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ABSTRACT The restoration of images corrupted by blurring and structured noise has attracted growing
attention in the domains of image processing and computer vision. However, many works only focus on
the restoration of the images degraded by blurring and additive structured noise or multiplicative structured
noise separately. It is still a challenge and an open problem to restore degraded images with blurring and
multiplicative structured noise, simultaneously. In this paper, based on the total variation (TV), the statistical
property of the Gamma noise and the maximum a posteriori (MAP) estimator, we obtain a convex variational
model to recover blurred images with multiplicative structured noise. Especially, to get this convex model,
we reformulate the prior assumption of the images degradation model by division instead of multiplication.
For solving this convexmodel, an effective alternating directionmethod ofmultipliers (ADMM) is employed.
Numerical experiments are presented to illustrate the effectiveness and efficiency of the proposed model.

INDEX TERMS Image deblurring, convex variational model, structured noise, multiplicative noise, ADMM.

I. INTRODUCTION
Image deblurring and denoising are fundamental tasks in
image processing and computer version. In real applications,
image blurring is unavoidable due to many factors such as
long transmission distance, environmental electromagnetic
interference, and air turbulence [1]. Moreover, the observed
images can be further affected by both blurring and noise
interference in the process of image acquisition and trans-
mission [2], [3]. Generally, we can consider two kinds of
random noises: additive and multiplicative noise. Under the
additive noise scheme, numerous deblurring methods have
been proposed to handle these problems. We refer the readers
to see [4]–[15]. Indeed, various regularization approaches
(e.g. the wavelet frame [5], [14], [15] and the total variation
(TV) [4], [6], [7], [11]) were used to recover good numerical
results from the additive noise. Under the multiplicative noise
scheme, the blurred image Hu was further corrupted by some
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multiplicative noise η. The degradation model is as follows,

u0 = Hu� η, (1)

where u ∈ Rm×n is the original image;H is the blurring oper-
ator and u0 is the observed image; and η ∈ Rm×n is a random
vector that could follow one or more statistical distributions
such as Gamma distribution and Gaussian distribution. Let
E denote the vector space of 2D images defined on � =
{1, . . . ,m}×{1, . . . , n}. For any 2D images, the total number
of pixels is m× n. The pixels of the image are identified by a
multi-index i = (i1, i2) ∈ �. The point-wise product between
two elements Hu and η is denoted Hu� η,

(Hu� η)[i] = (Hu)[i]η[i]. (2)

Unlike the additive noise with independent properties, multi-
plicative noise is generally coupled with the original images.
Though this standard multiplicative noise assumption can
model some real applications such as synthetic aperture radar
(SAR), ultrasound imaging, and laser images [16], it still lost
many image information seriously, especially the structural
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information. In coherent imaging systems, the photographs
that we observed have distinct structural features. For
instance, we could observe the ripple effect in X-ray imaging
[17], [18], the speckle noise in ultrasonic imaging [19]–[21],
and the stripes effect in medical equipment imaging [22].
In this paper, we mainly consider the restoration of blurred
images under multiplicative structured noise. To the best of
our knowledge, this problem has not yet been studied. To take
the structure information into account, similarly to [23], [24],
we use a stationary noise η to replace the standard assumption
describing the structural information of the noise. We can
generate the structured noise η by convolving the noise ν with
a known kernel,

η = ψ ? ν, (3)

where the operator ψ is a convolution filter that depends on
the noise structure, the symbol ? is the convolution product,
and the convolution product η = ψ ? ν is defined by

η[i] =
∑
j∈�

ψ[i− j]ν[j], (4)

where the noise ν is a random vector. It can be seen that
structured noise η depends on the structureψ and the noise ν.
Until the past decade, a few variational methods have been

proposed to handle the problem of images degraded by blur-
ring and multiplicative noise. When the blur operatorH = Id
in (1) (i.e. Id is an identity operator), these problems become
the multiplicative noise removal problems. Rudin et al. [25]
firstly proposed the variation model to solve this issue (called
‘‘RLO model’’),

min
u
‖u‖TV ,

s.t.
mn∑
i=1

[u0]i
[u]i
= 1,

mn∑
i=1

(
[u0]i
[u]i
− 1

)2

= σ 2, (5)

where σ 2 is the noise variance, and ‖u‖TV is the total variation
of u to preserve the shape edges (see Section II-A for details).
The RLO model only uses the basic statistical properties,
the mean and the variance, which limits the image restora-
tion effect. Based on the Gamma noise with the mean of 1,
Aubert and Aujol [26] used a maximum a posteriori (MAP)
estimator to obtain a multiplicative denoising model (called
‘‘AA model’’),

min
u
‖u‖TV + α

mn∑
i=1

(
log[u]i +

[u0]i
[u]i

)
, (6)

where α is a parameter that balances the data fidelity term and
the TV term. Although the AA model is non-convex, Aubert
and Aujol proved that the objective equation has an opti-
mal solution. The non-convexity of the RLO and AA model
poses serious numerical troubles. Shi and Osher [27]
proposed a globally convex total variational framework

(called ‘‘SO model’’). They transformed the multiplicative
noise into the additive noise through logarithmic transfor-
mation and used the spatial method to remove multiplica-
tive noise. Huang et al. [28] maintained the framework of
the AA model by using a transformation w = log u, this
model is strictly convex and the alternating direction method
of multipliers (ADMM) was proposed to find the optimal
solution of the objective function. The numerical results show
that the restoration effect of this method is better than the
AA model. Steidl and Teuber [29] proposed a convex varia-
tional model based on I-divergences to recover images cor-
rupted by multiplicative noise. Dong et al. [30] proposed
the nonlocal total variational model to restore multiplica-
tive noise and used the split Bregman method to deal with
this minimization problem. Inspired by the Gaussian adap-
tive method for denoising, Chen and Cheng [31] developed
a multiplier denoising model with local constraints of TV
regularization term, which can automatically select regular
parameters by using the statistical properties of random vari-
ables. Except for TV regularization methods, there are also
many other ways to remove multiplicative noise well such as
dictionary learning, tight-frame approach and so on. We refer
the reader to see [32]–[39].

In recent years, many scholars have investigated the prob-
lem of image deblurring with multiplicative noise. The clas-
sical RLO and AA model can be extended to restore blurred
images,

min
u
‖u‖TV ,

s.t.
mn∑
i=1

[u0]i
[Hu]i

= 1,

mn∑
i=1

(
[u0]i
[Hu]i

− 1
)2

= σ 2, (7)

and

min
u
‖u‖TV + α

mn∑
i=1

(
log[Hu]i +

[u0]i
[Hu]i

)
. (8)

To overcome the drawback of the non-convex model in (7)
and (8), Dong and Zeng [40] proposed a convex denoising
and deblurring model by introducing a quadratic penalty
term into the AA model. In [41], Wang and Ng transformed
the multiplicative noise and blur removal problem into the
additive denoising and deblurring problem by logarithmic
transformation and used the ADMM algorithm to solve it.
Dong and Zeng [42] used an I-divergence technique to build
a convex model. Zhao et al. [43] proposed a model con-
taining the total variational regular term, the data fidelity
term, and the variance term, and obtained analytical solu-
tions by ADMM algorithm. Shama et al. [44] proposed a
convex model, which contains the data fidelity term based on
MAP, the penalty term based on total generalized variational
regularization and noise statistical characteristics, separately.
There are also other models and algorithms focusing on this
topic [7], [16], [45]–[52].
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In order to get higher quality images, the problem of
restoring images with structured noise has been getting more
and more attention in the fields of space, biological sci-
ences, and medical imaging. Münch et al. [53] combined
the wavelet and Fourier transform to remove stripes and
ring artifacts. Boas and Fleischmann [54] summarized the
algorithms and restoration models for recovering computed
tomography (CT) imaging. Henrik Fitschen et al. [55] used a
variational model with directional first and second order dif-
ferences to recover stripes noise. Roels et al. [56] analyzed the
main factors of image degradation and proposed a non-local
means image restoration algorithm to restore images under
the 3D electron microscope. Chen et al. [57] proposed
a method based on TV regularization and group sparsity
constraint to deal with the fringe noise of remote sensing
images. Fehrenbach et al. [24] (see Section II-B for details)
proposed a variational stationary noise removal method to
remove the additive structured noise in the scanning elec-
tron microscope. In [23], the authors proposed a variational
model based on Gamma distribution to restore multiplicative
structured noise (see Section II-C for details). This model
is convex and provides good recovering results. Han et al.
proposed a novel algorithm based on a new definition of
similarity coefficient to remove PolSAR image speckle [58].
Yang et al. used the Schatten 1/2-norm regularization to the
remote sensing images destriping [59]. However, all of the
above methods only focus on the restoration of the images
degraded by blurring and additive structured noise or multi-
plicative structured noise separately. As far as we know, it is
still a challenge and an open problem to restore degraded
images with blurring and multiplicative structured noise,
simultaneously.

In this paper, inspired by the pioneer works [23], [24],
we study the deblurring issues with multiplicative structured
noise. Comparing with previous works, our contributions are
as follows.
• First, we propose a convex variational model to restore
the images degraded by blurring and multiplicative
structured noise.

• Second, we adopt the standard ADMM algorithm to
solve the proposedmodel, and this algorithm has a better
effect and speed.

• Third, numerical experiments show that our model and
algorithm have good numerical performance and are
very robust in recovering images under different blur
kernels, different types of structured noise and different
Gamma noise levels.

The rest of this paper is organized as follows. In Section 2,
we review the total variation regularization and the related
works of [23], [24]. We propose our model to restore
blurred images with multiplicative structured noise in
Section 3. In Section 4, the ADMM algorithm is employed
to solve the proposed model. In Section 5, we demon-
strate the effectiveness and efficiency of the proposed model
by some numerical experiments. Conclusions are drawn
in Section 6.

II. RELATED WORKS
A. TOTAL VARIATION REGULARIZATION
In [60], Rudin et al. firstly introduced the total vari-
ation ‖u‖TV in image restoration to preserve sharp
edges. The discrete total variation of u can be defined
by [16]

‖u‖TV =
∑

1≤j≤m,1≤k≤n

∣∣(∇u)j,k ∣∣2
=

∑
1≤j≤m,1≤k≤n

√∣∣∣(∇u)xj,k ∣∣∣2 + ∣∣∣(∇u)yj,k ∣∣∣2, (9)

where j = 1, · · · ,m, k = 1, · · · , n, uj,k is the (j, k)th
pixel location of the image u. And (∇u)xj,k and (∇u)yj,k
denote the horizontal and vertical first-order difference,
respectively,

(∇u)xj,k =

{
uj+1,k − uj,k , if j < m,
0, if j = m,

(∇u)yj,k =

{
uj,k+1 − uj,k , if k < n,
0, if k = n.

(10)

B. ADDITIVE STRUCTURED NOISE REMOVE
Let us review the previous works in [23], [24] briefly about
generating and solving structured noise. In [24], Fehrenbach
et al. used a stationary noise assumption to replace the white
noise assumption. Based on this new additive noise assump-
tion, the additive degradation model can be rewritten as: u0 =
u +

∑mn
i=1 ψi ? νi. The operator ψi is a known elementary

pattern, to represent the image structural information. The
vector νi follows white noise with known probability density
functions. Themodel was proposed to restore images affected
by additive structured noise as follows,

min
νi

∥∥∥∥∥∇
(
u0 −

mn∑
i=1

ψi ? νi

)∥∥∥∥∥
1

+

mn∑
i=1

φi (νi) , (11)

where the first term is TV regularization term; the second
term is data fitting term which depends on the probability
distribution of νi, and φi (νi) is Tikhonov regularization [61].
They exploited primal-dual algorithms to solve this model,
and obtained good numerical results for restoring image
under additive structured noise.

C. MULTIPLICATIVE STRUCTURED NOISE REMOVE
In [23], Escande et al. proposed a convex model to restore
images with multiplicative structured noise. Here, the degra-
dation model can be rewritten as

u0 = u� δ, (12)

where δ = ψ ? λ, and λ is noise that follows Gamma
distribution. The point-wise division between two elements u
and δ is denoted (u � δ)[i] = u[i]/δ[i]. Based on this
degradation model, a convex variation model to recover
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TABLE 1. ReErr, MSSIM and PSNR for Gaussian blur.

images affected bymultiplicative structured noise is proposed
as follows,

min
λ
c ‖∇ (u0 � (ψ ? λ))‖1 + 〈bλ− (a− 1) log λ, 1〉, (13)

where c is the parameter to balance the TV term and the
data fidelity term; the parameters (a and b) are from Gamma
distribution. This model can handle the problem of images
with multiplicative structured noise well. However, the blur-
ring effect is unavoidable and not taken into account in [23].

Thereby, in this paper, we consider the deblurring issues
under multiplicative structured noise.

III. THE PROPOSED MODEL
A. IMAGING PIPELINE
The classical blurred images with multiplicative noise degra-
dation model is like (1)

u0 = Hu� η.
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TABLE 2. ReErr, MSSIM and PSNR for motion blur.

Based on this degraded function, many approaches were
proposed to deal with blurring issues. However, this equation
leads to serious numerical troubles since the MAP estimator
is non-convex, like the AA model. To avoid the numerical
difficulties, similarly to [23], let u denote the original image
and u0 denote the observed image, λ is the multiplicative
noise, andH is a blurred operator, we change the degradation
model as follows,

u0 = Hu� δ, (14)

where δ = ψ ? λ, the vector λ follows Gamma distribution,
and its density function is

P(x; b, α) =
bα

τ (α)
xα−1 exp(−bx), (15)

where τ (α) is the Gamma function. The parameter a > 0 is
called the shape parameter, the parameter b > 0 is called
the inverse scale parameter. The advantages of (14) are as
follows:
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TABLE 3. ReErr, MSSIM and PSNR for average blur.

TABLE 4. The CPU-time(s).

• We rewrite multiplication into the division, it makes u
and λ become a linear system to overcome numerical
troubles because of using MAP estimator.

• In this degradation model, we consider the factors of the
blurring, multiplicative noise, and structure. The model
can more accurately reflect coherent imaging systems,

such as SAR, Single Plane Illumination Microscope
(SPIM), and Atomic Force Microscope (AFM) imaging.

B. THE PROPOSED MODEL VIA THE MAP ESTIMATOR
In this section, based on (14), we propose a convex model to
restore blurred images with multiplicative structured noise.
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TABLE 5. Restored results of images are degraded by different structured types.

TABLE 6. Restored results of images degraded by different noise levels.

We assume that P(x) is the probability of variable x and
P(x|y) is the probability of x on observation y. Our target is
to maximize P(u, λ |u0). Using Bayes rules, we have

P(u, λ |u0 ) =
P(u0 |u, λ )P(u, λ)

P(u0)
. (16)

By taking the negative logarithmic transformation, this prob-
lem can be rewritten as follows,

− log(P(u0 |u, λ ))− logP(u, λ)+ logP(u0). (17)

Because u and λ are independent, we can get P(u, λ) =
P(u)P(λ). Moreover, the clean image u and the observed
image u0 satisfy the linear relation. It means that P(u0 |u, λ)
and P(u0) are constants [24]. In this paper, we assume that
images have a low total variation, which can be expressed as

P(u) ∝ exp (−c‖∇u‖1) . (18)

As λ follows Gamma distribution, we can get the data fitting
term. By introducing the constraint condition: u0 = Hu �

(ψ ? λ), we can get the restoration model finally,

min
u,λ
〈bλ− (α − 1) log λ, 1〉 + c‖∇u‖1,

s.t. Hu = u0 � (ψ ? λ). (19)

The proposed model (19) is convex if we can keep the param-
eters α > 1, b > 0. By introducing auxiliary variable y and
z, model (19) can be rewritten as

min
u,λ
〈bλ− (α − 1) log λ, 1〉 + c‖z‖1,

s.t. Hu = u0 � (ψ ? y), ∇u = z, λ = y. (20)

IV. NUMERICAL METHOD
Let’s start a general convex minimization model with separa-
ble structures,

min f (x1)+ g(x2)+ q(x3),

s.t. A1x1 + A2x2 + A3x3 = b,

xi ∈ Xi, i = 1, 2, 3,
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TABLE 7. Restored results from different models and algorithms.

where f (x1), g(x2), and q(x3) are lower semicontinuous proper
convex function; Ai are given matrices; b is a known vec-
tor; Xi are nonempty closed convex sets. Hence, the convex
optimization model (20) falls into the above form with the
following specifications:
• x1 := u, x2 := λ, x3 := (y, z), and the abstract sets are
Xi := Rn

;

• f (x1) = 0, g(x2) = bλ − (α − 1) log λ, and q(x3) =
c ‖z‖1;

• the matrices Ai and b are given by, respectively:

A1 :=

H/(u0 � ψ)
∇

0

 , A2 :=

 0
0
I

 ,
A3 :=

−I 0
0 −I
−I 0

 , b =

 0
0
0

 ,
where I is the identity operator. The augmented Lagrangian
function of the model (20) is given by

L (z, u, λ, y;ω1, ω2, ω3)

= c ‖z‖1 + 〈ω1,∇u− z〉 +
µ1

2
‖∇u− z‖22

+ 〈ω2,Hu− u0 � (ψ ? y)〉 +
µ2

2
‖Hu− u0 � (ψ ? y)‖22

+ 〈ω3, λ− y〉+
µ3

2
‖λ− y‖22 + 〈bλ− (α − 1) log λ, 1〉 ,

(21)

where ω1, ω2, and ω3 are the Lagrangian multipliers, µ1,
µ2, and µ3 are the penalty parameters. The augmented
Lagrangian method (ALM) for problem (21) is an iterative
algorithm based on the iteration,



(
zk+1, uk+1, λk+1, yk+1

)
= arg min

z,u,λ,y
L
(
z, u, λ, y;ωk1, ω

k
2, ω

k
3

)
, (22a)

ωk+11 = ωk1 + θµ1

(
∇uk+1 − zk+1

)
, (22b)

ωk+12 = ωk2 + θµ2

(
Huk+1 − u0 � (ψ ? yk+1)

)
, (22c)

ωk+13 = ωk3 + θµ3(λk+1 − yk+1). (22d)

We apply the alternating direction method of multipli-
ers (ADMM) to the minimization ofL (z, u, y, λ;ω1, ω2, ω3)

in (21),



zk+1 = argmin
z
c ‖z‖1 −

〈
ωk1, z

〉
+
µ1

2

∥∥∥∇uk − z∥∥∥2
2
, (23a)

uk+1 = argmin
u

〈
ωk1,∇u

〉
+
µ1

2

∥∥∥∇u− zk+1∥∥∥2
2

+

〈
ωk2,Hu

〉
+
µ2

2

∥∥∥Hu−u0�(ψ ? yk )∥∥∥2
2
, (23b)

λk+1 = argmin
λ
〈bλ− (α − 1) log λ, 1〉

+

〈
ωk3, λ

〉
+
µ3

2

∥∥∥λ− yk∥∥∥2
2
, (23c)

yk+1 = argmin
y
−

〈
ωk2, u0 � (ψ ? y)

〉
+
µ2

2

∥∥∥Huk+1 − u0 � (ψ ? y)
∥∥∥2
2

−

〈
ωk3, y

〉
+
µ3

2

∥∥∥λk+1 − y∥∥∥2
2
. (23d)

A. Z SUBPROBLEM
For z subproblem, we can use the shrinkage operator to solve
directly,

zk+1 = shrink
(
∇uk +

ω1

µ1
,
c
µ1

)
, (24)

where the shrinkage operator shrink
(
·, c
µ1

)
is defined by

shrink
(
ξ,

c
µ1

)
1
= max

{
|ξ | −

c
µ1
, 0
}
·
ξ

|ξ |
. (25)

Especially, the element ξ
|ξ |

should be taken as 0 if |ξ | = 0.

B. U SUBPROBLEM
For fixed z, y, λ, the minimization of L with respect to u can
be rewritten as follows,

Muuk+1 = rku , (26)

where

Mu = µ1∇
T
∇ + µ2HTH ,

rku = µ1∇
T zk+1+µ2HT (u0 � (ψ ? yk ))−HTωk2−∇

Tωk1 .

(27)

Under the periodic boundary condition for u, we know that
∇
T
∇ and HTH are block circulation, so we can use the fast
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FIGURE 1. The original images. (a), (b) and (c) are synthetic images, (d) is a real image.

FIGURE 2. Common types of structured noise.

Fourier transform (FFT) to find the solution of this subprob-
lem efficiently,

F>M̂uFuk+1 = rku , (28)

uk+1 = F>M̂−1u Frku , (29)

where M̂u = F(µ1∇
T
∇ + µ2HTH )F>.

C. λ SUBPROBLEM
For this subproblem, this problem can be rewritten as

b−
α − 1
λ
+ ωk3 + µ3(λ− yk ) = 0, (30)

then this question can be solved by

λ =
−Tep+

√
Tep2 + 4(α − 1)µ3

2µ3
, (31)

where Tep = b+ ωk3 − µ3yk .

D. Y SUBPROBLEM
For y subproblem, this problem is equal to

(µ2u20 ψ
Tψ + µ3I )y

= u0ψTωk2 + Hµ2u0ψT uk+1 + ωk3I + λ
k+1µ3. (32)

We use Preconditioned Conjugate Gradients Method (termed
‘‘PCG’’) to solve (32). This method is based on the conjugate
gradient method, which can improve the speed of the algo-
rithm by preprocessing. Assuming that the preconditioned

matrix P is symmetric and positive definite, the linear equa-
tions AY = B can be transformed into

Q−1AY = Q−1B. (33)

If Q−1A has smaller condition number than A, it can improve
the speed of solving this system of linear equations. Using
this method, the condition is that A is symmetric and positive
definite, and B is known. In this subproblem, we have

A = µ2u20 ψ
Tψ + µ3I ,

B = u0ψTωk2 + Hµ2u0ψT uk+1 + ωk3I + λ
k+1µ3.

Because ψTψ as symmetric and positive definite, µ3I is a
diagonal matrix, we know that A is symmetric and positive
definite, and B is known. It means that the y subproblem can
be solved by this method. We use MATLAB built-in ‘‘PCG’’
function to solve,
• X = PCG(A, B, TOL, MAXIT).

We set TOL as 1e−5; MAXIT is the maximum number of
iterations (i.e., we set MAXIT is 40). The overall algorithm
is summarized in Algorithm 1.

V. NUMERICAL EXPERIMENTS
In this section, we use four images which are given
in Figure 1 as our testing images to display the effec-
tiveness of the proposed method, labeled by ‘‘peppers’’
(512 × 512), ‘‘f16’’ (512 × 512), ‘‘zelda’’ (512 × 512),
and ‘‘band’’ (512 × 512). Besides, ‘‘peppers’’, ‘‘f16’’, and
‘‘zelda’’ are synthetic images, and ‘‘band’’ is a real image.
All the experiments are performed under Windows 10 and
MATLAB R2019b running on a Notebook PC with an Intel
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FIGURE 3. The top row: showing three clean images. The second row: showing images only affected
by structured noise (stripes noise). The third row: showing images only affected by average blur (AB
(10)). Bottom row: showing the images are affected by average blur and stripes noise.

Core (TM) i7-8565U CPU at 1.80 GHz with 8 GB of RAM.
Quantitatively, the quality of the recovered images is eval-
uated by the peak signal-to-noise ratio (PSNR), the relative
error (ReErr), and structural similarity (SSIM) [62]. The
PSNR and ReErr are defined as,

PSNR = 10 log
mnmax(max(u0),max(u))2

‖u0 − u‖2
, (34)

ReErr =
‖u0 − u‖2

‖u‖2
, (35)

where u0 and u are the restored image and the original image,
respectively. The size of these images ism×n. And the SSIM

[62] can be defined as follows,

SSIM(x, y) =

(
2µxµy + θ1

) (
2σxy + θ2

)(
µ2
x + µ

2
y + θ1

) (
σ 2
x + σ

2
y + θ2

) , (36)

whereµx ,µy are the averages of x, y; σ 2
x , σ

2
y are the variances;

σxy is the covariance of x, y, and θ1, θ2 are two variables to
stabilize the division with a weak denominator. The overall
SSIM (MSSIM [63]) is the mean of local similarity indexes
defined by

MSSIM =
1
N

N∑
i=1

SSIM ((xi, yi)) , (37)

where xi, yi are corresponding windows of clean/restored
image indexed by i and N . Note that the larger PSNR,
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FIGURE 4. The recovering results of GB(5,2)/stripes/K = 1 for ‘‘peppers’’ with zoomed regions and PSNR values (db).

FIGURE 5. The recovering results of MB(5)/stripes/K = 3 for ‘‘f16’’ with zoomed regions and PSNR values (db).

larger SSIM, and smaller ReErr means the better restora-
tion effect. To illustrate the effectiveness of the pro-
posed method, we compare the recovering results of our
approach with those of the following image deblurring
algorithms,

• AA model is proposed by Aubert and Aujol [26], and
solved by the gradient method;

• HNZmodel is proposed byHuang et al. [16], and solved
by an alternating minimization algorithm;

• DZ model is proposed by Dong and Zeng [40], and
solved by primal-dual algorithm;

• WZNmodel is proposed byWang et al. [36], and solved
by the ADMM algorithm;

• LY model is proposed by Lu et al. [50], and solved by
an alternating minimization algorithm.

The HNZ model and DZ model are extensions of the
AA model. The WZN model is a framelet-based convex
optimization model for multiplicative noise and blur removal
problems. Wang, Zhao, and Ng proposed a new method to
select the regularization parameter by using the l1 norm-based
L-curve method for these framelet-based models. The
LY model is a variational model and this model utilizes the
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FIGURE 6. The recovering results of AB(5)/stripes/K = 0.5 for ‘‘zelda’’ with zoomed regions and PSNR values (db).

FIGURE 7. The recovering results of MB(5)/speckle/K = 5 for ‘‘peppers’’ with zoomed regions and PSNR values (db).

favorable properties of framelet regularization. These models
can be used to solve the blurred images with multiplicative
noise, and make competitive results for restoring blurred
images with multiplicative Gamma noise. Without loss of
generality, like the DZ model, we also assume that the mean
of λ equals 1 under the multiplicative noise scheme. Let
K = α, 1/θ = b, then we have that Kθ = 1 and its
variance is 1/K . The density function (15) can be rewritten
as

P(λ; θ,K ) =
1

θK τ (K )
λK−1e−

λ
θ , K > 1. (38)

In our degradation model, we mainly consider three factors:
Gamma noise levels, blur kernels, and structured noise types.
Firstly, we use the MATLAB built-in function to generate the
Gamma noise,

• random (‘‘gamrnd’’, K, 1/K),

where the level of the Gamma noise is determined by the
parameter K. Note that the smaller K is, the more serious the
Gamma noise is. In all experiments, we choose different K
numbers from the set of K ∈ {0.05, 0.15, 0.5, 1.5, 3, 5, 33}.
For blur kernels, we consider three blur kernels (‘‘Gaussian

VOLUME 8, 2020 37801



T. Wu et al.: Convex Variational Approach for Image Deblurring With Multiplicative Structured Noise

FIGURE 8. The recovering results of MB(5)/grid/K = 5 for ‘‘f16’’ with zoomed regions and PSNR values (db).

FIGURE 9. The recovering results of MB(5)/point/K = 33 for ‘‘zelda’’ with zoomed regions and PSNR values (db).

blur’’, ‘‘ motion blur’’, and ‘‘average blur’’), and achieved by
MATLAB command,
• ‘‘Gaussian blur’’ (GB): fspecial (‘‘gaussian’’, pixels,

sigma);
• ‘‘motion blur’’ (MB): fspecial (‘‘motion’’, len, theta);
• ‘‘average blur’’ (AB): fspecial (‘‘average’’, hsize).
For GB, we test three different sizes (5×2, 5×5, 7×2); as

for MB, we test three experiments. We test len = 3, 5 when
the theta is the default number (i.e. theta = 0); when the
theta = 30, the len is 5; about AB, we test hsize = 3, 5.
Sure, in addition to these three common blur kernels, there

are other blur kernels, such as ‘‘disk blur’’, ‘‘laplacian blur’’,
‘‘Sobel blur’’ and so on.

For structured noise types, we choose four types from
six common structured noise types (see Figure 2), point,
speckle, stripes, and grid noise, respectively. Speckle,
stripes, and grid noise are common structured noise,
point noise is multiplicative Gamma noise with no struc-
ture. As shown in Figure 3, the first row is the origi-
nal images; the second row is the images only affected
by multiplicative structured noise; the third row is the
images only affected by blurring; the last row is the
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FIGURE 10. The recovering results of GB(5,2)/stripes/K = 0.1 for ‘‘peppers’’ with zoomed regions and PSNR
values (db).

FIGURE 11. The recovering results of GB(5,2)/stripes/K = 0.5 for ‘‘peppers’’ with zoomed regions and PSNR
values (db).

images degraded by blurring and multiplicative structured
noise.

A. PARAMETER SETTINGS
In our model, there are two parameters to control. To keep
the convexity of the proposed model, we let b > 0, and
α > 1. We choose b from the set of {0.1, 0.3, 0.5, 1}. And
about α, we choose the best one from {2, 3, 4, 5}. From all
the structured noise, if the type we choose is speckle, flow
or line noise, (α, b) = (5, 1); if the type we choose is stripes
or grid noise, (α, b) = (2, 1); if the type we choose is point
noise (no structure), (α, b) = (5, 0.1). In this paper, we use

the ADMM algorithm to solve our model. About the regu-
larization parameter c and the ADMM penalty parameters
µ1, µ2, µ3, we choose the best one from the set of {1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 20, 50}. And it is based on different
types of noise. After testing, we found that when c = 2,
µ1 = µ2 = µ3 = 8, our algorithm has a good recovery
effect on the selected test set. In all the experiments, the stop

criterion is either
E
(
uk+1

)
−E

(
uk
)

E(uk+1)
< 1e−4 or the maximum

iterative number exceeds 500.
For the other methods (the AA, HNZ, DZ, WZN, and LY

model), we choose the corresponding parameters such that
the MSSIM result is highest.
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FIGURE 12. The recovering results of GB(5,2)/stripes/K = 1.5 for ‘‘peppers’’ with zoomed regions and PSNR
values (db).

FIGURE 13. Restoration results of stripes/K = 1 for ‘‘f16’’ with zoomed regions and PSNR values (db).

B. EXPERIMENT 1
In the first experiment, the original images (including ‘‘pep-
pers’’, ‘‘f16’’, and ‘‘zelda’’) are blurred by three different
blur kernels, and further degraded by multiplicative struc-
tured noise. We choose stripes noise as structured noise in
this experiment. And the K value (Gamma noise level) we
set is 1 or 0.15. Tables 1-3 display the value of ReErr,
MSSIM, and PSNR for three blurring kernels with different
parameters. Table 4 lists the CPU-time of these six models.
In Figure 4, we show the restored results of the Gaussian blur
(GB(5,2)/K= 1). Figure 5 shows the partial restored effect of

motion blur (MB(5)/K = 3). And we display the restoration
results for average blur (AB(5)/K = 0.5) in Figure 6. All
these results demonstrate our model can remove different blur
kernels with structured noise effectively and also confirm that
our proposed model gets better results than the other five
models.

C. EXPERIMENT 2
In this experiment, we show the recovering results of the
images degraded by different types of structured noise. The
original image is corrupted by three different noise types
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FIGURE 14. The restored results of real image.

Algorithm 1 ADMM for the Proposed Model
Input: the observed image u0, psi, and the blur operation
H .
Parameters: ω1, ω2, ω3, µ1, µ2, µ3, and stopping param-
eters tol.
Initialize: u = u0, µ1 = µ2 = µ3 = 0, and k =
0, 1, . . . ,Maxit:
1. Compute zk+1 by (24),
2. Compute uk+1 by (29),
3. Compute λk+1 by (31),
4. Compute yk+1 by (33),
5. Update ωk+11 by (22b),
6. Update ωk+12 by (22c),
7. Update ωk+13 by (22d).

If
∥∥u(k+1) − u(k)∥∥/∥∥u(k+1)∥∥ ≤ tol, stop.

Output: uk .

including speckle noise, grid noise, and point noise (point
noise without structure), and then this image is also blurred
by MB (5). The degraded images and the recovered images
are shown in Figures 7-9, respectively. The values of ReErr,
MSSIM, and PSNR are shown in Table 5. These recovering
results demonstrate that the proposed model is very effective
to recover blurred images with different types of structured
noise.

D. EXPERIMENT 3
In this experiment, we consider showing our model to restore
images with different Gamma noise levels. We let ‘‘peppers’’
as our test image. Except for the noise levels, the image
‘‘peppers’’ is also corrupted by GB (5, 2) and stripes noise
in this experiment. For Gamma noise, the smaller the K value
is, the image degradation effect is more serious. We choose

three different K numbers (K = 0.1, 0.5, 1.5). Table 6 tells
that the proposed model improves the quality of restoration
in terms of ReErr, MSSIM, and PSNR compared with the
other models, and the speed is also better than the WZN, LY,
DZ, AA, and HNZ models. Figures 10-12 show the degraded
images with different K values and the corresponding recov-
ered images, respectively.

E. EXPERIMENT 4
In Experiment 4, we consider a simplified model. WhenH =
Id , it means that our model can be used to recover images
that are only affected bymultiplicative structured noise. Then,
the ADMM algorithm in this paper can be compared with
the primal-dual algorithm proposed by literature [23] (called
the ‘‘EWZ’’ model), and the AA, DZ, WZN, and LY model.
We choose the stripes noise as the structured noise, the K
value is 1. The results are as follows. From Figure 13 and
Table 7, although the DZ model takes the shortest time, our
restoration effect is better significantly. In general, our model
and algorithm are better than others.

F. EXPERIMENT 5
In the aforementioned four experiments, we mainly show
the restoring effect on synthetic images. In this experiment,
we show our model to recover the real image. Due to the
complexity of the real image and the numerous influencing
factors, we can only conduct qualitative analysis and compare
them through visual effects. For the real image, it is important
to estimate the blur kernel, and then use the no-blind method
to estimate latent image. In this paper, we mainly propose a
non-blind approach to restore the blurred image with mul-
tiplicative structured noise. In this experiment, we use the
general Gaussian kernel to approach this real image blur
kernel. There are two reasons to do this estimation. First,
the Gaussian blur is widely used in the estimation of static
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blur in natural imaging [64]–[66]; the second reason is that
we use a blurring kernel estimation method proposed by [45]
to estimate roughly. The kernel is shown as Figure 14(b),
which is very much like the Gaussian blur height. The more
accurate blur kernel estimation will be studied in our future
work. Based on this kernel estimation, the restoration result
is shown in Figure 14. It can be found that the recovery effect
of our model is better.

VI. CONCLUSION
In this paper, we discuss the image restoration problems
degraded by blurring and multiplicative structured noise,
simultaneously. The most relevant conclusions are summa-
rized as follows,
• A convex model based on the total variation (TV),
the statistical property of the Gamma noise and the
maximum a posteriori (MAP) estimator was proposed to
restore degraded images with blurring andmultiplicative
structured noise, simultaneously.

• We employed an effective ADMM algorithm to handle
this minimization problem, which is based on FFT, soft
thresholding formula, and ‘‘PCG’’ method.

• We conduct many experiments on different blurring ker-
nels, different types of structured noise, and different
Gamma noise levels, and illustrate that the proposed
model is robust and outperforms the state-of-the-art in
image deblurring with multiplicative structured noise
removing.

• Meanwhile, numerical results indicate that our algo-
rithm can generate competitive results in terms of the
CPU-time comparing to other algorithms and models.
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