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ABSTRACT In this paper, targeting at improving the energy efficiency (EE) for Quality-of-Service (QoS)-
guaranteed wireless communications, we develop new adaptive modulation and data scheduling algorithms
for delay-sensitive bursty data. Assuming a-priori knowledge on data arrivals and latency requirements,
the problem is formulated as a mix-integer programming that minimizes the total energy consumption at the
transmitter with a non-linear Doherty power amplifier (PA) and non-negligible circuit power. According to
the different properties of the PA in different output power regions, we decouple the formulated problem
and solve it in two stages. In the first stage, assuming the PA has a linear efficiency, we develop an optimal
modulation and data scheduling scheme (MDS) relying on convex relaxation and the resultant optimality
conditions. The MDS is able to reveal the specific structure of the optimal policy in a computationally
efficient and graphical manner. On top of that, a heuristic MDS scheme (HMDS) is proposed to adjust the
MDS when the PA works in the non-linear region in the second stage, where a quadratic function is obtained
to approximate the non-linear PAmodel. The offline HMDS algorithm is further extended to practical online
scenarios in a well-structured way, where the modulation and data scheduling policy is produced on-the-fly.
Simulation corroborates that the proposed offline algorithm can achieve the exactly same performance as
the standard CVX solver, while requiring only 0.69% of its computational time.

INDEX TERMS Energy efficiency (EE), adaptive modulation, quality of service (QoS), circuit power,
non-linear power amplifier (PA).

I. INTRODUCTION
Energy efficiency (EE) has been raised as an important issue
in the design of wireless communications for economic and
ecological concerns [1]. Especially for small battery-powered
wireless (e.g., sensor) networks, improving EE is a key solu-
tion to prolong the operating lifetime [2]. In addition, Quality-
of-Service (QoS), e.g., latency requirement and bit error
rate (BER), is extremely important to many applications,
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including delay-sensitive sensory data in bushfire monitoring
and security surveillance [3], [4].

Due to the inherent tradeoff between energy consump-
tion and QoS, challenges arise in improving EE for
QoS-guaranteed wireless transmissions [5], especially for
short-range wireless networks where the circuit energy con-
sumption due to, e.g., signal processing and filtering, is non-
negligible. Adaptive modulation, considered as an effective
way to improve system EE, has been extensively studied in
the literature [6]–[14].

It was shown in [6] that the system EE can be improved
to the greatest extent by jointly optimizing the modulation
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order at the physical layer and the backoff probability at the
Medium Access Control (MAC) layer. An energy-efficient
adaptive modulation and power control scheme was proposed
for wireless sensor networks in [7], where the sensor node
changes its transmit power and modulation scheme in adapta-
tion to the signal-to-noise-ratio (SNR) and target BER. In [8],
the EE of a point-to-point link was improved by propos-
ing a dynamic feedback-based adaptive modulation scheme,
where the channel state information (CSI) is learned from the
receiver feedback per time slot.

In [6]–[8], the circuit power was assumed to be negli-
gible. Capturing non-negligible circuit power in analysis,
an energy-efficient data rate for a target BER was obtained
in a closed form regarding to the constellation size, distance
and bandwidth [9]. The authors in [10] analyzed the effects
of bandwidth, power and modulation scheme on the system
EE under different channel conditions. A non-convex com-
binatorial EE maximization problem was solved by obtain-
ing an equivalent one-dimensional problem, and proposing
a greedy modulation and power control algorithm [11]. The
works [6]–[11] all focused on delay-tolerant data, and thus
cannot guarantee QoS for practical delay-sensitive traffics.
Besides, in these works, it was assumed that there are always
data available in the buffer for transmission; in a more general
scenario, data arrivals can be bursty over time. Reference [12]
proposed an energy-efficient cross-layer design framework
for transmittingMarkov modulated Poisson process (MMPP)
traffic with delay requirements, where adaptive modulation
and coding scheme is performed at the physical layer. Using
the notion of energy-delay tradeoff, [13] compared adaptive
modulation and coding (AMC) and hybrid automatic repeat
request (HARQ) schemes with given equivalent QoS con-
straints. Yet, [12] and [13] are still not applicable to general
data arrival processes.

In addition to adaptive modulation based schemes, increas-
ing hardware efficiency, e.g., adopting a high efficiency
Doherty power amplifier (PA), is a straightforward way to
improve the system EE [15]. Most works assume that PA
has a linear efficiency. For a practical Doherty PA, the power
efficiency is non-linear in high output power region. A few
recent works captured the non-linearity of PA efficiency in
increasing EE for wireless systems [14], [16]. An adap-
tive polarization-quadrature amplitude modulation (QAM)
scheme was developed for OFDM systems in [14], where
QAM and polarization modulation are used in the linear
and non-linear regions of the PA, respectively. A dynamic
carrier allocation strategy was proposed to map carriers into
multi-carrier power amplifiers [16], and a comparison of two
methods (convex relaxation and deep learning) was provided.

In this paper, to address the challenge of improving EE
for QoS-guaranteed wireless communications, we develop
new adaptive modulation and data scheduling algorithms
for delay-sensitive data arriving in bursts. The problem is
formulated as a mix-integer programming that minimizes the
total energy consumption at the transmitter with a non-linear
Doherty PA and non-negligible circuit power. According to

the different properties of the PA in different output power
regions, we proceed to solve the formulated problem in two
stages. In the first stage, when the PA has a linear effi-
ciency, we develop an optimal modulation and data schedul-
ing scheme (MDS) relying on convex relaxation and the
resultant optimality conditions. On top of that, a heuristic
MDS scheme (HMDS) is proposed to adjust the MDS when
the PA works in the non-linear region in the second stage,
where a quadratic function is obtained to approximate the
non-linear PA model.

The contributions of this paper can be summarized as
follows:

1) The formulated modulation and data scheduling prob-
lem is a complex mix-integer programming, especially
with non-linear PA efficiency and non-negligible cir-
cuit power consumption. By decoupling it and solving
it in two stages, a new optimal MDS algorithm is first
developed to generate the optimal ‘‘on-off’’ transmis-
sion policy in a graphical manner with a low complex-
ity. The MDS, with proven optimality, is insightful by
revealing the specific structure of the optimal policy.

2) A HMDS algorithm, which follows the procedure of
the MDS, is proposed to address the non-linearity of
the PA. A quadratic function is obtained based on Tay-
lor expansion to approximate the non-linear PA model.

3) We further extend the offline HMDS algorithm to prac-
tical online scenarios in a well-structured way, where
only causal information of data arrivals and latency
requirements is available. Extension for online imple-
mentations in time-varying channels is also discussed.

4) Extensive numerical results corroborate that the pro-
posed offline algorithm can achieve similar perfor-
mance as the standard CVX solver, while requiring
only 0.69% of its computational time.

The rest part of this paper is organized as follows. Section II
introduces the system models including the arrival process
of delay-sensitive data and the energy consumption with a
non-linear PA model. In Section III, we formulate the energy
minimization problem. The optimal MDS algorithm and the
HMDS algorithm are proposed in Section IV and Section V,
respectively. In Section VI, online extension of the HMDS
algorithm is presented. The experimental results are shown
in Section VII, followed by the conclusion in Section VIII.

II. SYSTEM MODELS
A. ARRIVAL PROCESS OF DELAY-SENSITIVE DATA
Consider a point-to-point wireless link. We focus on a time
period [0,T ] without loss of generality. The entire period is
partitioned into N epochs, which are defined as the intervals
between two adjacent time instants. The length of the ith
epoch is Ti = si − si−1, i = 1, · · · ,N , where 0 = s0 <
s1 < s2 < · · · < sN = T denote the (N + 1) time instants.
The data arrive in the burst in amount A := {A0,

A1,A2, · · · ,AN−1, 0} at time instant T := {s0, s1, s2, · · · ,
sN−1, sN }. A0 is the amount of initial data in the buffer of the
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FIGURE 1. An illustration of the transmitter circuit.

transmitter at s0. The amounts of data with deadlines due are
collected in sequence D := {0,D1,D2, · · · ,DN−1,DN },
where Di is the amount of data must be delivered by si.
It is worth noting that since the data generally are of dif-
ferent traffic types, we consider heterogeneous services here
with different latency requirements. The data in the buffer
should be re-shuffled once new data arrive, so that those
with more stringent latency requirements are always placed
head-of-line. It is obvious that we have

∑N−1
i=0 Ai =

∑N
i=1 Di,

that is, the total amount of data to be delivered is equal to that
of data collected over the entire time period [0,T ].

B. ENERGY CONSUMPTION WITH A
NON-LINEAR PA MODEL
The transmitter comprises a number of radio frequency (RF)
components, e.g., the digital-to-analog converter (DAC), fil-
ters, local-oscillator (LO), mixer and PA; see Fig. 1. The DAC
first converts the baseband signal to an analog signal, which
is then filtered and modulated by the filters and mixer. The
signal is finally amplified by the PA and delivered to the
wireless channel.

To achieve a maximum energy reduction, the transmitter
can switch into ‘‘sleep’’ (off) mode when there is no data
to transmit to save circuit energy consumption. Denote Pon
and Pslp as the power consumption when the transmitter
is in ‘‘on’’ and ‘‘off’’ mode, respectively. The total power
consumption of the transmitter when it is on Pon consists of
three parts: the power consumed by the baseband for signal
processing (including coding, digital modulation, etc.) PBB,
the total circuit power consumed by the RF components
except the PAPRF, and the power consumption of the PAPPA,
as given by

Pon = PBB + PRF + PPA. (1)

Here, the baseband power consumption PBB = Pk1r+Pk2nc
increases in proportion to the data rate r and the number of
used subcarriers nc [17], [18]. Pk1 and Pk2 are the constant
coefficients. The RF chain power consumption PRF is also
set to be a constant [19].

Consider the PA with advanced Doherty technology [20],
whose power efficiency in the high output power region
increases linearly in dB scale [21], as show in Fig. 2. The cor-
responding power consumption can be approximately mod-
elled as [16]:

PPA(Pt ) =


Pt

β · 10 lgPt + δ
, if Pth < Pt ≤ Pmax,

η · Pt , if 0 ≤ Pt ≤ Pth,
(2)

FIGURE 2. The efficiency of the modeled Doherty PA in equation (2).

where Pt is the transmit power, η > 1 is the inverse of
PA’s efficiency, β is a constant coefficient, and δ is a biasing
factor.Pth andPmax are the threshold power and themaximum
output power of the PA, respectively.

We consider M-QAM modulation in this paper, with M
denoting the constellation size and b = log2 M denoting the
constellation order (that is, the number of bits per symbol).
We have b ∈ Z+, where Z+ denotes the set of positive
integers. The transmit power can be modelled as

Pt (b) = Pr (b)G, (3)

where

Pr (b) = N0Nf bBγ (b) (4)

is the received power, and

G = MlGldk (5)

is the path-loss component of distance. In (4), N0 presents the
noise power spectral density, Nf denotes the noise figure of
the receiver, γ (b) is the per-bit SNR, and B is the system
bandwidth. In (5), Ml is the link margin, Gl is the gain
factor per unit distance, and d and k denote the transmission
distance and path loss factor, respectively. Assuming that the
symbol rate equals to the bandwidth B, we then have r = Bb
(in bit per second).

Given a BER Pe, the SNR for coherently detectedM-QAM
over additive white Gaussian noise (AWGN) channels can be
approximated as [9]

γ (b) ≈
2b − 1
b

ln
(
3.10
Pe

)
. (6)

Consequently, the total energy consumption of the trans-
mitter during epoch i is

Etotal,i = Pon,iti + Pslp,i(Ti − ti), (7)

where Pon,i and Pslp,i are the power consumed by the trans-
mitter in ‘‘on’’ and ‘‘off’’ mode over epoch i, respectively,
and 0 ≤ ti ≤ Ti is the length of the ‘‘on’’ period in epoch i.
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III. PROBLEM FORMULATION
Let b := {b1, . . . , bN } collect the constellation orders
selected for each epoch, and let t := {t1, . . . , tN } collect
the lengths of ‘‘on’’ periods in each epoch. The problem of
interest is to determine the optimal set of {b, t} such that
the total energy consumed for delivering delay-sensitive data
with a target BER

∑N
i=1 Etotal,i is minimized. The energy

consumption minimization problem can then be formulated
as

min
b,t

N∑
i=1

[Pk1Bbi + Ck + PPA(bi)]ti + Pslp,iTi (8a)

s.t. bi ∈ Z+, 0 ≤ ti ≤ Ti, (8b)
n∑
i=1

(Bbiti) ≤
n−1∑
i=0

Ai, (8c)

n∑
i=1

(Bbiti) ≥
n∑
i=1

Di, n = 1, · · · ,N , (8d)

0 ≤ Pt,i(bi) ≤ Pmax. (8e)

Here, Pk1Bbi is the power used for channel coding and mod-
ulation mapping by the baseband, and Ck := Pk2nc + PRF −
Pslp,i is a constant. (8c) is called the data causality constraints:

the amount of data delivered
n∑
i=1

(Bbiti) cannot be greater than

that collected in the buffer
n−1∑
i=0

Ai by any time instant tn; (8d)

presents the constraints of latency requirements: the amount

of data delivered
n∑
i=1

(Bbiti) must be no less than the data due

to be transmitted to meet their deadlines, i.e.,
n∑
i=1

Di; and (8e)

indicates that the transmit power cannot exceed the maximum
power Pmax.

It can be observed that problem (8) is a mixed-integer
programming problem, which is general difficult to solve.
For example, as the number of epochs can be very large,
and bi may vary between epochs, it is complexity-prohibitive
to solve the problem by exhaustive searching. We then
relax bi ∈ Z to bi ≥ 0 for tractability. Since PslpTi
is a constant, we remove it from the objective function.
It is still challenging to solve this problem since the power
consumption of the PA PPA(bi) is non-continuous and
non-differentiable [22].

In accordance with the inconsistent power efficiencies of
the PA in different output power regions, we proceed to
solve problem (8) in two stages. In the first stage, we solve
the energy minimization problem when the PA has a linear
efficiency, i.e., 0 ≤ Pt ≤ Pth, and develop an optimal
MDS scheme relying on convex relaxation and the Karush-
Kuhn-Tucker (KKT) optimality conditions. On top of that,
a heuristic HMDS scheme is proposed to adjust the MDS
for Pth < Pt ≤ Pmax in the second stage, where a
quadratic function is obtained to approximate the non-linear
PA model.

IV. PROPOSED OPTIMAL MODULATION AND
DATA SCHEDULING ALGORITHM
A. CONVEX REFORMULATION AND
OPTIMALITY CONDITIONS
Consider the PA has a linear efficiency. Problem (8) turns
to:

min
b,t

N∑
i=1

[Pk1Bbi + Ck + Co(2bi − 1)]ti (9a)

s.t. bi ≥ 0, 0 ≤ ti ≤ Ti, (9b)
n∑
i=1

(Bbiti) ≤
n−1∑
i=0

Ai, (9c)

n∑
i=1

(Bbiti) ≥
n∑
i=1

Di, n = 1, · · · ,N , (9d)

0 ≤ Pt,i(bi) ≤ Pth, (9e)

where Co := ηN0NfMlGldkB ln( 3.10Pe
) is a constant. (9e) is

equivalent to 0 ≤ bi ≤ bth, where bth = log2(
ηPth
Co
+ 1).

In the relaxed problem (9), neither of biti and 2bi ti is
standard convex or concave form in regard to (bi, ti). Never-
theless, problem (9) can be converted to standard convex pro-
gramming through variables substitution. Define φi := biti
and φ := {φ1, · · · , φN }. Problem (9) can be rewritten into

min
φ,t

N∑
i=1

[Pk1B
φi

ti
+ Ck + Co(2

φi
ti − 1)]ti (10a)

s.t. φi ≥ 0, 0 ≤ ti ≤ Ti, (10b)
n∑
i=1

(Bφi) ≤
n−1∑
i=0

Ai, (10c)

n∑
i=1

(Bφi) ≥
n∑
i=1

Di, n = 1, · · · ,N . (10d)

where 2
φi
ti ti = 0 if ti = 0. For convex function 2bi , the term

2
φi
ti ti is called its perspective, and is convex of (φi, ti) [23].

Consequently, (10) is a convex problem. Note that we drop
constraint (9e) here.

Let 3 = {λn, µn,∀n = 1, · · · ,N }, where λn and µn
denote the Lagrange multipliers associated with the con-
straints of data causality (8c) and latency requirements (8d),
respectively. The partial Lagrangian function of (10) is given
by

L(φ, t,3) =
N∑
i=1

[Pk1B
φi

ti
+ Ck + Co(2

φi
ti − 1)]ti

+

N∑
n=1

λn[
n∑
i=1

(Bφi)−
n−1∑
i=0

Ai]

+

N∑
n=1

µn[
n∑
i=1

Di −
n∑
i=1

(Bφi)]
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= C(3)+
N∑
i=1

{[Pk1B
φi

ti
+ Ck

+Co(2
φi
ti − 1)]ti + Bφi

N∑
n=i

(λn − µn)} (11)

whereC(3) := −
N∑
n=1

λn(
n−1∑
i=0

Ai)+
N∑
n=1

µn(
n∑
i=1

Di) for notation

simplicity.
Let (φ∗, t∗) denote the optimal solution for (10), and let3∗

collect the optimal Lagrange multipliers for the dual problem
of (10). Define

wi :=
N∑
n=i

{
(µn)∗ − (λn)∗

}
. (12)

Resorting to the sufficient and necessary KKT optimality
conditions [24], we have: ∀i,

(φ∗i , t
∗
i ) = arg min

φi≥0,0≤ti≤Tn
{[Pk1B

φi

ti
+ Ck

+Co(2
φi
ti − 1)]ti − Bφiwi}. (13)

The complementary slackness conditions indicate that: ∀n,
(λn)∗ = 0, if

n∑
i=1

(Bφi) <
n−1∑
i=0

Ai

n∑
i=1

(Bφi) =
n−1∑
i=0

Ai, if (λn)∗ > 0.

(14)


(µn)∗ = 0, if

n∑
i=1

Di <
n∑
i=1

(Bφi)

n∑
i=1

Di =
n∑
i=1

(Bφi), if (µn)∗ > 0.

(15)

Let b∗i =
φ∗i
t∗i

if t∗i > 0, and let b∗i = 0 if t∗i = 0. Clearly
(b∗, t∗) is the optimal solution to (8).

Based on (13)–(15), we can obtain the sufficient and nec-
essary optimality conditions for problem (9):

(b∗i , t
∗
i ) = arg min

bi≥0,0≤ti≤Tn
[Pk1Bbi + Ck

+Co(2bi − 1)− Bbiwi]ti (16)
(λn)∗ = 0, if

n∑
i=1

(Bbiti) <
n−1∑
i=0

Ai

n∑
i=1

(Bbiti) =
n−1∑
i=0

Ai, if (λn)∗ > 0.

(17)


(µn)∗ = 0, if

n∑
i=1

Di <
n∑
i=1

(Bbiti)

n∑
i=1

Di =
n∑
i=1

(Bbiti), if (µn)∗ > 0.

(18)

Given a positive ti, the optimal constellation order b∗i can
be derived from (16), i.e.,

b∗i = argmin
bi≥0

[Pk1Bbi + Ck + Co(2bi − 1)− Bbiwi], (19)

which is equivalent to: Pw(bi) := Pk1 +
Co2

b∗i ln2
B = wi, or

b∗i = log2
B(wi − Pk1)

Coln2
. (20)

It is obvious that b∗i increases withwi. Consequently, the opti-
mal duration for the transmitter in ‘‘on’’ mode over epoch i
is:

t∗i = arg min
0≤ti≤Tn

[Ck + Co(2b
∗
i − 1− b∗i 2

b∗i ln2)]ti. (21)

Now we introduce a bits-per-Joule EE-maximizing rate Bbee,
where bee is defined as

bee = argmax
b≥0

Bb
Pk1Bb+ Ck + Co(2b − 1)

. (22)

Since the term on the right-hand side of (22) is concave-
over-linear, it is a quasi-concave function and has a unique
maximizer [24]; therefore, bee can be efficiently derived by a
bisectional search [25].

According to (19), (21) and (22), we then establish the
following two important lemmas.
Lemma 1 (Three Candidate Schemes for the Optimal Pol-

icy): The optimal modulation and data scheduling policy
for (9) over epoch i can be chosen from one of the following
three schemes: (i) ‘‘off’’ mode with t∗i = 0, (ii) ‘‘on-off’’
mode with b∗i = bee and t∗i ≤ Ti, or (iii) ‘‘on’’ mode with
b∗i > bee and t∗i = Ti.

Proof: See Appendix A.
Lemma 1 indicates that the constellation orders smaller

than bee should never be used in the optimal policy.
An ‘‘on-off’’ strategy with b∗i = bee should always be
considered first as it can consume less energy to transmit a
given data amount. Only when the latency requirements are
stringent, should we adopt b∗i > bee to deliver more data and
meet the latency constraints; in such cases, the transmitter is
in an ‘‘on’’ mode, i.e., t∗i = Ti, over epoch i.
According to (20), and the complementary slackness con-

ditions (17)–(18), we can obtain the specific structure of the
optimal policy, as established in Lemma 2.
Lemma 2 (Specific Structure of the Optimal Policy): In the

optimal policy for (9), b∗i changes only at some sn when
the constraints of data causality and latency requirements
are effective with equality. Particularly, b∗i increases after

sn when
n∑
i=1

(Bb∗i t
∗
i ) =

n−1∑
i=0

Ai, and decreases after sn when

n∑
i=1

(Bb∗i t
∗
i ) =

n∑
i=1

Di.

Proof: See Appendix B.
Lemma 2 unveils that the optimal constellation order of

the transmitter follows an interesting pattern. A constant bi
should always be adopted whenever possible. This is because
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FIGURE 3. An illustration of the proposed MDS scheme.

Pon(bi) is convex, and then a constant bi can result in a min-
imum power consumption. The constellation order changes
only when the constraints become active. An effective data
causality constraint indicates that the data buffer is emptied
at sn, if the data arriving rate is relatively low; as a con-
sequence, bi adopted before sn is smaller than that after.
Likewise, an effective latency constraint indicates that the
latency requirement is strict at sn; therefore, bi adopted before
sn should be larger than that after.

It is noteworthy that this offline schedule could be
obtained by standard convex programming solvers. How-
ever, standard solvers designed for general convex problems
would require a complexity higher than O(N 3) [24]. Also,
the general-purpose solvers cannot unveil the underlying
structure of the optimal modulation and data scheduling pol-
icy. To this end, the Lagrange multiplier method, in cou-
pling with the KKT optimality conditions, is applied in this
paper for a simpler and more insightful solution, which can
guide the design of energy-efficient online scheduling as a
benchmark.

B. VISUALIZATION OF MDS
We proceed to propose a new MDS algorithm, which gen-
erates the optimal modulation and data scheduling policy for
delay-sensitive data, given the non-causal information of data
arrivals and latency requirements.

FIGURE 3 depicts our proposed MDS procedure, where
the data arrival curve Ad (s) represents the accumulative
amount of arrived data. The deadline curveDmin(s) represents
the latency requirements of the arrived data. Specifically,
it depicts the total amount of data that must be transmitted
by s. The data arrival curve and thee deadline curve can be
expressed as

Ad (s) =
N−1∑
i=0

[Aiu(s− si)], (23)

Dmin(s) =
N∑
i=1

[Diu(s− si)], (24)

where 0 ≤ s ≤ T and u(s) is the unit-step function: u(s) = 1
if s ≥ 0, and u(s) = 0 otherwise.
A closed feasible solution region is presented. The data

arrival curve Ad (s) specifies the upper boundary of the feasi-
ble solution region, while the deadline curveDmin(s) specifies
its lower boundary, so that the optimal transmission schedule
can satisfy both data causality and latency requirements.
We can then specify the optimal data transmission curve

D∗(s) within the solution region. The slope of D∗(s) denotes
the optimal transmit rates r∗ = Bb∗i . The procedure is as
follows.

1) Pass a string through the origin (0, 0) and the intersec-
tion of the upper and lower boundaries (i.e., Ad (s) and
Dmin(s)) at T , and then tauten the string between the
boundaries until it bends only at some corners.

2) Compare the slope of each straight segment of the
string Bb̃ with Bbee.

a) If the slope is larger than Bbee, set Bb̃ as the
optimal transmit rate, and b̃ as the optimal con-
stellation order.

b) If the slope is no larger than Bbee, set Bbee as
the optimal transmit rate, and bee as the optimal
constellation order.

Procedure 1 follows Lemma 2. Tautening a string tight
between the boundaries ensures that the slope of the string
increases after the string intersecting with the upper bound-
ary, and decreases after it intersecting with the lower bound-
ary. Note that such a string specifies the optimal transmission
schedule in an ideal case [26], where the circuit power con-
sumption is ignored; refer to the green dash line in FIGURE 3.
Procedure 2 follows Lemma 1 that b∗i ≥ bee. We set{

b∗i = bee, t∗i = b̃iTi/bee, if b̃i < bee,
b∗i = b̃i, t∗i = Ti, if b̃i ≥ bee,

(25)

where Bb̃i is the slope of the string obtained in Step 1. The
procedure in Step 2-a is most energy efficient, as for the
epochs with φ = b∗i ti ≥ beeti, any ‘‘on-off" policy (bi, ti) with
bi > b∗i and biti = φi would cause more energy consumption,
since

[Pk1Bbi + Ck + Co(2bi − 1)]ti

= φi
Pk1Bbi + Ck + Co(2bi − 1)

bi

> φi
Pk1Bb∗i + Ck + Co(2

b∗i − 1)

b∗i
, (26)

where the inequality holds because Pk1Bbi+Ck+Co(2bi−1)
bi

is
strictly increasing if bi ≥ bee.
The procedure in Step 2-b is optimal as the energy con-

sumed by transmitting data of amountBφi = Bbiti over epoch
i is minimized by an ‘‘on-off’’ transmission with bee ≥ bi,
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since

[Pk1Bbee + Ck + Co(2bee − 1)]t∗i

= φi
Pk1Bbee + Ck + Co(2bee − 1)

bee

= φimin
bi≥0

Pk1Bbi + Ck + Co(2bi − 1)
bi

= min
biti=φi

[Pk1Bbi + Ck + Co(2bi − 1)]ti. (27)

C. DYNAMIC STRING TAUTENING ALGORITHM
The proposed offline procedure is summarized in
Algorithm 1, which is later applied to yield the practical
online scheme in Section VI.

Algorithm 1 Proposed MDS Algorithm
1: Input A, D and T , set noffset = 0, b∗i = t∗i = 0, ∀i.
2: while noffset < N do
3: Calculate ban and b

d
n , n = noffset + 1, . . . ,N ;

4: b− = 0, b+ = ∞, τ− = τ+ = 0;
5: τ = N , b̃ = baN = bdN ;
6: for n = noffset + 1 to N do
7: if b+ ≥ ban then
8: b+ = ban, τ

+
= n;

9: end if
10: if b− ≤ bdn then
11: b− = bdn , τ

−
= n;

12: end if
13: if b− ≥ b+ then
14: if τ+ ≥ τ− then
15: τ = τ−, b̃ = b−;
16: else
17: τ = τ+, b̃ = b+;
18: end if
19: end if
20: end for
21: for i = noffset + 1 to τ do
22: b∗i = max{bee, b̃};
23: end for
24: find a feasible set of {t∗i } satisfying∑τ

i=noffset+1 t
∗
i =

∑τ
i=noffset+1

b̃Ti
b∗i

;
25: update (A,D, T );
26: noffset = τ ;
27: end while

In Steps 6 to 20, the constellation order changing time
τ and the constellation order b̃ tentatively applied before
time τ are determined in each iteration. They are speci-
fied by comparing and updating b+ to the minimum rates

ban =
∑n−1

i=0 Ai∑n
i=1 Li

obtained from the upper boundary Ad (s) (from

Step 7 to 9), and comparing and updating b− to the maximum
rates bdn =

∑n
i=1 Di∑n
i=1 Li

obtained from the lower boundaryDmin(s)

(from Step 10 to 12), from index n = noffset+1 until b− ≥ b+

(from Step 13 to 20). As a result, Steps 6 to 20 produce the
exact string identified in Procedure 1 in Section IV-B.

Steps 21 to 24 implement Procedure 2 by setting the con-
stellation order to be no smaller than bee. The lengths of
the ‘‘on’’ periods of the transmitter are consequently deter-
mined, guaranteeing the total amount of transmitted data is
unchanged. Note that the optimal policy may not be unique
over the ‘‘on-off’’ epochs.Wemay havemultiple feasible sets
of {t∗i } to meet

∑τ
i=noffset+1 t

∗
i =

∑τ
i=noffset+1

b̃Ti
b∗i

. In some
cases, we can even allow t∗i = 0 (i.e., turn off the transmitter)
for some epochs, and perform the ‘‘on-off’’ data schedules
over the remaining epochs.

After determining the optimal (b∗i , t
∗
i ) for epochs i, i ∈

[noffset, τ ] in each iteration, we adjust (A,D, T ) by con-
sidering the time offset and the amount of data that have
been transmitted. This procedure continues until the entire
transmission schedule is derived.

Theorem 1 is readily established to assert the optimality
and the efficiency of the proposed Algorithm 1.
Theorem 1: Algorithm 1 can yield the optimal transmis-

sion policy for (9) with a complexity of O(N 2).
Proof: See Appendix C.

The theorem is achieved by first proving that a Lagrange
multiplier vector 3∗ exists, which guarantees that (b∗, t∗)
satisfies the sufficient and necessary conditions (16)–(18).
It is also shown that (b∗, t∗) ensures t∗i = Ti when b∗i > bee,
and t∗i ≤ Ti when b∗i = bee. As a result, (b∗, t∗) is global
optimal.

For each iteration that determines the optimal (b∗i , t
∗
i ) for

epochs i, i ∈ [noffset, τ ], we need to go through at most
(N − noffset) future time instants. Thus, the computational
complexity of Algorithm 1 is O(N 2) in the worst case,
where the optimal constellation order changes at every instant
si, i = 0, · · · ,N − 1, i.e., we need to calculate N opti-
mal (b∗i , t

∗
i ). In general, the optimal constellation order may

remain unchanged over many epochs, and much fewer time
instants are to be evaluated in the process. Therefore, the com-
plexity of the proposed algorithm is often much lower than
O(N 2). On the contrary, general-purpose convex program-
ming solvers require high-order multiplications and many
iterations, leading to slow convergence and a polynomial
complexity higher than O(N 3).

V. HEURISTIC MDS ALGORITHM
Consider now the high output power region with non-linear
PA efficiency. To deal with the non-convex function
f (Pt,i) := PPA(Pt,i) in (2) when Pth < Pt,i ≤ Pmax,
a quadratic function of Pt,i is obtained by using Taylor expan-
sion to approximate it at the middle point Pm =

Pth+Pmax
2 .

We have

f (Pt,i) ≈ fa(Pt,i)

= f (Pm)+
f ′(Pm)
1!

(
Pt,i − Pm

)
+
f ′′(Pm)

2!

(
Pt,i − Pm

)2
, (28)
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where f ′(·) and f ′′(·) are the first and second derivatives

of f (·), respectively. The high order terms
+∞∑
i=3

f (n)(Pm)
n!

(
Pt,i −

Pm
)n can be ignored, since the co-efficient, f (n)(Pm)

n! , con-
verges to zero fast when n goes to infinity [16]. For the
quadratic function fa(Pt,i), it is easy to find a minimizer P∗t,i.
If P∗t,i is smaller than Pth or larger than Pmax, we check
Pth and Pmax for the one minimizing fa(Pt,i). As Pt,i(bi) =
Co(2bi−1)

η
is monotonically increasing with bi, we can find

a unique b̃∗i ∈ [bth, bmax] that minimizes PPA, where
bmax = log2(

ηPmax
Co
+ 1).

We then propose a heuristic MDS algorithm for prob-
lem (8) based on Algorithm 1. When the proposed b∗i ∈
[bth, bmax] in Algorithm 1, let b∗i = max{b∗i , b̃i

∗
}, and

recalculate the required transmission time accordingly. The
proposed HMDS algorithm is summarized in Algorithm 2.

Algorithm 2 Proposed HMDS Algorithm
1: while there is data to transmit do

Calculate b̃∗i ∈ [bth, bmax] that minimizes fa(Pt,i);
2: run Algorithm 1 and obtain {b∗i , t

∗
i } and 1i = b∗i t

∗
i ,

i = 1, 2, · · · ,N ;
3: if bth ≤ b∗i ≤ bmax then
4: b∗i = max{b∗i , b̃

∗
i };

5: end if
6: if b∗i > bmax then
7: error ‘infeasible’;
8: end if
9: b∗i = db

∗
i e, t

∗
i =

1i
b∗i
;

10: transmit the data with the modulation and data
scheduling policy {b∗i , t

∗
i }, i = 1, 2, · · · ,N ;

11: end while

In Step 9 of Algorithm 2, db∗i e denotes the smallest integer
no less than b∗i (a.k.a, the ceiling operator). Note that prob-
lem (8) can be infeasible, when the latency requirement is too
stringent such that the transmit power exceeds its maximum
value. Once the infeasibility happens, the proposed algorithm
terminates and outputs the error message ‘infeasible’. Clearly
the complexity of Algorithm 2 is still O(N 2).

VI. ONLINE EXTENSION OF THE HMDS ALGORITHM
When developing the HMDS algorithm, we assumed
non-causal information about data arrivals. Considering it
is impractical to have a-priori knowledge on data arrivals,
we proceed to generalize the offline HMDS algorithm to
online scenarios where only current data arrival information
is available. Themain idea is to transmit the arrived data using
the HMDS algorithm with current data arrival information,
and reschedule the transmission once new data arrive.

When new data arrive, we set the current time instant
as s0, and set the last time instant by which all the buffered
data must be delivered as sN . In this case, we have A =
{A0, 0, . . . , 0}, D = {0,D1, . . . ,DN } measured at time T =
{s0, . . . , sN }, and

∑N
i=1 Di = A0. We then run the proposed

HMDS algorithm for this (A,D, T ) system, and obtain the
optimal transmission strategy over time [s0, sN ]. Adopt the
optimal strategy for data transmission, until a new data arrival
occurs at si < sN .

Then we take si as the new initial time instant, and update
(A,D, T ) by considering the time offset, remaining data in
the buffer and new latency requirements of arrived data. The
optimal transmission strategy is also reconsidered for the time
instants after si by using the proposed HMDS algorithm. This
procedure is repeatedly conducted, until there is no more
data to deliver. The proposed online scheme is summarized
in Algorithm 3.

Algorithm 3 Proposed Online Scheduling based on the
HMDS Algorithm
1: while there is data to transmit do
2: if a new data arrival occurs at the current instant then
3: set the current instant as s0, and the last time instant

by which all the buffered data must be delivered as
sN ;

4: update (A,D, T );
5: run Algorithm 2 to update the transmission strategy

over [s0, sN ];
6: end if
7: transmit the data following the updated transmission

strategy;
8: end while

The online scheme may degrade the performance com-
pared to Algorithm 2. When new data arrive at si during
[s0, sN ], new transmission strategy is considered for the time
instants after si. This may cause the violation of Lemma 2,
where a specific pattern of the optimal policy is revealed.
Note that Lemma 2 is established with a-priori knowledge on
data arrivals and latency requirements for the offline scenario.
Due to the unavailability of the future knowledge in the online
case, it is not possible to develop an online scheme without
violating Lemma 2. Nevertheless, when no data arrive during
[s0, sN ], the online scheme can achieve the same performance
as Algorithm 2, providing a well-structured way for practical
data transmissions.

The proposed HMDS Algorithm can be readily extended
for online implementations in time-varying channels,
e.g., a flat fading Rayleigh channel. The average SNR in a
Rayleigh channel for M-QAM is given by [27]

γ (b) ≈
1
6Pe

(2b − 1)
b

(29)

Substituting γ (b) in (6) with γ (b), we can obtain similar rules
as in Algorithms 1 and 2 to generate the modulation and
data scheduling policy for Rayleigh fading channels. During
each epoch, the transmitter can send data to the receiver
with a certain modulation size. The receiver can feed back
ACK to confirm the successful reception of the data, and
feed back the estimated CSI to the transmitter through a
feedback channel. The adaptive modulation and scheduling
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TABLE 1. Detailed simulation parameters.

controller at the transmitter then determines modulation and
scheduling schemes based on the received CSI and current
data information. In the online implementation, all steps are
inherited fromAlgorithms 1 and 2. The only difference is that
the amount of unsuccessfully delivered data (due to fading
channels), which is not confirmed by ACK, needs to be added
to the arrived data A and the deadline-approaching data D
in the new system. The unsuccessfully delivered data can
be re-transmitted as part of new and undelivered data. The
online algorithm for fading channels is optimal in the case
that all messages can be successfully delivered at the first
transmission attempts.

VII. EXPERIMENTAL RESULTS
In this section, we carry out simulations to evaluate the pro-
posed algorithms. The detailed parameters used in the sim-
ulations are listed in Table 1. The data arrivals are modelled
as Poisson processes. The average rate of data arrival is set
to 18 kbits per second (kbps), unless otherwise specified.
We assume all data have the same latency requirement (that
is, the maximum latency allowed is the same). Note that the
proposed algorithms are applicable to any stochastic data
arrival processes with different latency requirements.

We compare our proposed offline algorithm (i.e., the
HMDS Algorithm) and online algorithm with two bench-
marks. One is ‘‘CVX tool’’ solving (10) and substituting
Algorithm 1 in the HMDS by the standard MATLAB CVX
toolbox. The other one is a heuristic offline method stemmed
from the ‘‘water-level tautening’’ approach in [26], where the
circuit power consumption and non-linear efficiency of PA
are overlooked.

FIGURE 4 plots the CPU running time of the proposed
offline and online algorithms, the CVX tool and the heuristic
method, where the transmission interval T ranges from 10 to
80 seconds. It is obvious that the CPU time required for the
algorithms increase with growth of the transmission interval.
It is also observed that when T is large, the proposed offline

FIGURE 4. CPU running time of different algorithms versus transmission
interval T . The average data arrival rate is 18 kbps and the deadline
requirement is 2 seconds. Our proposed algorithms are much more
computationally efficient than the CVX tool.

FIGURE 5. Energy consumption of different algorithms versus
transmission interval T . The average data arrival rate is 18 kbps and the
deadline requirement is 2 seconds.

and online algorithms only require about 0.69% and 27.67%
of the CPU time with the CVX tool, respectively. As men-
tioned in Section IV, the proposed algorithms can produce
the optimal schedule directly according to the optimality
conditions, and lead to a complexity of O(N 2) in the worst
case. In contrast, the CVX tool uses the interior point methods
designed for general convex optimization problems, which
has a complexity higher than O(N 3). It is corroborated that
our proposed algorithms are more computationally efficient
than the CVX tool.

FIGURE 5 depicts the energy consumption of different
algorithms as T increases. As expected, with an average data
arrival rate of 18 kbps, the energy consumption of all the four
algorithms increases as T becomes larger. We can also see
that the energy consumption of the proposed offline algorithm
is exactly the same as that of the CVX tool, which validates
the optimality of Algorithm 1.
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FIGURE 6. Energy consumption of different algorithms versus data arrival
rate. The transmission interval T is 200 seconds, and the deadline
requirement is 2 seconds.

As expected, FIGURE 5 shows that the proposed online
algorithm can increase the energy consumption compared to
its offline counterpart. This is caused by the unavailability
of the future information on data arrivals. Consequently,
the online constellation order changes more frequently than
the offline one, resulting in larger energy consumption. The
impact of circuit power consumption on the transmission
strategy is also revealed in FIGURE 5. It can be seen that
the heuristic offline method consumes more energy than our
proposed one, as the former assumes negligible circuit power
consumption and linear PA efficiency, and keeps the PA active
over the entire transmission interval, leading to a significant
energy loss.

The energy consumption of different transmission schemes
is compared in FIGURE 6 under different data arrival rates.
The transmission interval T is set to 200 seconds. As we
can see, the proposed online algorithm consumes the most
energy, followed by the heuristic method and the proposed
offline algorithm. The proposed offline algorithm can save
at least 44% energy consumption compared to the heuristic
algorithm.Moreover, as the data arrival rate grows, the energy
consumption of all algorithms increases. This is because as
the data arrival rate becomes higher, more amount of data
need to be transmitted within T , resulting in larger energy
consumption; on the other hand, as more data need to be
delivered before each deadline, the transmission becomes
more urgent and constellation order larger than bee is to be
more frequently used. This further leads to larger energy
consumption.

The energy consumption of different transmission schemes
is also compared in FIGURE 7, under different latency
requirements. It can be observed that, as the latency require-
ment becomes looser (i.e., the delay becomes larger),
the energy consumption of all the three algorithms decreases.
This is because with loose latency requirement, our algo-
rithms can, to the most extent, apply the ‘‘on-off’’ strategy

FIGURE 7. Energy consumption of different algorithms versus latency
requirement. The transmission interval T is 50 seconds, and the average
data arrival rate is 18 kbps.

FIGURE 8. Energy consumption of different algorithms versus
transmission distance d . The transmission interval T is 50 seconds,
the average data arrival rate is 18 kbps and the deadline requirement is
2 seconds.

with the most energy-efficient constellation order bee for
transmission. It is also observed that our proposed offline
algorithm can save about 42.2%-63.9% energy consumption
compared to the heuristic one. The advantage of the proposed
offline algorithm in terms of energy reduction over the heuris-
tic method become more and more significant, as the delay
grows.

FIGURE 8 compares the energy consumption of differ-
ent algorithms under different transmission distances. It is
observed that our proposed offline algorithm always outper-
forms the heuristic one, resulting in a 40.8% energy saving
on average. We can also see that the energy consumption
of all schemes grow as the transmission distance increases.
Given a target BER, the longer the transmission distance,
the larger the path loss. A larger path loss leads to higher
transmit power, consequently resulting in a larger total energy
consumption.
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VIII. CONCLUSION
In this paper, we proposed the new two-stage based HMDS
algorithm to generate the energy-efficient modulation and
data scheduling schemes for delay-sensitive data, where
non-negligible circuit power and non-linear PA efficiency
were taken into account. The optimal MDS was first devel-
oped based on convex relaxation and the resultant optimality
conditions, and reveals the specific structure of the optimal
policy. The HMDS scheme was further proposed for the
PA working in the non-linear region. The offline HMDS
algorithm was then extended to practical online scenarios in
a well-structured way. Simulation showed that the proposed
offline algorithm can achieve the exactly same performance
as the standard CVX solver, while requiring only 0.69% of its
computational time.

APPENDIXES
APPENDIX A
PROOF OF LEMMA 1
Define ηee(b) :=

Pk1Bb+Ck+Co(2b−1)
Bb . The first derivative of

ηee(b) is:

dηee(b)
db

=
CoB(2bb ln 2− 2b + 1)− CkB

B2b2
. (30)

As ηee(b) is ‘‘convex-over-linear’’, it first decreases and then
increases with b, and achieves the minimum at bee. Therefore,

CoB(2bb ln 2− 2b + 1)− CkB < 0, if b < bee,
CoB(2bb ln 2− 2b + 1)− CkB = 0, if b = bee,
CoB(2bb ln 2− 2b + 1)− CkB > 0, if b > bee.

(31)

If there exists a b∗i < bee when t∗i > 0, it follows from (31)
that CoB(2b

∗
i b∗i ln 2 − 2b

∗
i + 1) − CkB < 0. But when

CoB(2b
∗
i b∗i ln 2−2

b∗i +1)−CkB < 0, (21) implies that t∗i = 0,
leading to a contradiction. Thus, b∗i < bee should never be
adopted when t∗i > 0.

If b∗i > bee, we have CoB(2b
∗
i b∗i ln 2− 2b

∗
i + 1)−CkB > 0

based on (31), and (21) implies that t∗i = Ti. If b∗i = bee,
we have CoB(2b

∗
i b∗i ln 2 − 2b

∗
i + 1) − CkB = 0, and any

t∗i ∈ [0,Ti] can be selected for the optimal policy.

APPENDIX B
PROOF OF LEMMA 2
It is clear that b∗i = log2

B(wi−Pk1)
Coln2

changes only with wi. For
wi defined in (12), if (λn)∗, (µn)∗ = 0,∀n = 1, . . . ,N − 1,
a constantw = (µN )∗−(λN )∗ is to be adopted over all epochs.
A change of wi occurs only when a Lagrange multiplier is
positive at a time instant sn, n ∈ [1,N − 1]. Based on the
complementary slackness conditions (17)-(18), at such a sn,
the constraints of data causality or latency requirements are
met with equality.

If the constellation order changes at a certain sn when∑n
i=1(Bb

∗
i t
∗
i ) =

∑n−1
i=0 Ai, then the corresponding (λn)

∗ > 0.
For epoch n and n + 1, we have wn =

∑N
l=n[(µl)

∗
− (λl)∗],

and wn+1 =
∑N

l=n+1[(µl)
∗
− (λl)∗], respectively. Hence,

wn+1 − wn = (λn)∗ > 0. It can then be concluded that the
constellation order increases after such sn since log2

B(wi−Pk1)
Coln2

increases with wi.

If the constellation order changes at a certain sn when∑n
i=1(Bb

∗
i t
∗
i ) =

∑n
i=1 Di, then (µn)

∗ > 0. Similarly, we have
wn+1 − wn = −µ∗n < 0, which implies that the constellation
order decreases after such sn.

APPENDIX C
PROOF OF THEOREM 1
Given the procedure in Algorithm 1, it is shown that the
changing pattern of the optimal transmission strategy (b∗, t∗)
generated by Algorithm 1 is consistent with Lemma 2, i.e.,
(i) if the constellation order applied is first b and then changed
to b̃ at sτ where

∑τ
i=1(Bbt

∗
i ) =

∑τ−1
i=0 Ai, thenwe have b̃ > b;

and (ii) if b is changed at sτ where
∑τ

i=1(Bbt
∗
i ) =

∑τ
i=1 Di,

then we have b̃ < b.
Suppose that the constellation order changes M times at

instants {sτ1 , sτ2 , . . . , sτM }. We separate the whole transmis-
sion policy into M + 1 phases: constellation order b∗i = b̌1
over epochs i ∈ [1, τ1], b∗i = b̌2 over epochs i ∈ [τ1 +
1, τ2], . . . , b∗i = b̌M+1 over epochs i ∈ [τM + 1,N ]. Then
define a set of Lagrangemultipliers3∗

:= {(λn)∗, (µn)∗, n =
1, . . . ,N } as follows:
For convenience, let 11 := Pw(b̌m+1) − Pw(b̌m). For a

certain τm, ∀m = 1, . . . ,M ,
1) if

∑τm
i=1(Bb

∗
i t
∗
i ) =

∑τm−1
i=0 Ai, then

(λτm )
∗
= 11;

2) if
∑τm

i=1 (Bb
∗
i t
∗
i ) =

∑τm
i=1 Di, then

(µτm )
∗
= −11.

We have proven that the constellation order b̌m+1 > b̌m if
the data causality constraint is tight at sτm , and b̌m+1 < b̌m
if the latency requirement constraint is tight at sτm . As Pw(b)
increases with b, we have (λτm )

∗ > 0 or (µτm )
∗ > 0, when

a certain constraint is tight at sτm . In addition, let (µN )∗ =
Pw(b̌M+1) > 0. Except these M + 1 positive (µN )∗, (λτm )

∗

and (µτm )
∗, other elements in 3∗ are set to zero.

With such a 3∗, the complementary slackness condi-
tions (17)-(18) clearly hold. Using such a 3∗ leads to wi :=∑N

n=i[(µn)
∗
− (λn)∗] = Pw(b̌m),∀i ∈ [τm−1 + 1, τm] (with

τ0 := 1 and τM+1 := N ). This implies that b∗i = b̌m =
log2

B(wi−Pk1)
Coln2

,∀i ∈ [τm−1 + 1, τm]. Moreover, the con-
struction of the optimal schedule ensures t∗i = Ti when
b∗i = b̌m > bee, and obtains a feasible set of t∗i ≤ Ti when
b∗i = b̌m = bee in each phase m. This ensures that every
(b∗i , t

∗
i ) satisfies (16); hence, (b

∗, t∗) follows Lemma 1.
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