] and the master-slave
coordinated control method [5], [6]. The disadvantage of
non-coupling coordinated control is that the main motor (or
main system) does not respond in a timely manner when an
external disturbance occurs from the slave motor (or from the
slave system). Therefore, there is a lag from slave motor (or
slave system) feedback to the main motor (or main system),
which affects the synchronicity of the whole multi-motor
system.

Koren pioneered the basic structure of a cross-coupled
controller on a biaxial motion platform in 1970 [7]. Since
then, many scholars have studied the cross-coupling con-
trol of two-axis synchronization and two-axis tracking
[8]–[10]. The advantages of cross-coupling control in multi-
motor coordinated control have been recognized, applied
and developed [11]–[18]. Among multi-motor coordinated
control strategies, the traditional proportional cross-coupling
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control strategy (TCCS) has made great progress. However,
to achieve more precise motor speed synchronization control
and faster and more accurate speed adjustment, the feedback
coefficient needs to change continuously with the variation
of speed error between adjacent motors. However, the tra-
ditional constant feedback coefficient will affect the accu-
racy and rapidity of synchronous tracking and cause unstable
output or even a vibration ripple phenomenon. If the linear
change feedback coefficient method is adopted, the feedback
coefficient will continue to increase due to the increase in the
adjustment time, which will affect the overshoot of the adjust-
ment and may cause the system to oscillate or even collapse.

As one of the important branches of intelligent con-
trol, fuzzy control technology has significant advantages for
multi-variable complex system with nonlinear, strong cou-
pling, uncertainty and time-varying characteristics. It has
been widely used in various control fields and has achieved
very effective control effects [19]–[22]. In this paper, con-
sidering that the motor is susceptible to different types of
disturbances during operation, fuzzy control can be used to
distinguish these disturbances according to different fuzzy
areas. When the motor is subjected to these disturbances,
the speed of each motor can be changed accordingly by the
fuzzy control rule. That is, fuzzy control realizes real-time
variable coefficient control with disturbance, which improves
the coordination of multi-motor operation.

In recent years, with the development of intelligent robot
technology and the increasing demand for robot intelligence
in the market, multi-motor coordinated control technol-
ogy has begun to attract more attention. Speed feed-
back control and torque compensation were used for dual
motor coordinated control [23]. The centralized coordinated
control (DCC) strategy with multiple subsystems [24], mul-
tiple phases motor technology [25], communication topol-
ogy modules to transmit motor position information [26],
the torque distribution method [27]–[32], additional speed
controllers [33], the adaptive slidingmode fault-tolerant coor-
dination (ASM-FTC) control method [34], learning adaptive
robust control [35] and the hierarchical network method [36]
have been used for multi-motor coordinated control.

Although some encouraging progress has been made,
developing multi-motor coordinated control with high preci-
sion is less successful and still requires further research.

Motivated by the above discussion, this paper proposes
a cross-coupling multi-motor ring network control strategy
based on fuzzy control rules (CRCF). The main contributions
of the proposed control strategy are as follows:

(1) To overcome the shortcomings of master-slave control
delay, a ring network control structure is designed to fur-
ther enhance the coupling and following ability between the
motors. In this ring structure, two adjacent motors can be
cross-coupled by the controllers, and the first motor and the
last motor are also cross-coupled by the controllers. This ring
structure can eliminate lag and prevent possible damage to
each motor caused by additional mechanical torque due to
excessive speed differences.

(2) Fuzzy control is used in cross-coupled controllers to
achieve real-time tracking of speed changes between multi-
motor. Fuzzy control can change the control parameters of
the controller in real time based on speed changes which
enhances tracking performance in multi-motor coordinated
control. These fuzzy controllers take the speed error of the
adjacent motors and its change rate as input and adjust the
feedback coefficient according to fuzzy reasoning rules to
realize real-time coordinated control between motors which
ensures more effectively tracking and coordination between
motors.

(3) A method to judge the synchronous performance of
motors in the multi-motor coordinated control by the time
constant of each motor is proposed, the physical and math-
ematical models of the method is built, and the concrete
derivation method is expounded. By using this method, it is
proved that the control strategy proposed in this paper has
the advantage of eliminating the lag between motors in the
multi-motor coordinated control, which is consistent with the
experimental simulation results.

(4) The motion trajectory projection of the manipulator
is drawn through the simulation experiment, and the motion
trajectory space is illustrated.

This paper is organized as follows: Section 2 consists of
the overall ring network structure of the proposed control
method and the control principle. Section 3 presents the
design of the fuzzy controller and formulates the fuzzy
control rules. Section 4 proves the stability of the pro-
posed control strategy. Section 5 analyses the lag prob-
lem. Section 6 builds a coordinated control model of
four-motor system, and the control effect of the proposed
control method is compared with the non-ring network
proportional cross-coupling control method by both MAT-
LAB simulation and the RT-LAB real-time experimen-
tal platform. Finally, Section 6 summarizes the results of
this paper.

II. PROBLEM FORMULATION AND CONTROL METHOD
A. ROBOT STRUCTURE
As shown in Fig. 1, the robot has three arms and one
mechanical gripper. The three arms and the mechanical
gripper are driven by motors. To ensure that the robot
can accurately grasp the target object, these motors must

FIGURE 1. The structure diagram of the robot.
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coordinate movement. The length and rotation angle of each
arm can be obtained by calculation considering arm weight,
load weight and target position. When the robot is not dis-
turbed by outside influences, it can accurately grasp the
target object. In the absence of coordinated control between
motors, if a motor is disturbed, the speed following of
other motors is not obvious because the coupling between
the motors is not strong. Then, the entire mechanical arm
system of the robot will not be able to accurately grasp the
target object. At present, the robot manipulator is still in the
application stage of directional grasping, which puts large
requirements on theworking environment because of its weak
anti-interference ability. Therefore, to improve the intelli-
gence of the robot manipulator, it is important to study multi-
motor coordinated control technology, which enhances the
coupling and tracking ability between motors and improves
the anti-interference ability. The multi-motor synchronous
control algorithms mainly include parallel control, master-
slave control and cross-coupling control. The key feature of
parallel control is that the control between motors is inde-
pendent of the motors. That is, if one or several motors are
disturbed, the motors will lose synchronization and could
even cause the system to collapse. Master-slave control is
proposed based on parallel control to improve the coordi-
nation of multi-motor control. Under this control strategy,
the speed input signal of the slave motor is given by the
speed output of the previous motor; therefore, the speed of the
slave motor always follows the speed change of its previous
motor, which increases the stability of the system to a certain
degree. However, if the slave motor is disturbed, the motors
prior to the slave motors will not change accordingly, which
makes it difficult to eliminate the error generated by the slave
motor. When the speed of the slave motor is disturbed, it can
not be fed back to change the speed of the prior motors but
can only adjust itself and the next motors, which will cause
delay. Therefore, master-slave control is unsuitable for high-
speed and high-precision applications. The traditional pro-
portional cross-coupling control strategy (TCCS) combines
the advantages of parallel control and master-slave control.
The speed error of the motors is fed back to their speed
input through a constant proportional controller. Thus, each
motor can respond to disturbances, but there will still be
delay because of the non-ring network structure. At present,
most synchronization control algorithms are based on cross-
coupling control. However, this control strategy has limita-
tions; it only has a small scope of application in high working
environment requirements due to its weak anti-interference
ability and response lag. If the synchronization speed error
of motors is reduced only by increasing the gain of the
controller, the system will be unstable or even collapse.
Moreover, because the TCCS is a non-ring network structure,
the feedback of speed error between motors will also produce
hysteresis, which will cause the control system to not respond
in time; thus, the TCCS is unsuitable for occasions with high
synchronization precision requirements.

FIGURE 2. The control structure diagram of CRCF.

B. CONTROL METHOD OF CRCF
Due to the difficulties of the TCCS in achieving high-
precision synchronous control, CRCF is proposed; it adopts
a ring network control structure, and fuzzy control is applied
to its cross-coupling control strategy. The control structure
diagram of CRCF is shown in Fig. 2.

The improved multi-motor coordinated control strategy
combines the advantages of parallel control, master-slave
control, cross-coupling control and fuzzy control. It consti-
tutes a ring network control system; that is, each motor is
cross-coupled with two adjacent motors to form a multi-
motor ring network control structure, which improves speed
tracking ability between motors. The proportional coefficient
and gain coefficient in Fig. 2 can be adjusted by actual work-
ing demand. The fuzzy controller acts as error compensation
to eliminate the speed output errors between the motors,
which makes the system more coordinated.

III. FUZZY CONTROLLER
A nonlinear fuzzy control algorithm based on fuzzy inference
is designed. The input and output selection of the fuzzy con-
troller should be determined according to the actual situation
of the control system. The proposed fuzzy controller has two
inputs, namely, speed error e and change in speed error ec,
and one output c, which is the real time compensation for the
change in speed error. e and ec are expressed as follows: ei = vi(t) − vi+1(t)

eci =
dei
dt

(1)

where ei and eci are the output speed error and the change in
speed error between the i-th motor and the (i+1)-th motor,
respectively.
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FIGURE 3. Fuzzy principle diagram of the fuzzy controller.

The principle of the fuzzy controller is shown in Fig. 3,
which includes fuzzification, a fuzzy rule base, fuzzy infer-
ence, defuzzification and output quantization. First, the pre-
cise input x is fuzzified into a fuzzy variableX; then, the fuzzy
rule vector is obtained by referring to the fuzzy inference of
the rule base, and subsequently, the fuzzy control variable
Y is obtained by deblurring the fuzzy rule vector. Finally,
the actual output control quantity y is obtained by output
quantization.

A. FUZZY PRINCIPLE
The essence of fuzzification is to map a precise value to a
corresponding fuzzy domain. That is, the values input to the
fuzzy controller are exact values, and they are blurred by
a certain fuzzy logic method. The fuzzy principle includes
fuzzy domain mapping, fuzzy domain segmentation, a mem-
bership function, and fuzzy output inference.

1) FUZZY DOMAIN MAPPING
The precise input is transformed into a scale value in a fuzzy
domain and is mapped to a corresponding fuzzy set. �e =

(−m,m), �ec = (−n, n) and �c = (−l, l) are, respectively,
the fuzzy domain of the input e, the fuzzy domain of the
input ec and the fuzzy domain of the output c. ke and kec,
are, respectively, fuzzy scale factors of the two inputs, which
are shown as formulas (2, 3). kc represents the precise output
quantization factor, which is shown as formula (4):

ke =
2m

eH − eL
(2)

kec =
2n

ecH − ecL
(3)

kc =
cH − cL

2l
(4)

where m, n and l correspond to the positive boundary max-
imum of the corresponding fuzzy domains. eH , eL , ecH ,
ecL cH and cL are the maximum and minimum values of the
inputs and the output estimated through actual engineering
experience. Then, the actual input value can be scaled by
formula (5) and transformed into the corresponding fuzzy set.
The quantization factor of formula (4) is used to calculate the
precise output in the subsequent output quantization.

F = KX (5)

where X =[e, ec]T, K=[ke, kec]T, F=[fe, fec]T, fe ∈ �e, and
fec ∈ �ec. fe and fec are scale values that correspond to speed
error e and change in speed error ec, respectively. E and EC
represent two input fuzzy sets.

TABLE 1. Fuzzy control rule table.

2) FUZZY DOMAIN SEGMENTATION
The segmentation of the fuzzy domain needs to define a
fuzzy language and a fuzzy rule, and the fuzzy domain
is divided into seven fuzzy set intervals according to the
fuzzy language: NB (negative big), NM (negative medium),
NS (negative small), ZE (zero), PS (positive small), PM (pos-
itive medium), PB (positive big). The fuzzy rule reasoning is
shown in Table 1.

The fuzzy rule of the fuzzy controller is formulated as
follows:

IF (fe ∈ Ez) AND (fec ∈ EC j) THEN (gc ∈ Czj).

where E, EC, C = (NB, NM, NS, ZE, PS, PM, PB), and
E ⊂ �e, EC ⊂ �ec, C ⊂ �c. 1 ≤ Z ≤ 7, 1 ≤ j ≤ 7, Ez and
EC j represent the z− th fuzzy set of E and the j− th fuzzy set
of EC, respectively. Czj is the output fuzzy set corresponding
to Ez and EC j, which is obtained from Table 1.

When m = 6 and n = 6, the membership graphs of seven
fuzzy sets are shown in Fig. 4.

FIGURE 4. Membership function of seven fuzzy sets.

After the scale values of e and ec are calculated by formula
(5), their fuzzy sets can be determined from Fig. 4. The fuzzy
set of the output is derived from the fuzzy rule above with
reference to Table 1. To obtain the output membership that
tracks the input changes in real time, the max-min inference
algorithm is utilized. The formula of output membership is
shown as follows:

µ(Czj) = max
⌊
min{µ(Ez), µ(ECj)}

⌋
(6)

B. DEFFUZZIFICATION AND OUTPUT QUANTIZATION
After obtaining the output membership as described above,
the centre of gravity method is used to calculate the scale
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FIGURE 5. The relationship surface of the fuzzy inputs and output.

value of the output, as shown in formula (7).

y(z,j) =

∫ b
a
µ(czj)czjdczj∫ b
a
µ(czj)dczj

(7)

where y(z,j) is the scale value of the output corresponding
to the two inputs e and ec. Because the centre of gravity
method has smoother output inference control, when the input
signal changes slightly, the output value on the basis of the
above fuzzy inferencewill also change. It can accurately track
changes. The relationship surface of the fuzzy inputs and
output is shown in Fig. 5.

Combining the scale value of formula (7) and the quanti-
zation factor of formula (4), the feedback output value yf (i) of
the fuzzy controller can be formulated as follows:

yf (i) = kc × y(z, j) (8)

where yf (i) is the (i + 1) − th motor input. The output result
of the fuzzy controller is transmitted to the next motor in
the form of speed compensation to achieve speed tracking
adjustment.

When the motors run without disturbance, the fuzzy con-
trollers do not work. CRCF is the same as the proportional
cross-coupling ring network control. When a motor is sub-
jected to external disturbances during normal running, speed
errors will occur, and the fuzzy controllers will output the
corresponding feedback coefficients to the speed error, which
makes the control method more applicable and flexible. The
core of the control strategy is the fuzzy controller. It adjusts
the feedback coefficient of the fuzzy controller with the speed
error in real time to keep multi-motor running synchronously
at specific speeds. This method can be applied to a wider
speed range. Moreover, good speed following ability can be
achieved in the case of multiple disturbances.

IV. STABILITY ANALYSIS
It can be seen from Fig. 2 that the input of each motor
includes four parts: the master-slave feedback input of the
upper motor, the rated input, the fuzzy feedback input and

the backward feedback input of the next motor.

v1
v2
...

vi
...

vn


=



vref 1
vref 2
...

vi
...

vrefn


+ λA



ωn(t)
ω1(t)
...

ωi−1(t)
...

ωn−1(t)



+ λB



1ω1(t)
1ω2(t)
...

1ωi(t)
...

1ωn(t)


+ λ



yfn(t)
yf 1(t)
...

yfi−1(t)
...

yfn−1(t)


(9)

where A = diag(αn, α1, α2, α3, · · · , αi, · · · , αn−1, ),B =
diag(β1, β2, β3, · · ·βi, · · ·βn) α is the master-slave feedback
coefficient, β is the backward feedback coefficient, λ is the
conversion coefficient between velocity and angular velocity,
ω is the motor output angular velocity, 1ωi is the angular
velocity difference between the i-th and (i+1)-th motors, n
is the motor number, vi is the input speed for the i-th motor,
and the system rated input is vrefi. The master-slave feedback
input of the i-thmotor comes from the previous motor, and its
value is λαi−1ωi−1. The backward feedback input of the i-th
motor is λβiωi. The fuzzy feedback input of the i-th motor
is λyf (i−1).

To simplify the AC asynchronous motor vector control,
the following assumptions are made:

1) We ignore the iron loss of the asynchronous motor.
2) We ignore the influence of the small rotating electromo-

tive force of the asynchronous motor and nonlinear coupling
caused by the rotating electromotive force.

3) We assume that each link is linear.
4) The rotor flux is considered to be constant in dynamic

conditions.
Then, the vector control structure block diagram of the i-th

asynchronous motor is shown in Fig. 6.
When the load disturbance is zero, the open-loop transfer

function of the closed-loop system can be simplified as shown
in Fig. 7.

According to the engineering requirement, the typical
type II system is used, and the open loop gain can be obtained
from Fig. 7.

KN =
PNKSKTKn
λJDR

=
h+ 1

2h2T 2
l

(10)

FIGURE 6. The vector control diagram of the i-th motor.
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FIGURE 7. The simplified vector control structure of the i-th motor.

τn = hTl (11)

where h is the width of the Bode diagram when the slope is -
20 dB/dec. Taking h =5:

Kn =
λJDRKN
PNKSKT

(12)

where Tas is the delay time of the main circuit receiving
the control signal (generally ignored in engineering applica-
tions), Ks is the amplification factor of the control signal for
the main circuit switch, R is motor phase resistance, Tl is the
electromagnetic time constant, KT is the transfer coefficient
from torque current to torque, PN is the number of motor pole
pairs, JD is the motor moment of inertia, which represents the
angular velocity, and GC (2) is equal to Kn(τnS + 1)/S. The
closed-loop transfer function of the AC asynchronous motor
drive unit vector control system is as follows:

G(2) =
ω

V
=

(PNR+ JDRKN τn)S + JDRKN
/
λ

JDRTlS3 + JDRS2 + JDRKN τnS + JDRKN

=
b1S + b0

S3 + a2S2 + a1S + a0
(13)

where b1 =
PNR+JDRKN τn

JDRTl ,
b0 =

JDRKN/λ
JDRTl ,

a2 = 1
Tl ,
a1 =

KN τn
Tl ,

a0 =
JDRKN
JDRTl

. The high-order differential formula
deduced by formula (13) is shown in formula (14).

ω(3)
+ a2ω(2)

+ a1ω(1)
+ a0ω = b1v(1) + b0v (14)

Introducing the differential operator p = d/
dt , formula (13)

can be expressed as:

y =
b1p+ b0

p3 + a2p2 + a1p+ a0
u (15)

which can also be expressed as: ỹ =
u

p3 + a2p2 + a1p+ a0
y = (b1p+ b0)ỹ

(16)

and {
ỹ(3) + a2ỹ(2) + a1ỹ(1) + a0ỹ = u
y = b1ỹ(1) + b0ỹ

(17)

Then, the system is known to be 3rd order; therefore, there
are 3 state variables, which are taken as x1 = ỹ,x2 = ỹ(1)

and x3 = ỹ(2).
ẋ1 = ỹ(1) = x2
ẋ2 = ỹ(2) = x3
ẋ3 = −a0x1 − a2x2 − a2x3 + u
y = b0x1 + b1x2

(18)

where x =[x1,x2,x3]T represents the state vector. The state
variable formula in matrix form is shown in formula (19):{

ẋ = Ax + Bu
y = Cx

(19)

The expanded formula is shown as formula (20).

ẋ =

 0 1 0
0 0 1
−a0 −a1 −a2

 x +
 0
0
1

 u
y = [b0, b1, 0]

 x1x2
x3

 (20)

where y = ω.
Definitions: The complete controllability of the system:

Each state variable within the system can be fully affected
by the input. The complete observability of the system: The
output can fully react to each state variable within the system.

The controllability of the system is demonstrated by using
the Kalman rank criterion. For continuous time-invariant
systems, the controllable criterion matrix is constructed by
formula (19):

Qc =
[
B AB · · · An−1B

]
(21)

The necessary and sufficient condition for system stability
must satisfy the following formula:

rank(Qc) =
[
B AB · · · An−1B

]
= n (22)

Proof: Assuming the system is not completely control-
lable, the Gram matrix is a singular matrix given as follows:

Wc
[
0, t1

]
=

∫ t1

0
e−AtBBT e−A

T tdt, ∀t1 > 0 (23)

This demonstrates that there is at least one nonzero state
in the state space n, which means the following formula
established.

0 = αTWc
[
0, t1

]
α =

∫ t1

0
αT e−AtBBT e−ATtαdt

=

∫ t1

0

[
αT e−AtB

] [
αT e−AtB

]T
dt (24)

Then, αT e−AtB = 0, ∀t ∈
[
0, t1

]
. Deriving the variable t of

the above formula (n-1) times, let t=0; the derived results are
αTB = 0, αTAB = 0, αTA2B = 0, . . . , αTAn−1B = 0. The
formula can be expressed as formula (25).

αT
[
B AB · · · An−1B

]
= αTQc = 0 (25)
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Due to α 6= 0,Qc is linearly correlated, that is, rank(Qc) < n,
which contradicts rank (Qc) = n. Therefore, the system is
completely controllable, and the sufficiency is proven.

Proof: Assuming rank (Qc) < n is a linear correlation,
there is at least one nonzero state in the state space Rn, which
means the following formula is established.

αTQc = αT
[
B AB · · · An−1B

]
= 0 (26)

Therefore, it can be derived as αTApB = 0, P=0,1,2,...,
n-1. Then, for any t1>0, the conclusion can be obtained
that ±αT Aptp

p! = 0,∀t ∈
[
0, t1

]
, P=0,1,2,.... Therefore,

based on this conclusion, 0 = αT
∫ t1
0 e−AtBBT e−ATtdtα =

αTWc
[
0, t1

]
α can be inferred. This finding means that the

Hermitian matrix Wc
[
0, t1

]
is singular; therefore, the sys-

tem is not fully controllable, which contradicts the hypothe-
sis. Then, rank (Qc) = n has been proven.
According to formula (19,20), the matrix is obtained as

AB =

 0
1
−a2


,

[
B, AB, A2B

]
=

 0 0 1
0 1 −a2
1 −a2 a22 − a1


Then, rank(Qc) = Rank(B,AB,A2B) = 3, which meets the
Kalman rank criterion; therefore, the system is completely
controllable.

The observability of the system is proven by using the rank
criterion. For a continuous, time invariant system, the rank
criterion matrix is constructed by formulas (19, 20), and the
discriminant matrix is as follows:

Q◦ =


C
CA
...

CAn−1

 (27)

The necessary and sufficient condition for the complete
observability of the system must satisfy the following
formula:

rank(Q◦) = rank


C
CA
...

CAn−1

 = n (28)

According to formulas (19, 20), the expressions of matrix
C,CA,CA2 are C =

[
b0 b1 0

]
, and CA =

[
0 b0 b1

]
, and

CA2 =
[
−b1a0 −b1a1 b0 − b1a2

]
. Then,

rank(Q◦) = rank

 b0 b1 0
0 b0 b1
−b1a0 −b1a1 b0 − b1a2

 = n (29)

which meets the rank criterion. Therefore, the system is
completely observable.

For the time-invariant system analysis, the expression of
the relationship of the impulse response matrix is H (t) =
CeAtB. According to formulas (19,20),

A =

 0 1 0
0 0 1
−a0 −a1 −a2

 , eAt = P

 eλ1t eλ2t

eλ3t

P−1,

where λ1, λ2, λ3 are the eigenvalues of A,P represents the
eigenvector matrix and p−1 represents the eigenvector inverse
matrix. Then, the impulse response matrix is obtained.

H (t) =
[
b0 b1 0

]
P

 eλ1t eλ2t

eλ3t

P−1
 0
0
1

 (30)

When all elements of the impulse response matrix satisfy∫
∞

0 |h(t)|dt <∞, the system has external stability.

V. ANALYSIS OF LAG PROBLEMS
The lag problem is one of the key problems to be solved in
multi-motor coordinated control. It reflects the coordination
and following ability of multi-motor after disturbance. The
lag problem can be analyzed by deriving the response time
constant of each motor using an equivalent circuit [37], [38].
The response time constant of each motor using the CRCF
method and TCCS method are derived as follows. The speed
control uses a variable frequency speed controller with vector
control. According to the assumptions made in the mathemat-
ical model of the asynchronous motor, the A, B, and C three-
phase stationary coordinate system is transformed to the αβ
stationary coordinate system, which is shown in Fig. 8.

FIGURE 8. The vector diagram of the motor coordinate transformation.

where N3 is the effective number of turns of each phase in
the three-phase winding, and N2 is the effective number of
turns of each phase in the two-phase winding. The coordinate
transformation can be written in matrix form as follows.

[
iα
iβ

]
=
N3

N2

 1 −
1
2
−
1
2

0

√
3
2
−

√
3
2


 iAiB
iC

 (31)

Under the premise that the total power before and after the
conversion is unchanged, it can be proved that the turns ratio

should be: N3
N2
=

√
2
3 .

Therefore, it is defined as a transformation matrix C3/2
transformed from a three-phase coordinate system to a two-
phase coordinate system.
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Then

C3/2
=

√
2
3

 1 −
1
2
−
1
2

0

√
3
2
−

√
3
2

 (32)

The transformation from the stationary coordinate system
αβ to the two-phase rotational coordinate system MT is a
Park transformation. Let the two-phase AC currents iα and
iβ produce the same combined magnetic force as the two-
phase DC currents im and it at a speed of ω1. Because the
αβ coordinates are stationary in Fig. 8, the MT axis and the
vector (F1)i1 rotate at speed ω1, and im and it are unchanged.
However, the angle ϕ between the α-axis and the M-axis
changes with time; therefore, the lengths of iα and iβ on the
αβ axis also change with time. The relationship is as follows:

iα = im cosϕ − it sinϕ (33)

iβ = im sinϕ + it cosϕ (34)

Therefore,

C2r/2s
=

[
cosϕ − sinϕ
sinϕ cosϕ

]
(35)

Using the above coordinate transformation, the voltage equa-
tion of the AC asynchronous motor on the MT coordinate
system can be obtained as follows:
usM
usT
urM
urT

 =

Rs + pLs −ωs1Ls pLm −ωs1Lm
−ωs1Ls Rs + pLs −ωs1Ls pLm
pLm 0 Rr + pLr 0
−ωs1Ls 0 −ωs1Ls Rr



×


isM
isT
irM
irT

 (36)

The flux linkage equation of the AC asynchronous motor in
the MT coordinate system is as follows:

ϕsM
ϕsT
ϕrM
ϕrT

 =

Ls 0 Lm 0
0 Ls 0 Lm
Lm 0 Lr 0
0 Lm 0 Lr



isM
isT
irM
irT

 (37)

The electromagnetic torque is:

Te =
3
2
PNLm(isT irM − isM irT ) (38)

where usM and usT are the stator voltage on the MT axis. urM
and urT are rotor voltages on the MT axis. isM and isT are the
stator currents on the MT axis. irM and irT are rotor currents
on the MT axis. ϕsM and ϕsT are stator flux linkages on the
MT shaft. ϕrM and ϕrT are rotor flux linkages on the MT
shaft. PN is the number of pole pairs. Ls,Lr and Lm are the
stator inductance, rotor inductance and mutual inductance,
respectively. Rs and Rr are the stator and rotor resistance,
respectively. ωs1 is the stator synchronous angular velocity.
ωs is the slip angular velocity, and ωs = ηωs1 = ωs1 − ωr .

η is the slip rate. ωr is the angular velocity of the rotor. ϕr is
the rotor flux linkage which rotates at a synchronous speed;
therefore, ϕrM = ϕr and ϕrT = 0. The flux linkage can be
derived as follows:

ϕsM
ϕsT
ϕrM
0

 =

Ls 0 Lm 0
0 Ls 0 Lm
Lm 0 Lr 0
0 Lm 0 Lr



isM
isT
irM
irT

 (39)

For squirrel -cage AC motors, the voltage equation can be
derived as follows.
usM
usT
0
0

 =

Rs+ pLs −ωS1Ls pLm −ωS1Lm
ωS1Ls Rs + pLs ωS1Lm pLm
pLm 0 Rr + pLr 0
ωSLm 0 ωSLr Rr



×


isM
isT
irM
irT

 (40)

The flux linkage of the rotor can be obtained from formula
(39):

ϕr = ϕrM = LmisM + Lr irM (41)

The current isM can be obtained from formula (40):

irM = −p
ϕr

Rr
(42)

Substituting formula (42) into the formula (41), we obtain

ϕr =
isMLm
1+ Lr

Rr
p

(43)

Te =
3
2
PN

Lm
Lr
isTϕr (44)

Then, Tr =
Lr
Rr
.

Considering iron loss and leakage reactance, and normal-
izing the stator side to the rotor side, the equivalent circuit of
the asynchronous motor can be obtained as shown in Fig. 9.

FIGURE 9. The equivalent circuit of a single motor.

where R′s and L
′
s are the equivalent resistance and the equiv-

alent reactance, respectively, calculated from the stator side
to the rotor side. Rm and Lm are the iron loss resistance and
leakage resistance, respectively. Because Lm � Lr , the equiv-
alent circuit is as shown in Fig. 10, after ignoring iron loss and
leakage reactance.

The time constant of a single motor is obtained as follows:

T =
Lr + L

,
S

Rr + R
,
S
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FIGURE 10. The simplified equivalent circuit of a single motor.

FIGURE 11. The equivalent circuit of multiple motors using CRCF.

FIGURE 12. The simplified equivalent circuit of multiple motors using
CRCF.

In the case of multi-motor control using TCCS control, the
equivalent circuit between the motors is connected in series.
When a motor is disturbed, the disturbance signal must be
transmitted step by step; furthermore, the further the distance
from a motor to the disturbed motor, the longer the response
time of the motor. For example, when the No.1 motor is
disturbed, the response time of the No.4 motor should be
4 times as much as that of the No. 1 motor. That is, T1 = T ,
T4 =4T .
When using the CRCF method, due to its multi-motor ring

network control structure, the equivalent circuit diagram is as
shown in Fig. 11.

The equivalent circuit after ignoring the leakage reactance
is shown in Fig. 12.

When n motors form a control ring network in Fig.13, the
equivalent resistance is Req = 1

n (Rr +R
,
s), and the equivalent

inductance is Leq = 1
n (Lr + L

,
s). Therefore, Treq =

Leq
Req
= T .

This result shows that the response time of each motor is
equal to the time constant of a single motor after the multi-
motor system is disturbed. It can be concluded that when any
of the motors constituting the ring network control system is
disturbed, there is no time delay between the motors.

VI. EXPERIMENTAL SIMULATION
To verify the effect of CRCF on multi-motor coordinated
control, the control performance of the control strategy was
quantitatively analyzed by MATLAB. Furthermore, the real-
time effect of the CRCF control strategy is qualitatively

FIGURE 13. (a) Simulation diagram of the TCCS. (b) Simulation diagram
of CRCF.

TABLE 2. Parameter value of the motors.

analyzed by the RT-LAB real-time simulation platform. The
parameters of the motors are shown in Table 2.

The closed-loop transfer function of the AC asynchronous
motor drive unit is shown as follows:

G(2) =
ω

V
=

7.1S + 15.86
0.0089S3 + S2 + 67.4S + 151.1

(45)

The three characteristic roots are λ1 = −2.32, λ2 = −54.8+
65.7i, λ3 = −54.8−65.7i. The corresponding eigenvector
matrix and its inverse matrix are obtained by the equation as
shown at the bottom of next page,

Then, the impulse response matrix (46), as shown at
the bottom of the next page. where eAt is bounded and
lim eAt
t→∞

= 0, and all the elements of the impulse response

matrix H (t) satisfy
∫
∞

0 |h(t)|dt < ∞; therefore, the system
has external stability.

Under the external stability of the system and the con-
dition that the system is fully controllable and observable,
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the system is also internally stable; therefore, the system
is stable.

A. MATLAB/SIMULINK EXPERIMENTAL VERIFICATION
The CRCF model of four-motor coordinated control is
established, and the effectiveness of the proposed CRCF is
demonstrated by comparing with the TCCS in the MATLAB
simulation experiment. The experiments are conducted with
a velocity ratio of 1:1:1:1 and a velocity ratio of 4:3:2:1.

1) SPEED RATIO IS 1:1:1:1
The rated speed of the four asynchronous motors is
1,000 r/min, and the stable running angular velocity is 104.7
(rad/s). After the four motors reach stable operation, a torque
of 100 N·m is applied to the No. 1 motor. The four-motor
output speed simulation waveforms are shown in Fig. 13(a)
using the TCCS and in Fig. 13(b) using CRCF.

The waveform comparison in Fig. 13(a) it can be seen that
there is a lag in themotor speed following in the TCCS control
strategy; the further the distance from the disturbed motor,
the longer the lag time. The response time of the fourth motor
is approximately 4 times that of the first motor; T4 ≈ 4T1.
However, there is almost no lag in Fig. 13(b) using the CRCF
control strategy proposed in this paper; the response times
of the four motors are basically synchronized; T4 ≈ T3 ≈

T2 ≈ T1 = T. Moreover, it can also be seen from Table 3 that
when the CRCF is adopted, the overshoot of the first motor
is greatly reduced, and the overshoot of the other motors is
close to that of the first motor. It is proved that the CRCF has
stronger ability to follow and coordinate among multi-motor
compared with the TCCS control strategy, improves the con-
trol accuracy of the system, and prevents possible damage to
each motor caused by additional mechanical torque due to
excessive speed differences.

The waveform comparison in Fig. 13(a) and Fig. 13(b)
shows that when the system is subjected to load disturbance,
the CRCF control strategy makes the speed following abil-
ity of each motor better, the overshoot smaller, the adjust-
ment time shorter, and the coordinated control stronger.

TABLE 3. Overshoot comparison under synchronous operation.

TABLE 4. Overshoot calculation under proportional speed operation.

The overshoot percentage calculation results are shown
in Table 3. The overshoot of the disturbed motor (No.1) using
CRCF is smaller than that obtained by using the TCCS.

2) SPEED RATIO OF 4:3:2:1
When four AC asynchronous motors run at a 4:3:2:1 speed
ratio, their speeds are 1,000 r/min, 750 r/min, 500 r/min,
250 r/min, and their angular velocities are 104.7 (rad/s), 78.5
(rad/s), 52.33 (rad/s), 26.17 (rad/s), respectively. A torque
of 100 N·m is applied to the No. 1 motor. The output speed
waveforms of the four motors are shown in Fig. 14(a) using
the TCCS and in Fig. 14(b) using CRCF.

It can be seen from Fig. 14(a) and Fig. 14(b) that the time
for the speed of the four motors to return to the rated speed
after disturbance is shorter when using CRCF than when
using the TCCS. Moreover, the speed following ability of
each motor is better, the overshoot of the disturbed motor
(No. 1) is smaller, the adjustment time is shorter, and the
coordination is stronger. The overshoot percentage calcula-
tion results are shown in Table 4. The motor overshoot of
the TCCS is obviously larger than that of CRCF, and the
following ability is weaker compared to that of CRCF.

It can be concluded that when the motor is running at
a certain speed ratio, once one of the motors is disturbed,
other motors will make corresponding speed changes faster
when using CRCF than when using the TCCS. CRCF reduces
the overshoot of the disturbed motor and effectively elim-
inates lag. Therefore, the CRCF control strategy can be

p =

 0.16 2.43× 10−5 − 0.0001i 2.43× 10−5 + 0.0001i
−0.39 0.007+ 0.009i 0.007− 0.009i
0.91 −0.99 0.99


p−1 =

 6.18+ 8.88× 10−16i 0.09+ 3.82× 10−16i 0.0008− 1.31× 10−19i
2.78− 131.85i 0.042− 57.71i −0.50− 0.44i
2.78+ 131.85i 0.042+ 57.71i −0.50+ 0.44i



H (t) =
[
b0 b1 0

]
p

 e−λ1t e−λ2t

e−λ3t

 p−1
 0
0
1

 = [ b0 b1 0
]
p

 e−2.32t e(−54.8+65.7i)t

e(−54.8−65.7)t

 p−1
 0
0
1


= e−2.32t (0.16b0 − 0.39b1)+ e(−54.8+65.7i)(−0.5− 0.44i)

[
b0(2.43× 10−5 − 0.001i)+ b1(0.007+ 0.009i)

]
+ e(−54.8−65.7i)(−0.5+ 0.44i)

[
b0(2.43× 10−5 + 0.001i)+ b1(0.007− 0.009i)

]
(46)
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FIGURE 14. (a) Simulation diagram of the TCCS. (b) Simulation diagram of
CRCF.

FIGURE 15. Real-time simulation.

widely applied to robot control equipment, which has higher-
precision requirements.

B. RT-LAB EXPERIMENTAL VERIFICATION
To further verify the actual coordinated control effect of
CRCF, a real-time simulation experiment is executed on the
RT-LAB real-time simulation platform to observe the speed
waveform through the oscilloscope.

FIGURE 16. (a) No. 1 motor speed tracking comparison. (b) No. 2 motor
speed tracking comparison. (c) No. 3 motor speed tracking comparison.
(d) No. 4 motor speed tracking comparison.

The comparison results of multi-motor speed synchroniza-
tion experiments using the TCCS method and CRCF method
are shown in Fig. 16. The images on the left in the panels
of Fig. 16 show the simulation results for the TCCS, and
the images on the right of the panels of Fig. 16 show the
simulation results for CRCF.

Through the comparison in Fig. 16, it can be seen that
the speed tracking between adjacent motors is weak using
the TCCS, and the lag of speed tracking is obvious. How-
ever, using CRCF, the speed tracking is improved for the
No. 2 motor and the No. 3 motor, and there is almost no lag.
The motor speed overshoot ratio of CRCF is smaller than
that of the TCCS, which indicates that the CRCF method
makes the speed changes of the motors more consistent, the
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FIGURE 17. (a) No. 1 motor speed tracking comparison. (b) No. 2 motor
speed tracking comparison. (c) No. 3 motor speed tracking comparison.
(d) No. 4 motor speed tracking comparison.

speed tracking is better and the coordination between motors
is stronger.

The experimental results of the motor speed propor-
tionally compared with the TCCS and CRCF are shown
in Fig. 19 when the motors are running at a special speed ratio
of 4:3:2:1. The images on the left in the panels of Fig. 17 show
the experimental results of the TCCS, and the images on the
right of the panels in Fig. 17 show the experimental results of
CRCF.

It can be seen from Fig. 17 that the speed following ability
of the TCCS is gradually weakened, and the No. 4 motor
has essentially no speed following. However, when using

FIGURE 18. Simulation diagram of the robot arm.

FIGURE 19. The working space mapping diagram of the robotic arm.

the CRCF control strategy the speed following ability is
improved significantly; the overshoot ratio of the motors is
much smaller. No lag between motors using CRCF, real-time
response is stronger.

The results of the above experiments show that CRCF
achieves a remarkable control effect to maintain the stability
of multi-motor synchronous operation. It also proves that
CRCF has obvious effects on coordination control perfor-
mance in a multi-motor system due to strong speed tracking
and anti-interference ability. Therefore, it has a wider range
of applications.

C. SIMULATION ANALYSIS OF A MANIPULATOR
WORKSPACE
The three-dimensional working space of a robot driven by
multi-motor is the sum of the space points that the end actua-
tor can reach. Except for the drive motor of the end -actuator,
each motor drives a joint. The working space size of the robot
arm determines the motion range of the robot. Therefore,
an important indicator for measuring the working capacity
of the robot is its working space. Given a value for each arm
length, the kinematics model of the robotic arm is established
usingMATLAB, as shown in Fig. 18. The working spacemap
of the robot arm is obtained.

Based on the Monte Carlo method, the working space of
the robotic arm is drawn using MATLAB. When the robotic
arms take L1 = 381mm, L2 = 356mm and L3 = 263mm
in Fig. 1, the trajectory of the robotic arm is an elliptical
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cylinder. At a certain time, the working space that the robotic
arm can reach is mapped to the xoy plane, as shown in Fig. 19.

VII. CONCLUSION
The CRCF method proposed in this paper effectively
improves the coordinated control ability of multiple motors.
Its fuzzy control can perform real-time speed error compen-
sation, which further improves the follow-up ability between
motor speeds. Its loop network control structure eliminates
the problem of feedback lag compared with master-slave
non-ring control, further improving the speed tracking accu-
racy between motors. Comparative test results show that the
follow-up ability and the overshoot of the proposed method
are better than those of the traditional non-ring network
master-slave methods. The overshoot of the proposed method
is smaller, the stabilization time is shorter, and the anti-
interference ability is stronger. However, this control strategy
is currently only a semi-physical simulation. The feasibility
of practical applications needs further verification. The next
step is to apply this control strategy to the coordinated control
of robot motors and to study how to achieve multi-objective
coordinated control of multiple motors, such as torque, speed,
and position control, thus allowing the verification of the
feasibility of its practical engineering application.
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