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ABSTRACT Copy-move is one of the most commonly used methods of tampering with digital images.
Keypoint-based detection is recognized as effective in copy-move forgery detection (CMFD). This paper
proposes an efficient CMFD method via clustering SIFT keypoints and searching the similar neighborhoods
to locate tampered regions. In the proposed method, the keypoints are clustered based on scale and color,
grouped into several smaller clusters and matched separately, which reduce the high time complexity caused
in matching caused by the high dimensionality of SIFT. In order to locate the tampered regions accurately
at pixel level finally, a novel localization algorithm is designed to compare the similar neighborhoods of
matching pairs by two similarity measures, and mark the tampered regions in pixels iteratively. We exper-
imented on three different image data sets including kinds of tampering means to compare and verify the
effectiveness and robustness of proposed method. The experimental results show that the proposed method
is superior to existing state-of-art methods in terms of matching time complexity, detection reliability and
forgery location accuracy.

INDEX TERMS Copy-move forgery detection, digital image forensics, keypoint clustering, similar neigh-
borhood search algorithm.

I. INTRODUCTION ‘
Multimedia image information is often used as evidence
in many important occasions, such as criminal investiga-
tions and military scenarios. However, with the development
of technology and network, digital images can be easily
acquired and tampered with, which makes the authenticity of
digital images face serious risks and poses a great threat to
Judicial Forensics and various research work. Among them,
copy-move forgery is one of the most common means of
image forgery, which by copying certain regions of the image

FIGURE 1. Example of image forgery: original image(left) and tampered
image (right).

and pasting them into elsewhere in the same image. This
makes the attacker tamper digit images easily through utiliz-
ing the same illumination angle, imaging equipment and other
characteristics in the same image, in order to hide or empha-
size certain objects. An example of digital image tampering is
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shown in the right image of Fig. 1 that was published on the
Iranian revolutionary guard website in which four missiles
appeared to take off from a desert launch pad. However,
analysts reported that three missiles were actually launched as
in the left image of Fig.1. In the tampered image, the marked
regions of the image appear to be closely replicated [1].

In recent years, the authenticity and dependability of
images have become the hot issues of research, and a
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key technology in digital image identification is copy-move
forgery detection (CMFD). The goal of CMFD is to find some
regions similar to other regions of the image, because the tam-
pered part is copied from the same image. Meanwhile, in the
process of tampering, geometric or post-processing opera-
tions are usually preformed onto tampered regions in order to
make the forgery real and unnoticeable. The strong similarity
between the tampered regions and the source regions has
become the important evidence in CMFD.

However, the time complexity of existing methods is high,
especially in the feature matching stage, and the location of
tampered regions is not accurate enough to meet the prac-
tical requirements. Since in practical forensics applications,
figuring out the tampered regions compared to forgery detec-
tions is more important and necessary [33]. In this paper,
an improved CMFD method is proposed, which includes
clustering the keypoints before matching and locating the
tampered regions at pixel level. Our main contributions can
be summarized as:

« Inorder to solve the problem of high matching time com-
plexity, keypoints clustering algorithm based on scale
and color is proposed. Using the high similarity between
the keypoints in tampered regions and source regions,
we grouped the keypoints based on scale and color
respectively. The keypoints in each group are matched
separately, which can greatly shorten the matching time.

« An algorithm for locating tampered regions by searching
similar neighborhoods iteratively at the pixel level is
proposed, which introduces two similarity evaluation
metrics, Polar Cosine Transform (PCT) features and
Peak Signal-to-Noise Ratio (PSNR), to figure out tam-
pered regions more accurately.

o We have experimented on three datasets for different
types of forgery attacks. The experimental results show
that this method can effectively overcome the shortcom-
ings of traditional methods, such as large computation
and time-consuming, and can locate tampered regions
efficiently and robustly.

The remainder of this paper is organized as follows:
Section II gives a brief introduction of the CMFD methods.
An overview about SIFT feature is presented in Section III.
In Section IV, the method framework is described and its
details are introduced briefly. Section V assesses our pro-
posed method through a series of experiments. Finally,
the conclusion is provided in Section VI.

Il. RELATED WORK

In this section, we discuss the research status and describe the
methods involved in CMFD. Specifically, the techniques can
be divided into block-based, keypoint-based and other fusion
methods.

The block-based methods usually divide the image into
small, regular, and overlapped blocks, and extract robust fea-
tures from each image block. Finally, by sorting and matching
the features, the tampered regions are obtained by marking
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the image block. Most of the state-of-the-art block-based
detection methods exploit the six principal categories based
on the block feature extraction technique [1]: 1) Frequency
domain-based methods [2]-[4]. These methods are invariant
to many post-processing operations such as compression,
blurring, and noise. Reference [4] is robust against JPEG
compression, blur, and noise effects due to DCT and SVD
combination. However, frequency-based block features are
variants to a geometric transformation. 2) Dimensionality
reduction-based methods [5], [6]. Block feature-based meth-
ods will extract a large number of local features, which
will cause high time complexity. Dimension reduction tech-
niques have been used to reduce the dimension of extracted
block features and increase the matching processing speed.
3) Local binary pattern (LBP)-based methods [7]-[9]. LBP
is a grey-scale texture operator which is used to describe
the spatial structure of the image texture. Reference [17] is
invariant to translation, scaling, and illumination due to the
combination of Hessian points and center symmetric LBP
(CSLBP). However, this method is not robust against rotation
and blur degradation because of the lacking of rotation and
blur-invariant features. 4) Texture-based methods [10], [11].
A combination of statistical analysis and color texture to
segment the region of interest is given in [18]. However,
if the image contains a high degree of blur, the detection
rate of this method fell significantly. Texture-based methods
are not robust against geometric transformation attacks. 5)
Moment invariant-based methods [12], [13], [19]. Moment
invariant is a set of features that are invariant to a geometric
transformation, including blur moment, Hu moment, Zernike
moment and so on. In [13], Quaternion exponent moment
(QEM) moduli are extracted from each overlapped circular
color block. The main limitation of this method is the higher
computational complexity, which can be reduced by applying
super pixel theory. 6) Miscellaneous methods [14]-[16].

As can be seen from the above, most block-based methods
lack robustness to geometric transformation attacks, and have
a large number of features, resulting in high time complexity.
Therefore, keypoint-based methods are proposed.

Keypoint-based methods make up for the above shortcom-
ings by extracting the keypoints in the high entropy regions
and describing local features. Among them, Scale-Invariant
Feature Transform (SIFT) [20]-[24], [29] and Speeded Up
Robust Features (SURF) [25]-[27], [30] are widely used in
the detection stage for feature extraction.

SIFT was introduced by Lowe [20] and gradually devel-
oped in the field of image forgery detection. Mirror-
Reflection Invariant Feature Transform (MIFT) is introduced
in [21], which has the properties of SIFT features and robust
against mirror reflection. In [22], principal component anal-
ysis (PCA)-SIFT along with k-nearest neighbors (k-NN) is
used. The dimensions of extracted SIFT features are reduced
by PCA. The combination of DyWT and SIFT is given in
[23]. Tt is observed that due to the shifting invariant property,
DyWT is more accurate than DWT in CMFD and combina-
tion of DyWT with SIFT gives more robust results than the
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conventional CMFD techniques. Fusion of block and SIFT
key point methods is proposed in [24]. In this, the method the
image is divided into non-overlapped regions using Simple
Linear Iterative Clustering (SLIC) and SIFT keypoints are
extracted from all regions. Based on the SIFT keypoints,
regions are segmented into smooth and non-smooth regions.
Therefore, Zernike moment is used in smooth regions and
SIFT is used in non-smooth regions. It is observed that reli-
ability and efficiency of the method are depend on SIFT and
Zernike moment, respectively.

SUREF is an alternative to the SIFT descriptor, which has
a faster matching speed than SIFT due to Hessian matrix’s
approximation and integral image. In [25], SURF descriptors
are extracted from the forged image and matching is per-
formed between the subsets of the descriptor. It is observed
that the method is fast as well as reliable in small-sized
images. However, localization of forgery is not done. In [26],
authors combined SURF and SIFT, which make the forgery
detection algorithm fast and robust. SURF is used for fast
detection and SIFT is used for robustness of CMFD. For
detection of forgery in small smooth regions, a method is
given in [27]. In this, the image is segmented into non-
overlapped and irregular super pixels. Stable image keypoints
are extracted from each super pixel and exponent moment
magnitudes, best bin first, and reversed-g2NN algorithm are
used for matching. However, it is not suitable for real-time
applications since it has higher computational cost.

Based on the advantages of the above two methods, rele-
vant scholars have proposed the fusion methods which com-
bine block-based methods and keypoint-based methods [31],
[32]. Ardizzone et al. [31] extracted Delaunay triangle fea-
tures of keypoints, and detected image forgery by match-
ing triangles. Pun et al. [32] proposed a CMFD algorithm
based on adaptive over-segmentation. They extracted key-
points from each segmentation blocks as block features, and
the block features are matched with one another to locate the
labeled keypoints. These methods perform well in smooth
regions detection and forgery localization. Although some
of them adopt super-pixel method, reducing computational
complexity is still not their focus.

In recent years, with the development of deep learning,
more and more applications using neural networks have
greatly improved the computational efficiency and accu-
racy [41]-[43]. The research of CMFD methods based on
neural network has been rising gradually [39], [40]. Liu
et al. [39] proposed a CMFD method based on Convolutional
Kernel Network. It is reformulated as a series of matrix
computations and convolutional operations which are easy to
parallelize and accelerate by GPU, leading to high efficiency.
Wu et al. [40] introduced BusterNet which is an end-to-
end trainable, deep neural network solution. This is the first
CMEFD algorithm with discernibility to localize source/target
regions. Although the method based on neural network is
suitable for image processing in a novel way, it needs more
samples for learning and training, and its accuracy is slightly
lower than those traditional methods which focus on the pixel
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FIGURE 2. Structure of the Gaussian scale space images (left) and DoG
images (right).

level detection rate of image CMFD. Therefore, this paper is
compared with the traditional method.

Ill. SIFT FEATURE REPRESENTATION

SIFT is a classic and still popular feature descriptor in the
field of forgery detection. The essence of SIFT algorithm is
to find keypoints (feature points) in different scale spaces
and calculate the dominant orientation of keypoints. The key
points found by SIFT are some very prominent points, such
as corners, edges, bright spots in dark areas, and dark spots
in bright areas, which are not changed by illumination, affine
transformation, and noise. The main computational stages for
generating image feature sets are as follows [20]:

A. SCALE-SPACE EXTREMA DETECTION

The first stage of computation searches over all scales and
image locations. As shown in Fig.2, it is implemented effi-
ciently by using a Difference-of-Gaussian (DoG) function to
identify potential interest points that are invariant to scale and
orientation. Successive Gaussian-blurred images L(x, y, o)
are generated by repeatedly convolving the given image
I(x, y) with Gaussian filters at multiple scales, G(x, y, o) as
follows:

L(x,y,0) = G(x,y,0) *1(x,y) (D
where * is the convolution operation in x and y, and

Glx,y, 0) = s——ge W72 @)

202

Then, the SIFT keypoints are selected as local extrema
within a 3 x 3x3 cube of the DoG domain. Specifically, the
DoG image at scale o is given by

D(x,y,0) = (G(x,y, ko) — G(x,y,0)) * I(x,y)
= L(x,y, ko) —L(x,y,0) 3)

B. KEYPOINT LOCALIZATION

The candidate keypoints detected in the previous stage are
extremum points in discrete space. The position and scale
of the keypoints can be determined accurately by fitting
the three-dimensional quadratic function. Meanwhile, due to
the DoG operator produces strong edge response, the low
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FIGURE 3. The framework of the proposed method; The specific process includes feature extraction, keypoints clustering, feature

matching, mismatches removal and tampered region location.

contrast keypoints and unstable edge response points can be
rejected in order to enhance matching stability and anti-noise
ability.

C. ORIENTATION ASSIGNMENT

In order to make the descriptor rotation invariant, it is nec-
essary to assign a dominant orientation to each keypoint by
using the local features of the image. The stable dominant
orientation of local structure is obtained by calculating image
gradient. For each point (x, y, o), its orientation is computed

as
d
0 (x,y) = tan~! <—y>
dx

dy=Lx,y+1)—Lx,y—1)

de=L(x+1,y)—Lx—1,y) “

where dy and dx are the vertical and horizontal gradients of
keypoint. Then, the histogram is used to calculate the gradient
and orientation of the pixels in the neighborhood. The peak
value of histogram represents the orientation of the neighbor-
hood gradient at the keypoint, and the maximum value of the
histogram is the dominant orientation of the keypoint.

D. KEYPOINT DESCRIPTOR

It is suggested that the gradient information of eight direc-
tions calculated in the neighborhood of 4 x 4 in the keypoint
scale space is used to represent the SIFT descriptor with a
total of 4 x 4x8= 128 dimension vectors.

Through the above four phases, a list of n key-
points {kq, k2, ..., k,} and their corresponding descriptors
{fi.f2, ..., fn} are generated for a given image I(x,y).Let
k be a SIFT keypoint descriptor, which is represented as a
quaternion vector:

k = (xk, Yk, 0k Ok) (5
36866

where (xi,yx) are the coordinates in the image plane,
or denotes the scale and 6; serves as its dominant
orientation.

IV. PROPOSED METHOD

Following the traditional CMFD process, an efficient method
is designed based on SIFT keypoints scale-color clustering
and similar neighborhoods searching. The overall framework
of the proposed method is shown in Fig.3.

The proposed method consists of feature extraction, key-
points clustering, feature matching, mismatches removal
and tampered region location. Firstly, SIFT was selected to
describe keypoints. Then we cluster the keypoints based on
scale and color to put them into several smaller clusters which
have been matched separately. J-Linkage algorithm is used
to remove mismatches and estimate affine transformation
matrix. Finally, similar neighborhoods of matching pairs are
searched to locate tampered regions.

A. KEYPOINTS SCALE-COLOR CLUSTERING
Due to the large number of SIFT keypoints, especially in high
resolution images, there are two problems in matching: 1) The
time complexity of feature matching is O(n%), where n is the
number of keypoints. When the value of n is larger, the time
complexity will increase in square order; 2) In the fact, correct
matching pairs account for a small proportion. In matching,
each point needs to be compared with other n-1 points, but
most of them are unnecessary. Therefore, it is necessary to
cluster keypoints before feature matching in order to reduce
the computational complexity of matching.

In order to solve the above problems, this paper improves
the hierarchical feature point matching algorithm in [29]. The
clustering framework based on SIFT keypoints scale-color is
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FIGURE 4. Clustering based on scale and color of keypoint.

shown in Fig. 4. It consists of two parts: 1) clustering based on
overlapped scale; 2) clustering based on color of keypoints.

1) CLUSTERING BASED ON OVERLAPPED SCALE

SIFT keypoints are extreme points in Gaussian scale space,
as shown in Fig.2. Each octave of keypoints has its corre-
sponding scale, that is, the third element oy in the descriptor.
Most of the keypoints that can be matched have similar
scales, that is, there are few cases where the scales of the two
keypoints in matching pairs are quite different. Therefore, the
main purpose of this step is to maximize the separation of
keypoints of different scales in order to reduce unnecessary
matching and comparison. We know that the number of large-
scale keypoints is much smaller than that of small-scale
keypoints, so we group up the small-scale range and retain
the large-scale range. At the same time, scale clustering is
performed via overlapped scale to maintain the robustness of
scaling attack tampering.

Specifically, we can get the scale oy of keypoint in the
feature extraction stage. According to the value of scale
ok, the keypoints are divided into three groups, which are
expressed by Si, Sp, and Sy, respectively. The strategy of
grouping is to divide all scales into three groups: low, medium
and high. High scales are separated into a group, and we
divide the small scales below 4 into low and medium groups
respectively. At the same time, there is a 0.5 range coinci-
dence between each group to ensure scale invariance in a
certain range.

S =1{kil0 <oy <3,i=1,...,n}
Sm=1{ki|25<0or, <4, i=1,....,n}
Sp = {ki|ox, =3.5,i=1,...,n} (6)

We divide the small scales below 4 to meet n7 + n2, +
nﬁ < n?, and the matching time complexity has been signifi-
cantly reduced. However, the disadvantage of scale clustering
is that it sacrifices the robustness of some scaling attacks,
because matching can only be done within the group, and

cannot be matched between Si, Sy, and Sy. For this reason,
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we overlap the boundaries in a certain range, and the larger
scale keypoints are concentrated in the Sy, which guarantees
the robustness of scaling attack to a certain extent.

2) CLUSTERING BASED ON COLOR

After scale clustering, a large number of low-scale keypoints
will be clustered in S; and Sp. Color-based clustering is
performed in order to further reduce the time complexity.
Although image has been attacked by geometric transforma-
tion or post-processing operation, the corresponding match-
ing points will not have much difference in color due to the
similarity between the tampered region and the source region.
If color image is converted to gray image, different RGB
values may be converted to the same gray value, which may
cause some degree of inaccuracy and redundancy. However,
the RGB value of the keypoint in the tampered region does not
change much, which can preserve the visual features of the
image as much as possible. Therefore, based on the previous
step, we further adopt the color-based clustering method, that
is, color clustering was carried out in Sj, Sy, and Sy groups
respectively.

Three color channels of RGB are divided into two parts,
as shown in Fig. 5. Eight combinations are obtained by
arranging the six parts as shown in (7). All the keypoints
in each scale group are divided into eight small groups with
a total of 3 x 8= 24 groups. The keypoints in twenty-four
groups are matched respectively.

C = {ki|rki€R1/\gkiEGlAbkiGBl,iZL...,n}
Cy = {ki|r, € RiNg, € GaAby €Bri=1,...,n}

C; = {ki|rk[€R2/\g]<iEGz/\bk[EBl,iZL...,n}
Cs = |{ki|r, € Ry A g € Ga Aby, € By, i=1,...,n} (7)

where ry;, gx;, and by, represent R, G, and B channel values
corresponding to keypoints, respectively.

Compared with reference [29], this method can effec-
tively reduce the impact of scale changes on detection results
by clustering keypoints on overlapping scales. And color
based clustering is more accurate than gray. We experi-
mented on ten high-resolution images and ten low-resolution
images in the data set, and counted the matching time with-
out clustering and with clustering, respectively. The statis-
tical results are shown in Table 1. From Table 1, it can
be seen that the matching time after clustering is signif-
icantly shortened and the time complexity is effectively
reduced.
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TABLE 1. Matching time comparison.

without clustering with clustering
High resolution images 62.15s 34.56s
Low resolution images 0.94s 0.29s

FIGURE 6. Starting from the first column: 1: forged images, 2: clustering
results with HAC.

B. REVERSED-G2NN FEATURE MATCHING

Traditional g2NN [28] can detect multiple copy-move forgery
effectively, calculate the distance set D = {d, d>, ..., d,—1}
between keypoint k; and other (n-1) keypoints in the cluster,
and rank them in ascending order. When (8) is satisfied, k; is
matched with the keypoints corresponding to d.

d—l <t,

wheret € (0, 1) (8)
dr

However, 22NN may omit some correct matching pairs
when the multiple copy-move forgery regions are very sim-
ilar. Based on this, Reversed-g2NN [34] is used for feature
matching.

Similar to g2NN, the distance set of keypoints is calculated
first, and the distance ratio 7; = d;—1/d;, i = 10 is calculated
in reverse order. If 7; is larger than the threshold ¢ and 7},
is smaller than ¢, then k; matches with the keypoints set
{ki. k. ..., kj} corresponding to {d|, ds, ..., d;}. In order
to minimize mismatches, threshold t in this paper is taken as
0.45 experimentally.

C. MISMATCHING REMOVAL AND ESTIMATING AFFINE
TRANSFORMATION

The clustering-based method, like HAC, for removing mis-
matches is performed by taking into account only the coor-
dinates of the matched pairs and not the matching constraint
between points. There are two main drawbacks in this kind
of clustering on spatial location method [35]: 1) the inability
to separate duplicated regions that are close to each other and
2) the difficulty to identify a patch as single, when it contains
keypoints with a non-uniform spatial distribution. Take HAC
for example, as shown in Fig. 6. Based on the above problems,
we apply the robust clustering algorithm J-Linkage [36] to
remove mismatches and estimate affine transformations.
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D. TAMPPERED REGIONS LOCALIZATION

The matching pair based on keypoints cannot locate the
tampered regions accurately, and it is difficult to quantify
the experimental data. The tampering regions which have
been segmented by localization algorithm can be visually
distinguished, and the experimental results can be quantified
by comparing with the truth image.

Based on this, we propose a localization algorithm via
searching similar neighborhoods, which takes pixels as the
smallest unit and compares them one by one, similar to the
region growing algorithm. The main ideas of the algorithm
are as follows: Adding the first keypoint to the expansion
queue, and the head element of the queue is set as the seed
point, which is affine transformed to find its corresponding
point. Comparing PCT feature and PSNR of seed point and
corresponding point, if both are satisfied, they are marked,
and the eight neighborhoods of seed point are added to the
expansion queue and deleting seed point at the same time.
Otherwise, the seed point will be deleted directly and the
head element of the queue will be selected as the seed point
to continue to expand. The pseudocode of the algorithm is
shown in Algorithm 1.

Algorithm 1 Similar Neighborhood Search and Localization
Algorithm
Input: Matching list ML, Affine Transformation list T
Output: Marked localization image Result
while (T !=null )
Create an empty expansion queue Q;
Select the first matrix Ty in T;
Select the first matching list ML in ML;
while (ML != null)
k, = left point of the first matching point pair;
if (k, is unmarked)
Add k, in Q;
Delete corresponding point pairs in ML;
else
Delete corresponding point pairs in MLy;
continue;
end if
while (Q !=null )
ky = head element in Q;
k{) = Ti* kp;
if (| PCTkp - PCTky | < ta&& | PSNRky, - PSNR

Ky | >ty )
Mark ky, and ki ;
Add eight neighborhoods of ky, to Q;
Delete ky, in Q;
end if
end while
end while
Delete Ty;
Delete ML1;
end while

VOLUME 8, 2020
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(c)
FIGURE 7. Comparative results: (a) tampered image; (b) experimental
results with PCT; (c) experimental results with PCT and PSNR.

The PCT feature transformation core is orthogonal, so the
feature extracted by PCT is more compact than that calculated
by non-orthogonal kernel, and the PCT feature extraction is
to extract each feature from the circular convolution core with
diameter B. The convolution core slides one pixel along the
image from top left to bottom right for feature extraction,
which is computationally efficient and robust to rotation
attacks. However, only using PCT features will cause prob-
lems as shown in Fig. 7. (c). Therefore, we introduce PSNR
and PCT features together as similarity metric for searching
and localization. As shown in Fig. 7, (a) for forgery image,
(b) for experimental results using PCT as similarity metric
only, binary image for experimental results, red-green image
for the result of comparison with the ground truth image,
where green is the correctly detected tampered region, red
denotes the false detected region, white represents the missed
detection region, and grey represents the real untampered
region. (c) show the results of PCT and PSNR as similarity
measure. From this result, we can see that the experimental
results which using PCT and PSNR as similarity measure are
much better than those using PCT only.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. DATASET AND EXPERIMENTAL ENVIRONMENT

The experiments are conducted on the tampered images
of three public domain benchmark databases: GRIP [16],
Dataset [31], and FAU [37] which all consist of tampered
images and corresponding ground truth images. The GRIP
database contains 2 x 80 = 160 ground truth images
and tampered images which tampered regions have arbitrary
shape, ranging in size from 4000 pixels (less than 1% of the
image) to 50000 pixels. Dataset consists of three parts: DO:
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FIGURE 8. Examples for three datasets: (a) GRIP; (b) Dataset; (c) FAU.

fifty tampered images only after simple translation; D1 and
D2: twenty groups of images after a series of rotation and
scaling; D3:D0 corresponding to fifty original images with-
out tampering. FAU is a classical dataset which contains
forty-eight basic images. The average size of tampered region
is about 10% of each image. Tampering means include rota-
tion, scaling, JPEG compression and noise. The images in
the first two datasets are all small in resolution, whose size
is about 1000 x 700, and the image resolution in the third
dataset is large, and the image size is about 3000 x 2000.
Fig. 8 shows the tampered images and corresponding ground
truth images in three datasets, in which white is the tampered
region and black is the real region.

All the experiments are conducted on a machine with
Intel(R) Core (TM) i5-6200U CPU @ 2.30GHz 2.40GHz,
8GB RAM and runs on Matlab R2018a.

B. EVALUATION METRICS
The performance of the proposed method is measured
at both image level and pixel level. At the image level,
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TABLE 2. Time comparison of the proposed method.

Total(s)
Dataset: FE M FC FL -7ZM-
atasets ©) ® ©) s) Proposed  Hicrarchical [29]  Tterative [38] L -ZM
Polar [16]
Dataset 1.19 0.62 3.60 7.02 12.44 33 11.7
GRIP 1.25 0.95 4.02 4.10 9.76 13.9 12.05
FAU 7.62 85.29 288.71 80.97 464.80 86.6 244.7
TABLE 3. Experimental results of simple forgery in dataset.
Methods Image level Pixel level
TPR(%) FPR(%) F -image(%) Precision(%) Recall(%) Fi-pixel(%)
Hierarchical [29] 98.00 2.00 98.00 88.36 96.09 91.45
Tterative [38] 100 36.00 84.75 73.52 99.05 81.40
PM-ZM-Polar [16] 96.00 2.00 96.97 89.02 98.48 93.33
Proposed 90.00 2.00 93.75 99.58 97.11 98.07
TABLE 4. Experimental results of simple forgery in GRIP.
Methods Image level . _ Pixel level .
TPR(%) FPR(%) F;-image(%) Precision(%) Recall(%) Fi-pixel(%)
Hierarchical [29] 100 0 100 - - 94.66
Iterative [38] 100 33.75 85.56 - - 66.44
PM-ZM-Polar [16] 98.75 6.25 97.53 95.90 96.41 96.15
Proposed 90.00 10.42 91.72 99.79 99.67 99.72
TABLE 5. Experimental results of simple forgery in FAU.
Methods Image level ' _ Pixel level .
TPR(%) FPR(%) Fi-image(%) Precision(%) Recall(%) Fi-pixel(%)
Hierarchical [29] 100 2.08 98.97 - - 94.28
Iterative [38] 100 52.08 79.34 - - 86.07
PM-ZM-Polar [16] - - 94.95 - - 93.72
Proposed 100 0 100 99.96 98.59 99.24
- . o FP
we focus on the ability of images to be correctly classified FPR= ——
as forged or authentic, and only detect on simple copy-move FP+ E{P
forgery. At the pixel level, we analyze the performance of Fl=— 9)
2TP + FP + FN

locating tampered regions accurately to verify the robust-
ness of the method. In this paper, by regarding the tam-
pered images/pixels as positive samples and the authentic
images/pixels as negative ones, the True Positive Rate (TPR),
False Positive Rate (FPR), and F are utilized to evaluate the
performance of the proposed methods. TPR represents the
proportion of actual tampered images in the detection results
and it can also be called Recall rate. We expect the higher
the value, the better. FPR represents the proportion of the
number of real images that have been mistakenly detected
as tampering. We expect it to be as low as possible. Fy is
a comprehensive evaluation index, which is regarded as a
harmonic average of precision and recall rate. The higher
value of F'|, the better experimental results can be reflected.
TPR, FPR, and Fi-image are used at the image level, and
Fi-pixel is used at the pixel level. They are defined as
follows:

TP

TPR = —
TP + FN
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where TP (True Positive) is the number of tampered
images/tampered pixels classified as tampered (correct
detection); FP (False Positive) is the number of authen-
tic images/authentic pixels classified as tampered (false
detection); TN (True Negative) is the number of authen-
tic images/authentic pixels classified as authentic (correct
detection); and FN (False Negative) is the number of tam-
pered images/tampered pixels classified as authentic (omit-
ted detection).

C. METHOD FOR COMPARISON

Our experimental results of the proposed method are com-
pared with three recently mainstream detection algorithms
that are: Hierarchical matching (2019) [29], Iterative strategy
(2016) [38], and Patch Match (2015) [16].

Reference [29] proposed a hierarchical feature point
matching method based on SIFT keypoint. Reference [38]
proposed an iterative improvement strategy based on the new
interest point detector. The whole procedure is iterated along
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FIGURE 9. Experimental results of simple forgery. Starting from the first
column: 1: forged images used in experiments, 2: experimental results,
3: comparisons with ground truth images.

with adjusting the keypoints density based on the achieved
information. Reference [16] is an efficient algorithm based
on rotation-invariant features computed densely on the image.
It applied a fast approximate nearest-neighbor search algo-
rithm, Patch Match, especially suited for the computation
of dense fields over images. We use Zernike Moment in
polar coordinates as a feature. All the source codes for the
comparison experiment have been published online. The
parameters in the comparison methods are set to the default
values.

D. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS

In this section, experiments are carried out to detect the
effectiveness of the proposed method, showing the detec-
tion results after geometric and post-processing tampering.
Among all the experimental results, the first column is tam-
pered image, the second is the binary representation of the
experimental results, and the third is the comparison between
the experimental results and the ground truth image. where
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FIGURE 10. Experimental results of rotation transformation forgery.
Rotational angles are 5°, 10°, 30° and 2°, 6°, 10°, respectively.

green denotes the correctly detected tampered regions, red
denotes the wrong detection regions, white denotes the omit-
ted detection regions, dark gray denotes the authentic untam-
pered regions, and light gray denotes the tampered region
boundaries which are post-processed after tampering. The
validity of the proposed method can be verified by compar-
ing the difference between the experimental results and the
ground truth images.

1) SIMPLE FORGERY DETECTION

We have experimented on three datasets, in which the
images only undergo simple translation transformation.
Table 2 shows the time complexity of each stage and the com-
parison between this paper and the existing methods. Among
them, each stage is: FE (Feature Extraction), FM (Feature
Matching), FC (Feature Clustering) and FL (Forgery Local-
ization). It can be seen that compared with other methods,
this method has obvious advantages in total time, especially
in low resolution image database. However, the method in this
paper takes a lot of time in the forgery localization and feature
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FIGURE 11. Experimental results of scaling transformation forgery.
Scaling factors are 0.9, 0.95, 1.1 and 0.91, 0.95, 1.09, respectively.

clustering stage, mainly because some tampered regions are
large, resulting in a large number of keypoints, and the time
complexity is proportional to the size of tampered regions
especially in the high resolution image set FAU. Table 3, 4 and
5 give the evaluation results of the method at image level and
pixel level, and the experimental data are averaged. It can
be seen that the method in this paper performs well on all
three datasets. At the image level, in the two small resolution
datasets, the method has a certain degree of omitted detection,
but the false detection rate is relatively low, so the F-score at
the image level is slightly lower than [29] and [16], higher
than [38]. In the large resolution dataset FAU, the method
performs better, and each metric is better than other three
methods. At the pixel level, the accuracy is over 99%, and
the Fi-score is 98.07% in the Dataset, and the others are
above 99%, which is significantly improved compared with
the other three methods. The reason why the proposed method
and literature [29] perform well is that they can effectively
remove the mismatch, and the forgery localization algorithm
of the proposed method performs on the pixel level iteratively,
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FIGURE 12. The comparative analysis results of geometric transformation
forgery detection are as follows: (a) and (b) are the results of rotation
forgery detection in Dataset and FAU, (c) and (d) are the results of scaling
forgery detection in Dataset and FAU, respectively.

which is fine and accurate. Reference [16] extracts rotation-
invariant features computed densely on the image, so the
detection accuracy is guaranteed. However, the literature [38]
selects a large number of interest points. After a finite number
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ﬁ
FIGURE 13. Experimental results of JPEG compression forgery.
Compression factors are 90, 70 and 50.

of iterations, as many points of interest are identified as
tampering regions as much as possible, so there will be more
mismatches, resulting in higher TPR and recall rate, but lower
precision rate. Some experimental results are shown in Fig. 9.

2) GEOMETRIC TRANSFORMATION FORGERY DETECTION

Geometric forgery means include rotation transformation
forgery and scaling transformation forgery. As the large-scale
scaling and rotation experiments fail to achieve the expected
goal, we will continue to study in the future. This paper only
verifies the forgery of small-scale geometric transformation.

a: ROTATION TRANSFORMATION FORGERY DETECTION
This paper experiments on the images of the tampered region
that have undergone rotation transformation in the Dataset
and FAU. The rotation angles of Dataset tampered region are
+ 1° to £ 5°, the step length is 1°, and 10° to 30°, the step
length is 5°. The rotation angles of FAU tampered region are
2° to 10°, and the step length is 2°. The experimental results
are shown in Fig. 10.

b: SCALING TRANSFORMATION FORGERY DETECTION

This paper experiments on the images of the tampered region
that have undergone scaling transformation in the Dataset and
FAU. The scaling size of tampered region in Dataset ranges
from 0.2 times to 2 times, in FAU ranges from 0.91 times
to 1.09 times, step size is 0.02 times. Fig. 11 shows the
experimental results.

The experimental comparison and analysis are shown
in Fig. 12. In rotation transformation forgery detection,
we can see that the performance of the four methods are
relatively stable, especially for small-scale rotation, the Fi-
scores of our algorithm is more than 95%, approaching 1,
[16] performs well, [38] performs relatively weakly. In the
scaling transformation forgery detection, the four methods
have good performance, but the performance of literature
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FIGURE 14. Experimental results of noise forgery. The standard
deviations of noise are 0.02, 0.06 and 0.1.
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FIGURE 15. The comparative analysis results of post-processing forgery

detection are as follows: (a) and (b) are the results of JPEG compression
and noise forgery detection in FAU, respectively.

[38] is poor. When the scaling degree is less than 90%, some
images cannot be correctly classified. The other three meth-
ods are relatively stable. The proposed method has a good
performance in geometric transformation forgery detection
due to the invariance of SIFT feature.

3) POST-PROCESSING FORGERY DETECTION
Post-processing forgery means include JPEG compression
forgery and noise forgery. We will detect these two means.
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a: JPEG COMPRESSION FORGERY DETECTION

In order to verify the detection performance of the proposed
method for JPEG compression forgery images, we exper-
imented with tampered images in FAU. The JPEG com-
pression factor is 20 to 100 and the step size is 10. The
experimental results are shown in Fig. 13.

b: NOISE FORGERY DETECTION

We have experimented with tampered images in FAU with
normalized intensity between 0 and 1, and added zero mean
Gaussian noise. The standard deviation varies from 0.02 to
0.10, and the step size is 0.02. Fig. 14 shows the experimental
results.

The comparative analysis of the experiment is shown
in Fig. 15. The detection results are good in the case of less
tampering, but the proposed method performs poorly when
the quality factor is lower than 70 and the standard deviation
is higher than 0.04. The main reason is that the PSNR is used
as one of the similarity measures in the localization algorithm,
which is sensitive to the change of post-processing tampering
factor, resulting in poor experimental result. The other three
methods are relatively stable, although their performance
are not as good as those of the proposed methods. How to
improve the detection of post-processing forgery is also a
problem we need to solve in the future.

VI. CONCLUSION

In this paper, we present a novel CMFD method based on
SIFT keypoint to locate the doctored regions at the pixel
level, and the experimental results show that the method has
performed well. SIFT keypoint has a high dimension and
usually extracts tens of thousands or even hundreds of thou-
sands keypoints for an image, which impose a huge burden
on feature matching. By clustering the SIFT keypoints, this
method can effectively reduce the matching time and improve
the detection efficiency. In addition, aiming at the problem
that the detection results of keypoint method cannot locate
the tampered regions accurately, we propose an algorithm of
searching similar neighborhood to iteratively mark the image
at pixel level and produce the final tampered localization
map. The proposed method is evaluated on three manipulated
datasets. Compared with the existing methods, our method
has better robustness and could accurately locate tampered
regions, especially on simple forgery, geometric transforma-
tion forgery and small-scale post-processing forgery. How-
ever, in large-scale forgery, this method is not stable and has
poor effect, which is also the problem we need to solve in the
future.
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