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ABSTRACT In this paper, a new indoor navigation system-MeshMap is put forward based on the magnetic
fields and crowdsourcing. It only needs the users to have a smart phone for easy indoor navigation. Compared
with the RFID, Bluetooth and WiFi-based approaches, it does not require pre-deployed infrastructure, has
wide applications and low cost, and is not prone to be influenced by the occlusions of human bodies and
other barriers. Thus MeshMap can be highly stable and cost-effective. The proposed approach includes two
important techniques: 1) crowdsourcing is adopted to construct a global magnetic fingerprints database,
which used to require huge efforts, by merging sensor data frommultiple users’ different paths; 2) a dynamic
time warping based matching algorithm is proposed to realize the magnetic field time serial matching and
position correction, considering different users’ walking behaviors, magnetic abnormal positions, corners,
etc. Implementation and testing have proved that MeshMap can realize real-time positioning and navigation.
Testing results show that the space error of the navigation can be controlled within 2 meters in the
70 percentage of the time and within 4 meters in the 95 percentage of the time.

INDEX TERMS Indoor navigation, magnetic field, crowdsourcing, map construction, mobile applications,
multi-sensors.

I. INTRODUCTION
Recently, the proliferation of mobile devices enables a
large collection of applications that facilitate people’s daily
life. Indoor navigation based on mobile phones is one of
the emerging applications. As people usually carry around
mobile phones, a reliable, stable, low cost indoor positioning
and navigation system (mobile app) will be of vital impor-
tance both in daily life and in emergencies.

As GPS cannot be used in indoor environments, tradi-
tionally, indoor navigation uses infrared signals, Bluetooth,
RFID, WiFi, and so on [1]–[3]. Recently, WiFi is widely
used for indoor navigation using received signal strength and
channel state information [4]–[8]. However, such approaches
require pre-deployed devices or special hardware support.
In case of emergencies, some infrastructure may break down,
making the indoor positioning and navigation services inef-
fective or inaccurate.
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A recent trend for indoor navigation is to remove the
requirement of infrastructure support. Using the magnetic
field for positioning and navigation is such a promising
method. Compared with the WiFi and Bluetooth signals,
the magnetic signals are easier to be obtained and ubiqui-
tous. Magnetic field-based approaches need no additional
infrastructure support and are more stable [9]. Moreover,
magnetic signals are more sensitive for positions and can
achieve a higher accuracy for positioning. Thus researchers
gradually move their research goals on the more easily
obtainable, stable, ubiquitous magnetic signals [10]–[15].
FOLLOWME is one of such attempts based on magnetism
information [14].

This paper proposes a new indoor navigation system
called MeshMap. It is based on magnetism information
and crowdsourcing. With crowdsourcing, MeshMap aims at
using the magnetism information collected and submitted
via mobile phones from different users to build a combined
magnetic-field map for the entire area. Then for each pair
of source and destination points, MeshMap can provide an

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 39959

https://orcid.org/0000-0002-3863-5832
https://orcid.org/0000-0003-2324-2523


L. Chen et al.: MeshMap: Magnetic Field-Based Indoor Navigation System

optimal path and guide the user along such a path even when
the path has never been used by others.

To guide users with different walk habits, paces and
source-destination pairs inside large multi-storey buildings,
the realization of MeshMap faces some practical challenges:
(1) How to use the geomagnetic information of different user
paths to generate the final map for the entire area? Different
users may walk along different paths with different speeds
and in different directions. (2) How to conquer the errors for
the paths provided by different users? Even for the same path,
there exist magnetism variations and errors which make it
difficult to build the map. (3) How to provide the best path
for users for a source-destination pair that is not explored
by others before? (4) During the navigation process, how to
accurately guide users along the provided path?

In MeshMap, we propose a novel path merging method
to combine the geomagnetic information of multiple paths
to form a global mesh map while eliminating errors from
different users. We also provide a best path search algorithm
based on the mesh map. Finally, we provide a real-time signal
matching algorithm to guide a user during the navigation.
Extensive experiments in different environments including
a university campus, a parking area, and a shopping mall
have been conducted using our developed MeshMap. The
evaluation results show the effectiveness of MeshMap.

The rest of this paper is organized as follows. Section II
reviews some related work. Section III analyzes system
requirements. Section IV provides the detailed design of
MeshMap. Section V presents the implementation details
and evaluation results. Section VI concludes the paper and
discusses our future work.

II. RELATED WORK
Indoor positioning and navigation have been a hot research
topic in recent years with some promising results [16]–[20].
A WiFi-based indoor positioning system can be deployed in
stores, supermarkets, and business buildings which already
have WiFi networks and thus has small costs. Since WiFi
is already prevalent in various mobile devices, implemen-
tation of WiFi-based indoor positioning is relatively easy.
It has been one of the hottest application methods for indoor
positioning in recent years [21]–[24]. The WiFi-based indoor
positioning system obtains the target position by matching
the features of target positioning fingerprints with those in
a WiFi fingerprint database. This method is also called the
positioning fingerprint method. Chen et al. [25] designed and
implemented one of such indoor positioning systems based
on the magnitude fingerprint of WiFi signals. They tried to
effectively reduce the interference of the direction at which
the users hold the mobile devices, the occlusion by user bod-
ies, and the variations of the environments. Cao et al. [41]
proposed a real-time traffic information collection and mon-
itoring system architecture based on the Internet of Things.
Li et al. [42] utilized the Internet of Things and cloud com-
puting to provide cloud logistics services.

In fact, technologies for indoor WiFi or Bluetooth-based
positioning are mature, and some commercial products and
systems have already been in use, mostly in large shopping
malls. However, these WiFi and Bluetooth-based positioning
systems have some limitations: they depend on the wireless
infrastructure (wireless access points (APs) or Bluetooth sta-
tions), which need to be installed at a high cost. The number
of wireless APs or stations and their distributions also have a
high influence on these positioning systems. If some wireless
APs or stations fail, the fingerprint data collected by the
users cannot be successfully matched with the fingerprint
data in the database and will finally lead to invalid positioning
results. Moreover, the WiFi or Bluetooth signals are prone to
be influenced by the occlusion of the human bodies and other
barriers which lead to a high degradation or great change of
the signals.

In order to design a new, low cost indoor positioning
system, researchers are looking for ubiquitous signals, which
can be easily collected and utilized in indoor positioning
and are more stable [26]–[29]. As it can be found in the
related research literature, many animals can use themagnetic
fields to find directions, sense the current position, carry
out navigation, and achieve migration [30]. In fact, there
are many materials or ores on earth which have the iron
element, and their existence has caused the abnormality of
the magnetic fields. It is just this abnormality that leads the
animals to find their ways. In buildings, the reinforced con-
crete, electrical equipment, elevators, etc. all can infect the
nearby magnetic fields, cause local abnormality of the mag-
netic fields, and lead to the special signals which have a high
correlation with the positions and are ubiquitous and stable
in a long term. These abnormalities can provide the position
fingerprint information for us. In the literature, researchers
have successfully used these abnormalities to navigate the
intelligent robots and intelligent cars [31], [32]. They have
shown the possibility to use the magnetic fields to carry out
indoor navigation.

The use of the magnetic signals as fingerprint information
to carry out positioning first started from the self-navigation
of the robots. Haverinen and Kemppainen [33] at Oulu
University in Finland designed an indoor navigation sys-
tem based on the magnetic signals and particle filtering and
successfully applied it for the indoor navigation of robots.
However, their system initially can only be positioned for
1-dimensional space, such as ore lines, and needs to col-
lect huge magnetic data beforehand for matching. Later,
some researchers have successfully extended their system
to the 2-dimensional space. But it still needs to collect
huge magnetic data beforehand for matching and processing.
Gozick et al. [16] described how to use the unique indoor
magnetic information to construct the road sign to distin-
guish classrooms, laboratories, and corridors. They also con-
ducted extensive experiments to analyze the interference of
the magnetic fields by the sizes of pillars, the different shapes
and materials of the pillars, and the distances between the
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pillars and the equipment. Lau et al. [32] researched and
simulated on the navigation of the sea turtles using mag-
netic fields, constructed a Gaussian mixed model to model
the vector magnetic fields, and utilized the DLM (Direct
Likelihood Method) to estimate positions. They used these
estimations of positions as pseudo-training data to enhance
the regression efficiency of the Gaussian mixed model. This
algorithm has been successfully tested on the small intel-
ligent cars and achieved relatively good location accuracy.
Song et al. [34] used the inertial navigation techniques to
carry out relative positioning to obtain the relative position of
mobile objects in the three-dimensional space, and used the
magnetic matching algorithm, MSD, to carry out the absolute
positioning. They realized their indoor navigation system on
the Android platform. The IndoorAtlas company in Finland
used the magnetic signals in indoor navigation and achieved
a positioning accuracy of less than 3 meters.

Although the existing research on the magnetic signals for
indoor navigation systems has been extensive and relatively
mature, it also has many shortcomings. The particle filtering
algorithm is a commonly used algorithm for indoor naviga-
tion systems by using magnetic fields, but it can be easily
affected by the error of the behavior model, and thus leads
to a high navigation error and the algorithm may fail. The
Gaussian mixedmodel and the likelihood estimationmethods
have a high computational complexity and their regression
efficiencies are relatively low, leading to poor real-time per-
formance. The construction of the magnetic field database is
a time and labor-intensive task, and this remains as a problem
to be solved. Shu et al. [14] has mentioned the FOLLOWME
navigation model which can achieve the plug and play ability.
Although it seems that it reduces the workload to construct
the magnetic fingerprints database, this algorithm can only
be started from the pre-described start location, such as
the front door, to the pre-described destination. If an error
pathway occurs in the navigation process, it can only return
to the start point. It cannot recognize repeated paths and
lacks flexibility and therefore it is not ready for practical
uses. Zheng et al. [27] proposed the Travi-Navi system,
from the image recognition. It can recognize simple repeated
paths. However, the image recognition needs a large stor-
age space, can easily be affected by the environment, and
cannot work under the situation when the number of users
is large. To overcome the above shortcomings, we proposed
an advanced magnetic field-based indoor navigation system-
MeshMap. Even though it also needs to build the magnetic
field database, the workload is significantly reduced using the
crowdsourcing approach compared with existing approaches
in the literature, and its performance is not affected by the
number of the users. Sarker et al. [40] developed a work-
load allocation policy for optimal selection of crowdsourcing
workers balancing their utilities and platform profit.

III. SYSTEM REQUIREMENTS ANALYSIS
This section provides a detailed analysis of the system
requirements. The implementation details will be described

FIGURE 1. Flowchart of the navigation system.

FIGURE 2. Multi-path scenario.

in Section V. Fig. 1 shows the flowchart of the proposed
system. According to the required functions, this system can
be divided into two parts: the magnetic field time serial
construction component and the positioning and navigation
module.

A. STITCH THE MAGNETIC SERIAL MAP
Since the accuracy and effect of the navigation system using
the magnetic field data greatly depends on the accuracy of
the magnetic serial database, the first step of this research is
to build a robust magnetic field database.

The magnetic field serial map is considered as a direction-
less map generated by connecting given points. The magni-
tude of the magnetic field at each point is not influenced by
the horizontal direction of the smartphones. Thus, an mag-
netic field serial map of a floor inside a building can be
represented by Mi =< Vi,Ei >, where Vi is not a vacant
set, and is called the vertex points set; Ei is the unordered
binary tuple set generated by the elements in the Vi, and is
called the edge set. The elements of the vertex set Vi actually
corresponds to the corners inside a building and the elements
of the edge set Ei corresponds to the corridors.
The magnetic field database is built by using the sensors

inside smartphones to recognize and record corners and corri-
dors and collect related real-time magnetic time serials at the
corresponding positions. However, there are multiple paths
inside a building to start from a location A to a location B.
As shown in Fig. 2, a path from A to B can be AECDFB
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or AEFB. When two different persons constructing the map
collect the data in the two different paths and upload them to
the server, it is a challenge to recognize the overlapping path
such as the edge AE or FB and differentiate them for multi-
paths, and construct the whole magnetic field serial map by
the data collected from different paths.

Another challenge is to detect vertices of the magnetic
map. As the important elements of the vertex set are the
corners inside a building in order to improve the reliability
of navigation. Each corner is taken as a verification point of
a user’s localization. It is important to eliminate the space
error accumulation from the process of early navigation at
each corner position. Therefore, it is important to quickly
and accurately detect the corner. This will be addressed in
Section IV.

B. POSITIONING AND NAVIGATION
When a person enters a buildingwhich already has amagnetic
field serial map and needs the navigation service, the nav-
igation system App will download the magnetic serial map
from the server. Before the navigation, the user first needs to
set the destination. Then the system should continuously pro-
vide the corresponding path information for the user to follow
in pace and reach the pre-set destination when the navigation
is over.

In the navigation process, the continuously collected mag-
netic field data by the user’s smartphone is a time serial. The
time serial matching problem based on the magnetic signals
is actually the matching problem of time serials. Since the
walking habit and pace of each user is different, the magnetic
time serial collected by the user and the sub-serial in the
magnetic field map have different lengths. Thus, the measure
of Euclidian distance, Manhattan distance, or the correlation
coefficients of the commonly used distance measure cannot
be used here to calculate the similarity of two magnetic time
serials. This is the third challenge.

During the positioning and navigation process, the exhaus-
tive matching is carried out between the time serial generated
by the user’s smartphone with some time interval (usu-
ally 2 seconds) and that inside the magnetic field database
to decide the sub-serial with the smallest corrected dis-
tance, i.e. the sub-serial of the highest correlation inside the
database. Then, the positioning is finished by transforming
this sub-serial to the corresponding map coordinates. At the
same time, the related features of themagnetic time sub-serial
are fully considered, such as the maximum and minimum
points, extreme points, variation trends, to select the candi-
date serial inside the magnetic field database to reduce the
matching time, enhance the matching accuracy, and improve
the real-time performance of the system. The points with the
severe interference of magnetic fields in the magnetic signal
map are determined as the feature points in the map. These
feature points are used as landmarks to correct the positioning
results.

In the following sections, we will describe the design and
implementation of MeshMap in details.

IV. SYSTEM DESIGN
A. COOPERATIVE WORK OF MULTIPLE SENSORS
The navigation system discussed in this paper only needs
a smartphone and can realize indoor navigation. It uses the
sensors that are inherently in the smartphone. Such sensors
can be classified as hardware sensors and virtual sensors. The
hardware sensors are implemented by hardware components,
and they usually obtain some features of the physical envi-
ronment to retrieve some data, such as the accelerometer,
magnetometer, and barometer. The virtual sensors are also
called software-based sensors and are not implemented on
the physical equipment, and their ‘‘sensing’’ results are calcu-
lated according to the data collected by one or several hard-
ware sensors. This paper use magnetometer and barometer
as hardware sensors, and one virtual sensor called direction
sensor.

Especially, the accelerometer is used to measure the aver-
age walk pace of the users. This usage does not appear in
most existing indoor navigation systems and is a novel usage.
When a user walks outdoors where GPS signals are available,
the user’s smartphone will record the average walk pace
of the user.When the user enters the building, thewalk pace of
the outdoor record is used to estimate the time required for the
user to reach his/her destination. It uses thewalked distance of
the user to navigate for the user and correct the user’s position
by using these data. Usually, the user’s walking habit is almost
fixed, and the user should have almost the same pace when
walking inside or outside a building. Thus, it is reasonable to
use the outdoor walk pace data obtained by outdoor GPS for
indoor navigation.

1) THE MAGNETOMETER
The magnetic fields are basic fields of the earth, and each
position near the earth has its magnetic magnitude. The
magnitude varies with latitude, longitude, and height. The
magnetic field information is rich, including total magnitude,
three components, slide angle, declination, and gradient. The
magnetometer in a smartphone can read the three compo-
nents, the magnetic field values in the XYZ directions of
the equipment. As shown in Fig. 3, the total magnitude is
selected as the position fingerprint information. In addition,
Fig. 3 also illustrates that the magnetic field anomaly is obvi-
ous. In Fig. 3(a) and Fig. 3(b), the two magnetic serials are
along the opposite direction on the same path, and it tells us
that the magnetic field is not only anomalous but also stabile.
In order to compare clearly, we tuned the serial in Fig. 3(b),
then compare with the serial in Fig.3 (a). Fig. 3(c) shows
that the results are very close after the data in Fig. 3(b) are
tuned.

It should be noted that the calibration process must be done
before obtaining the correct magnetic field data. Usually,
the ‘‘figure 8 pattern’’ calibration method is used. It requires
the user to wave the equipment in a figure 8 pattern in the air
to calibrate. In principle, the equipment’s normal directions
should include all the 8 quadrants of the space.
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FIGURE 3. The distribution of the magnetic field.

2) THE BAROMETER
The barometer can measure the air pressure of the user’s
position with the unit of hPa. Using the pressure calculation
formula, the height above the sea level of the current position
can be obtained. However, the air pressure measured by the
barometer can be affected by the day time, wind speed,
atmosphere condition, and temperature of the environment.
Thus, the pressure difference measured in a certain time is
compared with a fixed threshold to decide if the user shows a
climbing behavior.

3) DIRECTION SENSOR
The direction sensor is a typical virtual sensor. Its data are
obtained by the accelerometer and the magnetometer. The
data of the sensor include the data from XYZ three directions
and the location angle that points to the earth center, the slide
angle, and the overturn angle. In this paper, the angle that
points to the earth center is used to detect the angle of the rota-
tion of the user. In order to avoid the difference of the angles
when the smartphone has different postures, the horizontal
direction of the smartphone is assumed. We use the direction
sensor to make a horizontal measurement function in the user
interface to let the user know his current smartphone’s posture
and it can be used to correct the effect of the smartphone’s
direction.

B. MAGNETIC FIELD MAP CONSTRUCTION
The construction of the magnetic field fingerprint maps is
time and labor intensive. This paper proposes to use the
crowdsourcing approach to address this challenge.

In Section III.A, we mentioned that the magnetic field
map can be considered as the directionless map by the lines
connecting various points. The map construction can be
divided into two components. First, the points are decided
by the rotation angles collected by the direction sensors of
the users. They are the points of the directionless map. The
lines between two different rotation angles are the integral
corridors, corresponding to the lines of the directionless map.
Recording the magnetic field data of the corridors and using
the magnetic field data to decide the overlap regions of the
data collection by different users, the final integral magnetic
serial map can be formed by combining these regions.

1) THE PROCESS OF DATA COLLECTION
In order to ensure the correctness of the data, the ‘‘figure 8
pattern’’ calibration method is first used to correct the data
obtained by the sensors in the smartphones. Then, the filter-
ing operation is used for the sensors’ data. The data of the
magnetometer and the barometer are relatively stable, and the
low-pass filtering of (1) is used to smooth the data and reduce
the random noise, where the ‘‘newData’’ is the data obtained
by the sensors, is the filtering coefficients, and it is tentatively
set to 0.1. Then, the threshold filtering is used. In order to
further smooth the data, the interpolation is done for the data
with the cubic spline interpolation, the frequency of the data
collection is raised to 10Hz, corresponding to the 0.1s in the
time-line of the data.

datai = datai−1 ∗ (1− α)+ newData ∗ α (1)

Fig. 4 shows the process of the magnetic signal preprocess-
ing. Fig. 4(a) displays the original magnitude values. After a
low-pass filter is applied to filter out high-frequency random
noise, the results are shown in Fig. 4(b). Fig. 4(c) shows the
results after the cubic spline interpolation algorithm is used
to smooth the low-band component signals.

For the setting of the sampling frequency, we fully consider
the different people’s walk paces. When a user is moving
fast, the sampling frequency should be increased to avoid
missing some important sampling points, and the abnormal
magnetic regions. When a user is moving slowly, the sam-
pling frequency should be reduced to save the data storage
space. The reference software records the users’ walk paces
in the background, and the sampling frequency is chosen from
three values of 1Hz, 5Hz, and 10Hz. As shown in Formula (2),
where F is the sampling frequency with the unit of Hz, and
s is the walk pace of a user with the unit of m/s. The default
sampling frequency is 5Hz.

F =


1, 0 < s ≤ 0.5
5, 0.5 < s ≤ 1.5
10, s > 1.5

(2)
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FIGURE 4. Magnetic signals preprocessing process.

TABLE 1. Raw data formats of the sensors.

In the data collection process, the users’ smartphones are
pointed horizontally to record the magnetic field magnitudes
according to the sampling frequency, measure air pressure
and the position angle of the smartphone, and use Formula (3)
to compute the magnetic magnitude, where Ai, Bi, and Ci are
the XYZ values of the magnetometer. The formats of the data
collected by the sensors are shown in Table 1.

||mi|| =

√
A2i + B

2
i + C

2
i (3)

2) CORNER RECOGNITION
Corner recognition is a challenging issue. This section
describes how to use the data collected by the direction sensor
to detect the turning angle and compute its degree.

The location of the data collection is the fourth floor of a
building. Its horizontal figure is shown in Fig. 5, and the data

FIGURE 5. Horizontal map of a floor.

FIGURE 6. Corner angle detection process.

collection path is S-a-b-c-d-e-f-D. Fig. 6 shows the idea of
the corner angle detection process.

Since each positive or negative peak in Fig. 6(a) indicates
that there are two changes of the direction angle, this is not
beneficial for us to recognize it. Therefore, we first calculate
the difference of the two angles in the fore-position and the
post-position. The difference is then put into the threshold
filtering with the threshold of 20 degrees. The image after the
threshold is shown in the Fig. 6(b). Then a moving window
of 2s is tentatively set and the accumulation of the differences
of the angles is computed, which is the total angle changes
in the window and the result of Fig. 6(c) is obtained. Finally,
we only need to recognize the positive and negative peak posi-
tions inside two thresholds to successfully recognize a corner.
We consider a value over 30 degrees as an effective turning
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TABLE 2. Formats of time serials.

of a corner. More information in them can also be obtained.
A positive peak represents a right turn and a negative peak
represents a left turn. The value of the positive or negative
peak represents an angle of a corner. Then, all the recognized
corners are considered as a point set

V = { < (x1, y1), dir1, d1 >,< (x2, y2), dir2, d2 >, · · · ,

< (xi, yi), diri1, di >},

where (xi, yi) is the coordinate of the horizontal map, diri is
the direction of the corner, and di is the angle of corner.

3) MAP STITCHING AND THE DTW ALGORITHM
The crowdsourcing approach is leveraged to build a global
magnetic fingerprint map for the entire area from users who
submit their individual sensor data via smartphones. Such
an APP-MeshMap needs to be developed and installed in
the user’s smartphone. By combining geomagnetic data from
multiple users’ paths, this can reduce a lot of developers’
workload and time to get a global navigation map.

Suppose that one day a user A comes to the 4th floor of the
building, as shown in Fig. 5 and decides to contribute to the
collection of the magnetic fingerprint information. The user
A has a smartphone in his/her hand and follows the S-a-b-c-
d-e-f-D path to finish his/her data collection. Then, the user A
uploads the data to the data collection server. The server will
display the collection result on the map to let the user A to
confirm. Another day, a user B comes to the floor, when the
user B opens his APP and finds that most of the magnetic
serial map is already finished, the user B decides to make
the remaining work and follows the path of S-a-b’-c’-d-e-f-D
with a smartphone in his/her hand to collect the data. The user
B also uploads the data and confirms the collected data. This
time, we only need to determine the overlap region of the data
collected by the user A and the user B and stitch the different
parts (a-b-c-d and a-b’-c’-d) to finish the construction of the
magnetic map of the floor.

During the process ofmap construction, we need to process
the raw data of themagnetic data collected by the sensors. The
formats of the data are shown in the table 1. Besides the corner
detection, the time serials of the magnitude of the magnetic
fields and the air pressure should be constructed. The map
coordinate information should be included in the magnetic
time serial between the magnetic serial information and the
map. The formats are shown in Table 2.

The magnetic time serials collected in the same path are
similar in their shape. But, the differences of the users’
walking paces and behaviors lead to different lengths of the

FIGURE 7. The magnetic field serials with the same path and different
speeds.

collected serials, as shown in Fig. 7. Therefore, the Euclidean
distance and the Manhattan distance cannot be used to mea-
sure the similarity of two magnetic time serials. In order
to solve this problem, the dynamic time warping (DTW)
algorithm [38] is used. This algorithm can measure the
similarity between two time serials with different lengths.
This algorithm can shrink or enlarge a time serial to realize
the measurement of their similarity. Given two time serials
J = j1, j2, · · · , jm and K = k1, k2, · · · , kn, their iterative
computation formula is (4). When the DTW distance of two
time serials is below a threshold σdtw, we consider them as
the same path. In this paper, the threshold is tentatively set as
150uT.

Ddtw(J ,K )=



0, if m = n = 0;
∞, if m = 0 or n = 0,

d(j1, k1)+min


Ddtw{J ,Rest(K )},
Ddtw{J ,Rest(K )},
Ddtw{RestJ ,Rest(K )},

d(j, k) = ||j− k||.
(4)

C. THE POSITIONING AND LOCALIZATION
MATCHING ALGORITHM
When the construction of the magnetic field map is
completed, we can use the magnetic serial database and
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smartphones to realize positioning and navigation. In the
process of positioning, the users have smartphones in their
hands. In order to get better results, the smartphones should
be held horizontally

1) THE POSITIONING ALGORITHM BASED ON THE DTW
In the positioning process, a queue is set to save the candidate
magnetic time sub-serial. A buffer to correct the data is also
used. This buffer saves the time serial between two corners.
When a new corner is detected, the buffer is cleaned. It should
bementioned that the length of themagnetic sub-serial affects
the matching time and the positioning space error. If the
length of the candidate serial is larger, the error will be
smaller, and the real-time performance is worse. The length of
the candidate sub-serial is set to 2s, based on our experience.

When the positioning process begins, the system has a
pre-exercising phase. The program at backgroundwill contin-
uously collect the magnetic information around the user and
use the formula 3 to convert the three-coordinate data to their
corresponding magnetic magnitude. When the magnetic time
serial of 2s is obtained, the cubic spline interpolation method
is used for the serial. The reference serial inside the database
is also retrieved and the moving window method is used to
calculate the DTW distance between the reference serial and
the candidate serial. The most similar serial with the smallest
DTW distance is found. The end point of this serial is mapped
into the map coordinate and this is the positioning result.

2) POSITION CORRECTION
The space error of directly using the fingerprint algorithm is
significant. According to the feature of the magnetic signal
and the characteristic of our navigation system, we designed
a position correction method.

First, each corridor of a building may have some magnetic
abnormal positions. These positions correspond to the pos-
itive or negative peak locations in an image. We can use a
peak position detection algorithm used in the corner detection
process to recognize these positions. These positions can be
seen as the feature points.When a user is passing these points,
more accurate results can be obtained.

Second, the corners in a building and their turning angles,
and the correction data buffer set by the system can be
used to correct the positioning results. Since the direction
angles measured by the direction sensor are more accurate,
the proposed algorithm can recognize each turn of the user
and use this information to shrink the position areas. At each
new turning position of the user, the matching between the
whole time serial inside the correction data buffer and the
reference serial inside the database can be measured and a
high matching rate can be obtained.

3) FLOOR RECOGNITION
Although the air pressure varies a lot in a day, it does not vary
very much in a short time. When the sea level of the position
is higher, the air pressure will become lower. Thus, we can

FIGURE 8. Atmospheric pressure processing with floor change.

use the air pressure data from the barometer to determine if
the user is climbing up, going down, or in an elevator.

As shown in Fig. 8, the system recorded that the user
walked from the fourth floor of the building to the third floor
as shown in the section of AB, stayed in the third floor as
shown in the section of BC, came back to the fourth floor
as shown in the section of CD, and stayed at the fourth floor
for half a minute and walked to the fifth floor as shown in
the section of EF. From Fig. 8, we can see that the floor
change shows a distinguished difference on the air pressure
readings. It follows the law of the sea level’s influence on
the air pressure. In order to detect the changes of the floor,
a queue is needed. It stores the current read of the air pressure.
When the changes of the values in the queue are larger than
a threshold, the number of floors which the users move up
or down can be detected. This threshold is tentatively set as
0.4hPa.When the system detects a change of air pressure over
0.1hPa in 2 seconds, it indicates that there is a trend of the user
for going up or down. It should be noted that when the system
detects a floor change, the data in the queue should be cleaned
in order to avoid a repeat detection.

D. THE NAVIGATION MODULE
Before the navigation process, a user needs to input the des-
tination manually. Then, the system will set the positioning
result as the start point, and the destination selected by the
user as the destination. During the construction of the mag-
netic map, the magnetic map is considered as a directionless
map with the corners as points and the corridors as edges. The
length of the edge is the corresponding length of the magnetic
serials, i.e. the time. Thus, in the system, the shortest path
algorithm of Dijkstra [39] can be used in the navigation. The
result can be shown on smartphones and some notes are given.
The details are described in Section V.

V. IMPLEMENTATION AND EVALUATION
A. DEMO INTRODUCTION
The proposed indoor navigation system is implemented on
the smartphone of Google Nexus 5 with the Android version
of 4.4.4. Some snapshots of the implemented App are shown
in the Fig. 9 and Fig. 10.
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FIGURE 9. Android app snapshots: (a) data collection, (b) data
monitoring.

FIGURE 10. Snapshots of the location (a) and navigation (b) module.

Fig. 9(a) shows the data collection module. In the data
collection module, the information including air pressure,
magnetic magnitude, smartphone’s direction, and horizon-
tal pointing devices is shown in real-time on the monitor.
The map constructor (or volunteer contributor) can select
the usual sampling frequency or set his/her own sampling
frequency. He/she needs tomake a tag for his/her data in order
to distinguish different paths. During the data collection pro-
cess, the constructor only needs to press the ‘‘start’’ button,
makes a steady walk through the data collection path, and
keeps the red point at the center of the horizontal devices.
When the data collection process is finished, the end button
is pressed. Fig. 9(b) shows the data monitoring module. It is
used to help the map constructor to better observe the changes
of the environment of the magnetic fields and find abnormal
data points.

Fig. 10 shows some snapshots of the location and naviga-
tion module. Fig. 10(a) shows that the user’s starting point
is localized and the navigation function is not activated.

FIGURE 11. Three test environments.

The blue arrow indicates the current position of the user,
the arrow orientation denotes the direction of the user’s smart-
phone. When the user is ready to navigate, he/she needs to
input the destination (such as room417#) in the textbox and
push the ‘‘start’’ button, then the navigation process is started
as shown in Fig. 10(b).

B. EXPERIMENT DEPLOYMENT
The evaluation tests were conducted in a campus building,
a parking lot and a shoppingmall. The horizontal figure of the
test environment is shown in the Fig. 11. In order to evaluate
the navigation performance, themagnetic map of the 4th floor
in the campus building is built by us, and the same work for
the parking lot and shopping mall. In the test, there are four
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FIGURE 12. The length of the magnetic field data queue with the
relations of the uncorrected errors and the running time.

volunteers to help us to collect the data and finish the test
tasks.

C. PARAMETER TEST
We first use the magnetic field data collected by the volun-
teers to research on the length of the magnetic data queue
with the relation of the uncorrected errors and the running
time. Then, the adequate queue length is selected. In the
experiment, the length of the queue varies from 1s to 5s
and the matching errors and running time are recorded. The
results are shown in Fig. 12. The CDF (Cumulative Dis-
tribution Function) of a real-valued random variable Error
evaluated at err, is the probability that the variableErrorwill
take a value less than or equal to err. Fig. 12(a) shows the
relations of queue length with matching errors. Fig. 12(b)
shows the cumulative distribution function of the errors.
Fig. 12(c) shows the result of the queue length with the
running time. From Fig. 12(a) and Fig. 12(c), it can be seen
that with the increase of the queue length, the positioning
error decreases and the running time increases. Considering
both the accuracy and real-time performance of the system,
the queue length is set to 2s.

FIGURE 13. Performance of the turn detection.

FIGURE 14. Space errors of the navigation process.

D. FLOOR-CHANGE AND TURN DETECTION
As we discussed above and shown in Fig. 8, the system can
detect floor changes easily based on the air pressure changes.

In order to evaluate the turn detection algorithm, four
volunteers conducted 200 times of a 90-degree turn experi-
ment. The system only missed two times during the detection,
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and therefore the detection accuracy is 99%. In the detected
results, the system also detected correctly all the turn direc-
tions (right or left). Fig. 13 shows the cumulative distribution
of the errors for turn detection. Moreover, the experiment
results show that the turn detection algorithm is nearly perfect
for detecting right angle turning.

E. THE NAVIGATION PERFORMANCE
We first let the 4 volunteers to hold their smartphones before
their chest and walked according to their behaviors in the
same path to make a navigation test. The step-length errors of
each volunteer and the average error show that the effect of
the magnetic fields for the navigation is stable. It has about
the same effect for the users with different walk behaviors.
Fig. 14 shows the navigation performance for the areas shown
in Fig. 11. The blue line in Fig. 14 shows that at nearly 70 per-
cent of the time, the space error is below 2m, and at 95 percent
of the time, the space error is below 4m and the maximum
error is 10m in campus building. The maximal space errors
are below 8m and 10m respectively in the shopping mall and
the parking lot. By the way, the blue line indicates space
errors with the correction method and the red line without the
correction. Compared with the error cumulative distribution
function uncorrected, we can see that our correction method
is effective.

VI. CONCLUSION AND FUTURE WORK
This paper put forward a low cost, easily manipulated, and
effective indoor positioning and navigation system-MeshMap
based on themagnetic fields and crowdsourcing. AMeshMap
prototype system has been implemented on mobile devices
with extensive experiments in real environments to show the
effectiveness of the proposed design. The main contributions
of this work are as follows.

(1) Crowdsourcing is leveraged to build a magnetic-field
mesh map for the entire area from users who submit their data
via smartphones. This can save a lot of human workload and
time for the construction of a global magnetic field fingerprint
database.

(2) In order to combine the magnetic navigation map,
a dynamic time warping based matching algorithm is devel-
oped to realize the magnetic field time serial matching and
position correction. This algorithm is also used in the stitch-
ing of the map and detect overlap regions. When partial
magnetic serials are collected, the navigation service can be
started. In order to ensure the robustness, the cubic spline
algorithm is used for interpolation.

(3) Another innovation of the MeshMap is that the users
can begin their navigation anywhere in the building. When a
user finds that he/she took a wrong way, the feature points of
high magnetic interference regions can be used to correct the
navigation. It will let the user to come to the nearby network
node and continue the navigation.

Our future work includes the research and application of
deep neural networks (DNNs) on geomagnetic field indoor
navigation. The use of DNNs is making a big impact in

various research fields with promising results [35]–[37].
We believe that the application of DNNs can improve the
accuracy of magnetic field-based indoor navigation systems.
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