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ABSTRACT This paper proposes a method for calculating a health indicator (HI) for low-speed axial
rolling element bearing (REB) health assessment by utilizing the latent representation obtained by variational
inference using Variational Autoencoders (VAEs), trained on each speed reference in the dataset. Further,
versatility is added by conditioning on the speed, extending the VAE to a conditional VAE (CVAE), thereby
incorporating all speeds in a single model. Within the framework, the coefficients of autoregressive (AR)
models are used as features. The dimensionality reduction inherent in the proposed method lowers the need
of expert knowledge to design good condition indicators. Moreover, the suggested methodology allows for
setting the probability of false alarms when encoding new data points to the latent variable space using the
trained model. The effectiveness of the proposed method is validated based on two different datasets: from
a workshop test of an offshore drilling machine and from an in-house test rig for axial bearings. In both
datasets, the HI is exceeding the warning and alarm levels with a probability of false alarm (PFA) of 10−6,
and the method is most effective at lower shaft speeds.

INDEX TERMS Bearing fault detection, condition monitoring, unsupervised learning, variational autoen-
coder, conditional variational autoencoder, generative models.

I. INTRODUCTION
Rolling element bearings (REBs) are widely used in heavy
industrial machinery such as offshore drillingmachines, wind
turbines, and paper mills. A defect in such bearings might
result in a catastrophic failure in the industrial system. There-
fore, condition monitoring (CM) for REBs is important to
avoid unplanned downtime and production loss in heavy
industry. The majority of bearing condition monitoring tech-
niques focus on detecting the presence and development of
localized damage in bearing raceways or rolling elements
[1]–[3]. CM of low-speed machinery, with a shaft speed
below 10 Hz [4], is more challenging. The energy associated
with faults is then smaller, resulting in a low signal-to-noise
ratio (SNR). This requires more sensitive sensors and devel-
opment of advanced signal processing methods to extract
fault signatures. Operating conditions tend to be less station-
ary at lower speeds [4], thus resampling to angular domain
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is necessary in low-speed applications [5], [6]. Health condi-
tions of large bearings at low speed are usually observed via
acoustic emission or vibration measurements [5], [7]–[11].
Cyclostationary methods [12]–[14], wavelet denoising and
filtering [15], [16], and empirical mode decomposition
(EMD) [17] have all been successful in low-speed bearing
fault detection. Data-driven fault diagnosis methods based
on machine learning have also been intensively developed
in recent years [18]. Fault classifiers based on decision trees
(DT) [19], [20], support vector machine (SVM) [21], [22],
k-nearest neighbor (k-NN) [23], [24], convolutional neural
network (CNN) [25]–[27] and deep belief networks (DBN)
[28], [29] are well applied to deal with bearing fault detec-
tion. All mentioned machine learning based methods require
historical failure data for training, which is hard to obtain in
industry. In addition, the authors could not identify previous
research dealing with faults on axial bearings, where a char-
acteristic fault frequency might not exist or is inconsistent
in spectra. This work aims to develop an anomaly detection
method without using historical failure data. Tapered axial
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FIGURE 1. Wear on roller end of offshore drilling machine bearing.

roller bearings, e.g. in drilling machines from the offshore
industry, have relative sliding motion in the rib-roller contact
area. Low speed makes this area particularly susceptible to
wear. In [30], wear on the roller ends was observed in a
tapered axial bearing, as shown in Fig. 1.
However, no characteristic frequency component associ-

ated with defects, i.e. roller frequency, was observed on the
axial bearing during tests. This suggests that diagnosis meth-
ods based on detection of defect characteristic frequencies
alone are ineffective in detecting wear in large and slow
axial bearings. Identifying this defect on the axial bear-
ings is currently relying on offline monitoring methods such
as lubricant analysis and visual inspection combined with
precautionary maintenance actions [25], [30]. This practice
requires interruptions of production and may allow failure
to progress inconspicuously between inspections. Therefore,
development of online, non-intrusive monitoring methods
is very important to facilitate condition based maintenance
(CBM) for large axial bearings in heavy industry. Since data
from a healthy state is easier to obtain than in a damaged state,
a procedure of determining whether or not the observed bear-
ing is normal based on prior knowledge of healthy behavior
of the machine, would be very useful to avoid using failure
data.

References [31], [32] proposed a method for health thresh-
old setting based on healthy operating characteristics, allow-
ing controlling probability of false alarm (PFA). A whitening
transformation was applied to a set of correlated condition
indicators (CIs) with Gaussian or Rayleigh distributions.
These CIs were then used to calculate a health indicator
(HI) with a known probability density function (PDF) and
cumulative distribution function (CDF). TheHI is normalized
by the inverse CDF evaluated at (1 − PFA), and optionally
multiplied with a warning factor w < 1. In this case, let HI0
denote an observation from a healthy machine. The probabil-
ity of observing HI0 above the warning factor is then equal
to the PFA, as shown in (1). The consequences of failures
and false alarms must be considered when setting the PFA
threshold. Additionally, the number of inferences to be done
must be considered.Multiple testing increases the risk of false
positive samples simply by chance [33].

P(HI0 > 1) = PFA (1)

s However, the method in [31] is only effective if CIs are well
selected with known probability distributions. The overall
goal of conventional approaches is to perform health assess-
ment with a statistical foundation, based on a potentially large
set of observed variables. Due to the curse of dimensionality,
also known as Hughes’ phenomenon [34], a single indicator
might ‘‘drown’’ in high dimensional feature space, which
reduces accuracy of the model. Thus, a method for dimen-
sionality reduction of the features while maintaining most of
the information is required. To implement the HI threshold
setting, features are also required to be independent variables.
Principal Component Analysis (PCA) can transform a set
of variables to linearly uncorrelated features with decreasing
contribution to the variance, but it does not account for non-
linear dependencies. Machine learning (ML) algorithms can
be an alternative solution since they can capture complex
dependencies among the observed variables.

Autoencoders are successfully used for dimensionality
reduction in fault detection and classification of rotating
machinery [35]–[38], but lack a probabilistic latent rep-
resentation. Generative models are capable of estimating
complicated PDFs of given data, and can generate new
samples, which follow the same distribution as the train-
ing data. In [39], it was shown that sequential training of
restricted Boltzmann machines could discover hidden depen-
dencies between observed variables and a sparse representa-
tion. However, training such networks typically requires an
additional statistic method, e.g. Markov Chain-Monte Carlo
(MCMC) methods, resulting in computational burden.

To achieve dimensionality reduction and reduce compu-
tational burden, this work uses a combination of a Varia-
tional Autoencoder (VAE) [40] and a Generative Adversarial
Networks (GAN) [41], which is similar to the Adversarial
Autoencoder (AAE) [42]. The VAE performs inference of
variational parameters using neural networks in an encoder-
decoder structure by minimizing the reconstruction error
and the Kullback-Leibler Divergence (DKL) [43] between
an encoded sample and a Gaussian standard distribution,
which is equivalent to maximizing the evidence lower bound
(ELBO). This objective can be optimized with gradient
descent algorithms through the "reparameterization trick"
[40]. These generative models allow imposing a distribution
on the latent variables. In [42], the latent distribution in AAEs
seems to follow the target distribution closer, which is desir-
able for the purpose of a HI. However, the adversarial training
in GANs and AAEs is often unstable [44]. This problem was
also observed in experiments with AAEs while developing
the proposed method. VAEs have been used in ball bearing
fault classification by using the latent variables for each data
point as input to a classifier [45]. The proposed approach
instead utilizes the aggregated distribution of healthy condi-
tions in the latent space of a VAE to calculate a HI for new
observations.

The remaining of the paper is organized as follows: In
section II, the network architecture, training procedure and
HI calculation are described. Section III details the data
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FIGURE 2. a) VAE architecture overview, b) Detailed architecture.

acquisition and pre-processing. Results from two different
datasets are presented in section IV. Section V provides
conclusions and discussions.

II. METHODOLOGY
This section presents the approach for calculating a bear-
ing health indicator, utilizing the latent variables in a VAE.
The calculation of a HI limits the selection of CIs to
those following known distributions as described in [31]
for Gaussian and Rayleigh distributions. It also requires the
user to pre-select suitable CIs based on domain knowledge.
The proposed method performs unsupervised dimensionality
reduction from a set of input features, while simultaneously
imposing a Gaussian distribution on the latent variables.
This section provides a review of the network components,
the loss functions and training algorithm. The model was
implemented in Python using TensorFlow r1.12 [46].

A. NETWORK ARCHITECTURE AND LOSSES
The network architecture is shown in Fig. 2. An encoder (red)
and a decoder (green) are connected by the latent representa-
tion (yellow).

Let x be the feature input vector and z be the latent
variable vector. The encoder consists of a fully connected
layer of size 1024 with weights, biases, an exponential linear
unit (ELU) activation function, and 50 % dropout. In this
work, the coefficients of an autoregressive model are used
as features. The output includes two vectors, containing the
parameters of the latent representation for each data point. Let
J be the dimension of the latent space. The latent variables
are constrained to have a Gaussian distribution with diagonal
covariance matrix, so the encoder outputs a vector containing
the means, µ, and log of the variances, log(σ 2), each of
length J . Note that these parameters are for the individual data
points, not the aggregated latent distribution q(z). Utilizing
the reparameterization trick from [40], samples from a white

noise vector ε are used to obtain a random sample z from
the latent representation while still allowing gradients to flow
through the network. The decoder has the same architecture
as the encoder, with a fully connected hidden layer, ELU
activation, and 50 % dropout. Weights and biases are denoted
φ. The desired output is a reconstruction of the input, like a
normal autoencoder. Combining these parts of the network
results in the VAE. Originally, the VAE was developed as a
generative model for producing reconstructions similar to the
input by sampling from a given prior distribution p(z). The
connection between data and p(z) is in general not known
and must be approximated. Let the training data distribution
be x ∼ pd (x), and VAE output x̂ ∼ p(x). Further, qφ(z|x)
and pθ (x|z) are the encoding and decoding distributions of
the encoder and decoder networks. Subscript φ and θ are the
encoder and decoder variables. Thus, the aggregated posterior
distribution of the latent variable, z ∼ q(z), is defined as in
(2). To be utilized in the HI calculation, q(z) must approxi-
mate the desired prior p(z).

q(z) =
∫
x
qφ(z|x)pd (x)dx (2)

To ensure that the latent representation contains useful infor-
mation about the input data, the encoder and decoder are
trained to minimize the reconstruction loss function LR, as in
(3). LR is the mean square error between each feature xi,j and
its reconstruction x̂i,j over a minibatch, xM , of size M . The
number of features per datapoint is denoted N .

LR(φ, θ; xM , ε) =
1
M

M∑
i=1

N∑
j=1

(xi,j − x̂i,j)2 (3)

This encourages similar input data to cluster in latent space,
while dissimilar data are separated. Note that the square error
is summed over a datapoint and averaged over the mini-
batch. This gives more weight to reconstruction error, which
helps avoid mode collapse, i.e. the latent vector converges to
a Gaussian that does not carry information.

While reducing LR provides a good reconstruction,
the aggregated latent distributions will not take a Gaussian
distribution. To make the latent distribution approximate the
desired prior, KL divergence is introduced as a regularization
on the encoder variables φ. Given the assumption of diagonal
covariance matrix, and Gaussian prior, the KL divergence for
a data point can be calculated in a closed form. The combined
KL loss over a minibatch is then calculated as in (4).

LKL(φ; xM )

=
1
2M

M∑
i=1

J∑
j=1

(
1+ log(σ 2

i,j)− µ
2
i,j − σ

2
i,j

)
(4)

The objective function to be minimized is the sum of LR and
LKL , as given in (5).

LVAE (φ, θ; xM , ε) = LR + LKL (5)

Pseudo-code for the training procedure is given in Algo-
rithm 1. Training was repeated 5 times with different random
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Algorithm 1 Training Algorithm
φ, θ ← x Initialize parameters
repeat

Shuffle training dataset
repeat

xM ← Get minibatch from the training dataset
g← ∇LVAE (φ, θ; xM , ε) Calculate gradients
θ, φ← Update encoder/decoder parameters

until Epoch is completed
until Total number of epochs is completed
return φ, θ

seeds for weight initialization and shuffling. Hyperparam-
eters used in the experiments are given in Table 1. Model
weight updates are performed using the Adam [47] optimizer
with cosine decay of the learning rate, as this has been shown
to improve Adam performance [48]. Initial learning rate was
set to 10−4, which decays to 10−6 over the training epochs.
Experiments with higher learning rate values caused unstable
convergence and divergence of training loss. A dropout rate
of 50%was implemented to reduce overfitting [49]. The ELU
activation function used in the encoder and decoder hidden
layer is shown to outperform other activation functions both
in CNNs and autoencoders [50]. As suggested in [40], mini-
batch size is set to 100. Early stopping was not implemented
but could speed up the training process as the training loss
converged well before the number of epochs.

The proposed settings allowed the latent variable distribu-
tion to converge to a Gaussian distribution while avoiding
mode collapse, which suggests that the network configuration
is suitable for this particular application. Further experiments
to optimize layer size and latent dimension has not been
performed. For another dataset with a different AR input
size it may be necessary to change the hidden layer size
if the latent distribution does not converge to a Gaussian
distribution or suffer from mode collapse.

Reconstruction loss constrains the network to ensure
that useful information is captured when forming Gaussian
latent distributions. Limiting the latent dimension forces the
network to infer underlying Gaussian variables that best
describes the observed data, at the cost of overall recon-
struction performance. Improved reconstruction of input data
could be achieved by increasing the latent dimension as well
as adding more hidden layers and increasing their size. It
is important to note that optimal reconstruction in itself is
not the main purpose for the network. Increasing the number
of latent variables capability could, however, reduce the HI
sensitivity to faults, as the HI is calculated as the norm of the
latent vector.

B. CONDITIONAL VARIATIONAL AUTOENCODER
With the described approach, it is required to train a separate
VAE for each speed. For machines with multiple operating
conditions, this is impractical. Therefore, a conditional VAE

TABLE 1. Training Parameters.

(CVAE) is trained for each dataset. CVAEs utilize the same
network structure and loss function LVAE as VAEs, but can
be conditioned on additional information, such as speed.
For each datapoint, the speed information is a categorical
variable, one-hot encoded into a conditioning vector c. For
example, the speed of 100 rpm in dataset 1 is encoded to
c100 = [0, 1, 0, 0, 0] while the speed of 60 rpm in dataset
2 is encoded to c60 = [0, 1]. As the model order is different
for rpms, x is zero-padded to the largest model order p. VAE
training datasets consist of data from a single speed, while the
CVAE uses data from all speeds. Except for these differences,
VAEs and CVAEs follow an identical training procedure.

C. HEALTH INDICATOR
A methodology for threshold setting given CIs with
Rayleigh or Gaussian distributions is proposed in [31]. In
this work, a Gaussian distribution is chosen for the latent
variables. To verify that q(z) approximates the standard nor-
mal distribution N (0, I), the Kullback-Leibler Divergence
(DKL) was calculated as given in (6) for the aggregated
posterior. 6 is the covariance matrix of z, µ is a vector
containing the mean values of z and J is the number of latent
variables.

DKL =
1
2

(
tr (6)+ µTµ− J + loge

(
1

det6

))
(6)

The norm of J Gaussian variables follows a χ distribution
with v degrees of freedom. Let F(·) denote the CDF of a
χ -distribution. The HI is normalized with a factor that is a
function of the PFA. The HI is calculated as shown in (7).

HI =

 J∑
j=1

|zj|2

 1
2 (
F−1(1− PFA)

)−1
(7)

III. EXPERIMENTAL SETUP
The proposed algorithm is tested on data from two experi-
ments: Vibration data from a workshop test of an offshore
drilling machine, and acoustic emission (AE) data from
an in-house test rig for axial bearings. A further descrip-
tion of the experimental setup is given in the following
sections.
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FIGURE 3. Conceptual drawing of an offshore drilling machine. a) Side
view b) Top view. 1: Encoder 2: Flexible coupling 3: Axial sensor
placement 4: Radial sensor placement, 5: Motor, 6: Axial bearing, 7: Gear,
8: Shaft, 9: Pinion.

A. DATASET 1: OFFSHORE DRILLING MACHINE
WORKSHOP TEST
Dataset 1 (DS1) was collected from an offshore drilling
machine taken out of operation for maintenance as described
in [30]. A schematic drawing of the setup is shown in Fig. 3.
Data is collected from an accelerometer mounted in the

axial location. Data was sampled at 102.4 kHz and decimated
to 81.92 kHz. The axial bearing showed signs of roller end
wear as shown in Fig. 1. Data was first recorded using a
healthy bearing, being denoted damage level (DL 0). Then,
reassembling the machine with a slightly damaged bearing
results in a change of the vibration characteristics and a reduc-
tion in root mean square (RMS) [30]. Distinguishing this
change from any fault induced change is not possible. Thus,
the slightly damaged condition is selected as the baseline
condition (DL 1) for training data. Additional damages in the
form of indentations from a carbide tip tool were applied to
one of the roller end, producing data at DL 2. For data at DL
3, the bearing was further damaged and also run under poor

FIGURE 4. Envelope spectrum for a healthy bearing (damage level 0) and
at damage level 3.

FIGURE 5. Autocorrelation function of vibration data captured in
Dataset 1. a) Raw data b) After differentiation.

lubricating conditions. Data was recorded at 50, 100, 150,
200 and 250 rpm. At 50 rpm, only data from DL 1 and DL
3 was recorded. The machine was running unloaded, subject
to the gravity by its own weight. A quantitative measurement
of damage is not available, but a degradation resulting in a
measurable change is expected. However, previous analysis
of the vibration signal was not successful in detecting any
clear indication of the damage [30]. Damage to a roller
was expected to cause amplitude modulation at the roller
frequency, but as shown in Fig. 4, no peak was observed at
either one or two times the roller frequency in the envelope
spectrum.

Segments corresponding to approximately 1 revolution are
used for calculating the features. To increase the number of
data points, an overlap of 75 % is applied. The autocorre-
lation function (ACF) is examined on a healthy dataset to
determine if the signal is stationary or not. If the ACF reduces
quickly, the signal is considered stationary [51], otherwise the
signal is considered non-stationary. The ACF of a vibration
signal acquired at 50 rpm is shown in Fig. 5 a). The ACF is
slowly decreasing, and has a cyclic trend, and the signal is
therefore considered stationary. To mitigate trends and cyclic
signal components, the signal is differentiated once. Effec-
tively, the jerk (m/s3) is calculated with this differentiation,
and low-frequency components from shaft and gearbox are
mitigated, while high-frequency components are enhanced.
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FIGURE 6. a) Drawing of in-house axial bearing test rig. b) Assembled
bearing test unit. 1: Load cylinder, 2: AE sensor location, 3: Bearing test
unit, 4: Motor.

FIGURE 7. Damage on roller ends in dataset 2. DL 1: P400, DL 2:
P400 Heavy, DL 3: P320, DL 4: P220, DL 5: P220 Heavy, DL 6: P80, DL 7:
P8 Heavy, DL 8: P80 Very Heavy.

The resulting ACF after differentiation is shown in Fig. 5 b),
showing that the ACF is now decreasing fast, and only varies
randomly after 100 lags. Given this result, the vibration signal
acquired on this test rig is differentiated once to make the
signal more stationary.

B. DATASET 2: AXIAL ROLLER BEARING TEST RIG
Dataset 2 (DS2) consists of AE data from an in-house test rig,
shown in Fig. 6. The test bearing was of type 29230 M from
manufacturer ISB, subject to an axial load of 50 kN. Data
was recorded at 30 and 60 rpm, in that order. AE data was
collected at 1 MHz sampling rate for 10 seconds. Data was
then split into constant length segments of 50 000 samples.

To emulate the distributed abrasive wear shown in Fig. 1,
the rollers were removed, and roller ends were ground with
sandpaper of grit size from ISO/FEPA grit grade P400
(finest), P320, P220 and P80 (coarsest), as shown in Fig. 7.
‘‘Heavy’’ and ‘‘Very Heavy’’ refer to relative degrees of
damage using the same sandpaper grade.

The ACFs of the acoustic emission dataset before and
after differentiation are shown in Figs. 8. a) and b), respec-
tively. The ACF of the raw signal in Fig. 8 a) decreases
rapidly, and differentiating the signal has little effect on the
ACF as observed in Fig. 8 b). Therefore, the acoustic emis-
sion signal is considered stationary and requires no further
differentiation.

FIGURE 8. Autocorrelation function of vibration data captured in
Dataset 2. a) Raw data b) After differentiation.

C. FEATURE EXTRACTION AND PREPROCESSING
The input x to the autoencoder network is a feature calcu-
lated from the vibration and AE data. In the previous work,
vibration energy was not significantly increased when the
damage level on an axial bearing was escalated [30]. In
addition, energies at specific characteristic frequencies do not
increase either. However, the bearing condition degradation
is expected to produce a change in frequency content of the
associated signal. Therefore, features, which are sensitive to
changes in the measured signal, are required to be used as
input to the autoencoder. An autoregressive (AR) model of
order p can predict the next signal sample based on a linear
combination of p previous samples, assuming that the signal
s is stationary.
Thus, changes in the AR model parameters should reflect

that the vibration signal has changed. The AR coefficients
may have arbitrary distributions, which makes it challenging
to quantify a change. It is therefore easier to threshold in
latent space, where the distribution of healthy latent vectors
approximates a Gaussian distribution.

The AR model is depicted as

si = νi +
p∑
j=1

ajsi−j (8)

where si is the signal at i’th time step, ν is the model residual
and aj is the j’th model parameter. The Yule-Walker equations
[52], [53] are solved for an input signal s to obtain the AR
model parameters.

The order p is determined by calculating the partial auto-
correlation function (PACF) [54] for an increasing number of
lags. The model order p of a time series with N samples is
considered sufficient where PACF at lag p is zero with a 5 %
significance level [51], as given in (9) [55].

PACF ≤
±1.96
√
N

(9)
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FIGURE 9. Absolute value of the partial autocorrelation function of a
differentiated vibration data record acquired using test rig 1, model order
29 selected.

TABLE 2. Statistics for calculated model order p.

The smallest lag p, which results in a PACF below the 5 %
significance level, is determined for each healthy segment.
As an example, the PACF of a differentiated vibration signal
acquired at 50 rpm using test rig 1 is shown in Fig. 9.
At lag 29, the PACF is beneath the 5% significance level.

This procedure is repeated for all signal segments, and statis-
tics between all segments within each speed range are cal-
culated afterwards and shown in Table 2. As seen in the
table, the mean value is selected as model order p. Standard
deviation (STD) and median are also given for each dataset
and speed.

All input data was afterwards standardized using the mean
and standard deviation of the remaining training data. Out-
liers in training data are removed if one AR coefficient
differed from the mean value by more than five standard
deviations. Baseline data (DL0) was shuffled and split in
training (50 %), validation (25 %) and test (25 %) subsets.
The remaining DLs were used for testing only. Table 3 shows
sample rate, number of samples in the raw data, and size of
the datasets at each DL.

IV. RESULTS
This section presents the results of the experiments, eval-
uating the calculated HI using both VAE and CVAE. The
validity of the required assumptions of a Gaussian-distributed
latent variable is also discussed. The presented results are
the aggregate of the 5 models trained with different random
initialization.

A. HEALTH INDICATOR EVALUATION
In the first dataset, DS1, an increase in HI with damage
level is observed at all speeds. The alarm level (HI = 1) is
calculated with PFA = 10−6. Boxplots of the calculated HI
from VAEs and a CVAE are shown in Fig. 10. Whiskers are
set to 2.5th and 97.5th percentile. In the following discussion,
the median (orange line inside boxes) is considered as the
HI value. In dataset 1, HI at DL2 exceeds the warning level

FIGURE 10. HI for dataset 1. Left column: Standard VAE. Right column:
Conditional VAE. a-b) 50 rpm, c-d) 100 rpm, e-f) 150 rpm, g-h) 200 rpm,
i-j) 250 rpm. Whiskers are set to 2.5th and 97.5th percentile.

0.75 in all speeds except at 150 rpm for VAE (HI = 0.63)
and 200 rpm for CVAE (HI = 0.69). Data for DL2 was not
recorded at 50 rpm. At DL2, the HI exceeds alarm value of 1
at all speeds. Results from VAE and CVAE differ more as
damage level increases, but the overall results are well aligned
with an increase in HI with damage level at all rpms.

The HI calculated for dataset 2 with VAE and CVAE is
shown in Fig. 11. At 30 rpm, the HI is above the alarm level
from DL2. However, there is no monotonic increase in HI
level with damage level. Still, this result should be considered
as a clear indication of anomalous behaviour. HI for 60 rpm
follow a similar trend, but the HI values are lower, exceeding
the warning level in DL3-5 only. As in DS1, the HI values cal-
culated using the standard VAE and CVAE are very similar.
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TABLE 3. Dataset details.

FIGURE 11. HI for dataset 2. Left column: standard VAE. Right column:
Conditional VAE. a-b) 30 rpm, c-d) 60 rpm. Whiskers are set to 2.5th and
97.5th percentile.

Compared to dataset 1, there is less consistency in the HI
with increasing HI, and larger differences between speeds.
The inconsistency between damage levels may be caused by
removing the bearing for applying damage. This procedure
introduces differences in the mechanical assembly that may
affect the results. Also, the damage was applied manually,
which gives room for more variations between damage lev-
els. Finally, data for increasing speeds were recorded con-
secutively. The seeded damage may therefore be smoothed
over time during acquisition. This is a possible explana-
tion for the differences between 30 rpm and 60 rpm. If the
smoothing effect differs with damage severity, this will also
contribute to the HI inconsistency between damage levels.
Further, higher speed may generate high energy frequency
components, which dominate the AR coefficients but are not
associated with the bearing damage.

B. MODEL PROPERTIES
A summary of final training, validation and test losses for the
VAE are shown in Table 4, including the median values for
the 5 models. The ability of latent representations carrying
useful information is measured by the reconstruction loss
LR. Examining LR in Table 4 reveals that the value is corre-
lated with model order p, which is expected from the square
error summation per datapoint in (3). The reconstructed AR

FIGURE 12. Histogram of test data x and reconstructions x̂ for the
12 coefficients in DS1-100.

coefficients for DS1-100 are shown in Fig. 12. This speed
has the lowest number of features (p = 12) in the dataset,
and also the lowest reconstruction loss. Still, we observe
that reconstructions of coefficient 8 and 9 are skewed. It is
likely that further tuning of hyperparameters such as hidden
layer size, number of hidden layers and latent dimension
can improve reconstruction, but a systematic investigation of
parameters search was not performed due to the associated
computational cost of training.

The statistical properties of the HI assume that q(z) approx-
imates a multivariate standard Gaussian distribution p(z) ∼
N (0, I). The Gaussian latent space is imposed byLKL , which
takes values between 1.838 (DS1-250) and 2.106 (DS1-50) in
the test dataset. The loss values aremore stable thanLR, as the
latent dimension J is constant.

However, LKL describes the mean KL divergence of each
datapoint rather than the aggregated distribution of q(z).
Therefore, the KL divergence DKL between the aggregated
distribution (after sampling) and p(z) are calculated as in (6).

VOLUME 8, 2020 35849



M. Hemmer et al.: HI for Low-Speed Axial Bearings Using VAEs

TABLE 4. Final loss values after training of the VAEs.

TABLE 5. Final loss values after training of the CVAE.

FIGURE 13. Histogram of the aggregated posterior z = [z1, z2, z3] for the
test data of DS1-100.

The value is bounded to DKL ≥ 0, and a value of zero
means that q(z) and p(z) are identical distributions. In the test
datasets,DKL takes values between 0.007 (DS2-30) and 0.112
(DS2-30). Fig. 13 shows histograms of each dimension of z
for DS1-100, which hasDKL = 0.05. A qualitative evaluation
confirms that it approximates a Gaussian distribution.

Table 5 lists LR, LKL and KLD from the network trained
as CVAEs, where all speeds in the dataset are used simulta-
neously in training. LR in the test datasets is higher than the
average for the separate speeds in Table 4. This is reasonable,
as the same number of neurons in the network must learn to
reconstruct data from 5 and 2 rpms in DS1 and DS2 respec-
tively, instead of just one. However, we see that values for
LKL and KLD are similar to the VAE. This indicates that the
assumption of a Gaussian latent space is valid for the CVAE
as well.

V. CONCLUSION
This paper proposes a method for unsupervised learning of a
Health Indicator (HI), aiming to detect defects in large, slow-
rotating axial bearings, by performing variational inference
using a variational autoencoder (VAE) and a conditional vari-
ational autoencoder (CVAE). Within the framework, coeffi-
cients from autoregressive (AR) models were used for both
vibration and acoustic emission measurements. The proposed
method is proven to be effective using both vibration and
acoustic emission (AE) measurements. Using vibration mea-
surements, as opposed to acoustic emission data, allows
the proposed method to be cost-effective. In contrast, the
previous work of dataset 1 was not able to reveal any degrada-

tion of the bearing using vibration measurements. The HI cal-
culated from AE data in dataset 2 was less consistent with the
applied damage. However, the experimental design may have
had an impact on the calculated HI, in particular at 60 rpm. In
both datasets, the proposed method was able to uncover and
quantify a significant change in machine operation through
the HI. The possibility to calibrate the HI to a desired level of
Probability of False Alarm (PFA) allows the alarm setting to
adapt to the criticality of the equipment.

Challenges of detecting defects on axial, large bearings at
low speeds were discussed in this study. The effectiveness
of the proposed method for axial bearing fault detection at
low speeds is validated by data from 2 test rigs. As the pro-
posed method does not rely on detection of fault frequencies,
changes in machine operation can be detected regardless of
failure mode and fault location. In future studies, the method-
ology can be extended to include other types of feature input,
such as time series data. The effect of the network hyperpa-
rameters on reconstruction error, latent variable distribution
and HI sensitivity should be investigated along with evalu-
ating generalization performance on other applications. The
HI is capable of capturing changes in the condition of the
axial bearing, so a logical next step is to incorporate it in
prognostics and remaining useful life estimation.

REFERENCES
[1] N. Tandon and A. Choudhury, ‘‘A review of vibration and acoustic mea-

surement methods for the detection of defects in rolling element bearings,’’
Tribol. Int., vol. 32, no. 8, pp. 469–480, Aug. 1999.

[2] R. B. Randall and J. Antoni, ‘‘Rolling element bearing diagnostics—A
tutorial,’’Mech. Syst. Signal Process., vol. 25, no. 2, pp. 485–520, 2011.

[3] M. Cerrada, R.-V. Sánchez, C. Li, F. Pacheco, D. Cabrera, J. V. de Oliveira,
and R. E. Vásquez, ‘‘A review on data-driven fault severity assessment
in rolling bearings,’’ Mech. Syst. Signal Process., vol. 99, pp. 169–196,
Jan. 2018.

[4] Z. Stamboliska, E. Rusiński, and P. Moczko, Proactive Condition Moni-
toring of Low-SpeedMachines, 1st ed. Cham, Switzerland: Springer, 2014,
doi: 10.1007/978-3-319-10494-2.

[5] E. Bechhoefer, R. Schlanbusch, and T. I. Waag, ‘‘Fault detection on large
slow bearings,’’ in Proc. PHME, vol. 7, 2016, pp. 1–8.

[6] Y. Pan, R. Hong, J. Chen, Z. Qin, and Y. Feng, ‘‘Incipient fault detection
of wind turbine large-size slewing bearing based on circular domain,’’
Measurement, vol. 137, pp. 130–142, Apr. 2019.

35850 VOLUME 8, 2020

http://dx.doi.org/10.1007/978-3-319-10494-2


M. Hemmer et al.: HI for Low-Speed Axial Bearings Using VAEs

[7] N. Jamaludin and D. Mba, ‘‘Monitoring extremely slow rolling element
bearings: Part I,’’ NDT E Int., vol. 35, no. 6, pp. 349–358, Sep. 2002.

[8] N. Jamaludin and D. Mba, ‘‘Monitoring extremely slow rolling element
bearings: Part II,’’ NDT E Int., vol. 35, no. 6, pp. 359–366, Sep. 2002.

[9] B. Van Hecke, J. Yoon, and D. He, ‘‘Low speed bearing fault diagnosis
using acoustic emission sensors,’’ Appl. Acoust., vol. 105, pp. 35–44,
Apr. 2016.

[10] W. Caesarendra, B. Kosasih, A. K. Tieu, H. Zhu, C. A. S. Moodie, and
Q. Zhu, ‘‘Acoustic emission-based condition monitoring methods: Review
and application for low speed slew bearing,’’ Mech. Syst. Signal Process.,
vols. 72–73, pp. 134–159, May 2016.

[11] Z. Mo, J. Wang, H. Zhang, X. Zeng, H. Liu, and Q. Miao, ‘‘Vibration
and acoustics emission based methods in low-speed bearing condition
monitoring,’’ in Proc. Prognostics Syst. Health Manage. Conf. (PHM-
Chongqing), Oct. 2018, pp. 871–875.

[12] D. Abboud, J. Antoni, S. Sieg-Zieba, and M. Eltabach, ‘‘Envelope analysis
of rotating machine vibrations in variable speed conditions: A compre-
hensive treatment,’’ Mech. Syst. Signal Process., vol. 84, pp. 200–226,
Feb. 2017.

[13] E. Bechhoefer, R. Schlanbusch, and T. I.Waag, ‘‘Techniques for large, slow
bearing fault detection,’’ Int. J. Prognostics Health Manage., vol. 7, no. 1,
pp. 1–12, 2016.

[14] S. Kass, A. Raad, and J. Antoni, ‘‘Self-running bearing diagnosis based on
scalar indicator using fast order frequency spectral coherence,’’ Measure-
ment, vol. 138, pp. 467–484, May 2019.

[15] C. Mishra, A. K. Samantaray, and G. Chakraborty, ‘‘Rolling element bear-
ing fault diagnosis under slow speed operation using wavelet de-noising,’’
Measurement, vol. 103, pp. 77–86, Jun. 2017.

[16] H. Nguyen, J. Kim, and J.-M. Kim, ‘‘Optimal sub-band analysis based on
the envelope power spectrum for effective fault detection in bearing under
variable, low speeds,’’ Sensors, vol. 18, no. 5, p. 1389, May 2018.

[17] Q. Xiong, Y. Xu, Y. Peng, W. Zhang, Y. Li, and L. Tang, ‘‘Low-speed
rolling bearing fault diagnosis based on EMD denoising and parameter
estimate with alpha stable distribution,’’ J. Mech. Sci. Technol., vol. 31,
no. 4, pp. 1587–1601, Apr. 2017.

[18] R. Liu, B. Yang, E. Zio, and X. Chen, ‘‘Artificial intelligence for fault
diagnosis of rotating machinery: A review,’’ Mech. Syst. Signal Process.,
vol. 108, pp. 33–47, Aug. 2018.

[19] M. Saimurugan, K. I. Ramachandran, V. Sugumaran, and N. R. Sakthivel,
‘‘Multi component fault diagnosis of rotational mechanical system based
on decision tree and support vector machine,’’ Expert Syst. Appl., vol. 38,
no. 4, pp. 3819–3826, Apr. 2011.

[20] L. Song, H. Wang, and P. Chen, ‘‘Vibration-based intelligent fault diag-
nosis for roller bearings in low-speed rotating machinery,’’ IEEE Trans.
Instrum. Meas., vol. 67, no. 8, pp. 1887–1899, Aug. 2018.

[21] M. Kang, J. Kim, J.-M. Kim, A. C. C. Tan, E. Y. Kim, and B.-K. Choi,
‘‘Reliable fault diagnosis for low-speed bearings using individually trained
support vectormachineswith kernel discriminative feature analysis,’’ IEEE
Trans. Power Electron., vol. 30, no. 5, pp. 2786–2797, May 2015.

[22] A. Soualhi, K. Medjaher, and N. Zerhouni, ‘‘Bearing health monitoring
based on Hilbert–Huang transform, support vector machine, and regres-
sion,’’ IEEE Trans. Instrum. Meas., vol. 64, no. 1, pp. 52–62, Jan. 2015.

[23] J. Tian, C. Morillo, M. H. Azarian, and M. Pecht, ‘‘Motor bearing fault
detection using spectral kurtosis-based feature extraction coupled with K-
Nearest neighbor distance analysis,’’ IEEE Trans. Ind. Electron., vol. 63,
no. 3, pp. 1793–1803, Mar. 2016.

[24] P. Nguyen, M. Kang, J. Kim, and J. M. Kim, ‘‘Reliable fault diagnosis
of low-speed bearing defects using a genetic algorithm,’’ in Proc. PRICAI
Trends Artif. Intell., 2014, pp. 248–255.

[25] M. Hemmer, H. VanKhang, K. Robbersmyr, T.Waag, and T.Meyer, ‘‘Fault
classification of axial and radial roller bearings using transfer learning
through a pretrained convolutional neural network,’’ Designs, vol. 2, no. 4,
p. 56, Dec. 2018.

[26] D. Peng, Z. Liu, H. Wang, Y. Qin, and L. Jia, ‘‘A novel deeper one-
dimensional CNN with residual learning for fault diagnosis of wheelset
bearings in high-speed trains,’’ IEEE Access, vol. 7, pp. 10278–10293,
2019.

[27] M. M. M. Islam and J.-M. Kim, ‘‘Automated bearing fault diagnosis
scheme using 2D representation of wavelet packet transform and deep
convolutional neural network,’’ Comput. Ind., vol. 106, pp. 142–153,
Apr. 2019.

[28] J. Xie, G. Du, C. Shen, N. Chen, L. Chen, and Z. Zhu, ‘‘An end-to-end
model based on improved adaptive deep belief network and its application
to bearing fault diagnosis,’’ IEEE Access, vol. 6, pp. 63584–63596, 2018.

[29] Z. Chen and W. Li, ‘‘Multisensor feature fusion for bearing fault diagnosis
using sparse autoencoder and deep belief network,’’ IEEE Trans. Instrum.
Meas., vol. 66, no. 7, pp. 1693–1702, Jul. 2017.

[30] M. Hemmer and T. I. Waag, ‘‘A comparison of acoustic emission and
vibration measurements for condition monitoring of an offshore drilling
machine,’’ in Proc. Annu. Conf. Prognostics Health Manage. Soc., 2017,
pp. 278–285.

[31] E. Bechhoefer and A. P. F. Bernhard, ‘‘A generalized process for optimal
threshold setting in HUMS,’’ in Proc. IEEE Aerosp. Conf., 2007, pp. 1–9.

[32] E. Bechhoefer, D. He, and P. Dempsey, ‘‘Gear health threshold setting
based on a probability of false alarm,’’ in Proc. Annu. Conf. Prognostics
Health Manage. Soc., J. R. Celaya, S. Saha, and A. Saxena, Eds., 2011,
pp. 275–281.

[33] Y. Benjamini and Y. Hochberg, ‘‘Controlling the false discovery rate: A
practical and powerful approach to multiple testing,’’ J. Roy. Stat. Soc. B,
Methodol., vol. 57, no. 1, pp. 289–300, Dec. 2018.

[34] G. Hughes, ‘‘On the mean accuracy of statistical pattern recognizers,’’
IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55–63, Jan. 1968.

[35] S. Tao, T. Zhang, J. Yang, X. Wang, and W. Lu, ‘‘Bearing fault diagnosis
method based on stacked autoencoder and softmax regression,’’ in Proc.
34th Chin. Control Conf. (CCC), Jul. 2015, pp. 6331–6335.

[36] H. Shao, H. Jiang, H. Zhao, and F. Wang, ‘‘A novel deep autoencoder
feature learning method for rotating machinery fault diagnosis,’’ Mech.
Syst. Signal Process., vol. 95, pp. 187–204, Oct. 2017.

[37] Y. Qi, C. Shen, D. Wang, J. Shi, X. Jiang, and Z. Zhu, ‘‘Stacked sparse
autoencoder-based deep network for fault diagnosis of rotating machin-
ery,’’ IEEE Access, vol. 5, pp. 15066–15079, 2017.

[38] C. Lu, Z.-Y. Wang, W.-L. Qin, and J. Ma, ‘‘Fault diagnosis of rotary
machinery components using a stacked denoising autoencoder-based
health state identification,’’ Signal Process., vol. 130, pp. 377–388,
Jan. 2017.

[39] M. A. Ranzato, Y.-L. Boureau, and Y. Lecun, ‘‘Sparse feature learning
for deep belief networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2008,
pp. 1185–1192.

[40] D. P. Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ 2013,
arXiv:1312.6114. [Online]. Available: http://arxiv.org/abs/1312.6114

[41] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[42] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey,
‘‘Adversarial autoencoders,’’ 2015, arXiv:1511.05644. [Online]. Avail-
able: http://arxiv.org/abs/1511.05644

[43] S. Kullback and R. A. Leibler, ‘‘On Information and Sufficiency,’’ Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[44] M. Arjovsky and L. Bottou, ‘‘Towards principled methods for training gen-
erative adversarial networks,’’ 2017, arXiv:1701.04862. [Online]. Avail-
able: http://arxiv.org/abs/1701.04862

[45] G. San Martin, E. López Droguett, V. Meruane, and M. das C. Moura,
‘‘Deep variational auto-encoders: A promising tool for dimensionality
reduction and ball bearing elements fault diagnosis,’’ Struct. Health Mon-
itor., vol. 18, no. 4, pp. 1092–1128, Jul. 2018.

[46] M. Abadi et al., ‘‘TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,’’ 2015, arXiv:1603.04467. [Online]. Available:
https://arxiv.org/abs/1603.04467

[47] D. P. Kingma and J. Lei Ba, ‘‘Adam: A method for stochastic
optimization,’’ 2015, arXiv:1412.6980. [Online]. Available:
https://arxiv.org/abs/1412.6980

[48] I. Loshchilov and F. Hutter, ‘‘Decoupled weight decay
regularization,’’ 2017, arXiv:1711.05101. [Online]. Available:
http://arxiv.org/abs/1711.05101

[49] N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, ‘‘Dropout:
A simple way to prevent neural networks from overfitting,’’ J. Mach.
Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[50] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, ‘‘Fast and accurate
deep network learning by exponential linear units (ELUs),’’ 2015,
arXiv:1511.07289. [Online]. Available: http://arxiv.org/abs/1511.07289

[51] K. Gairaa, A. Khellaf, Y. Messlem, and F. Chellali, ‘‘Estimation of the
daily global solar radiation based on Box–Jenkins and ANN models: A
combined approach,’’ Renew. Sustain. Energy Rev., vol. 57, pp. 238–249,
May 2016.

[52] G. U. Yule, ‘‘On a method of investigating periodicities disturbed series,
with special reference to Wolfer’s sunspot numbers,’’ Philos. Trans. Roy.
Soc. London. A, Containing Papers Math. Phys. Character, vol. 226,
nos. 636–646, pp. 267–298, 1927.

VOLUME 8, 2020 35851



M. Hemmer et al.: HI for Low-Speed Axial Bearings Using VAEs

[53] S. G. T.Walker, ‘‘On periodicity in series of related terms,’’ Proc. Roy. Soc.
London, vol. 131, no. 818, pp. 518–532, 1931.

[54] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control, 5th ed. Hoboken, NJ, USA: Wiley,
2015.

[55] Y. Vardanyan and M. R. Hesamzadeh, ‘‘Modeling regime switching in
day-ahead market prices using Markov model,’’ in Proc. IEEE PES Innov.
Smart Grid Technol. Conf. Eur. (ISGT-Eur.), Oct. 2016, pp. 1–6.

MARTIN HEMMER received the B.Sc. degree in
mechanical engineering from the Oslo University
College, in 2012, and the M.Sc. degree in mecha-
tronics from the University of Agder, in 2014,
where he is currently pursuing the Ph.D. degree in
mechatronics, as a part of the SFI OffshoreMecha-
tronics project. His project deals with condition
monitoring and condition-based maintenance in
offshore applications, focusing on large, as well
as axial rolling element bearings rotating at low

speed. His research interests include the areas of machine learning, signal
processing and condition monitoring, and condition-based maintenance of
rotating machinery.

ANDREAS KLAUSEN received the B.Sc., M.Sc.,
and Ph.D. degrees in mechatronics from the Uni-
versity of Agder, Norway, in 2013, 2015, and
2019, respectively. He is currently a Postdoc-
toral Research Fellow in the field of mechatronics
with the University of Agder. His Ph.D. project
dealt with condition monitoring of rolling ele-
ment bearings operating during low and variable
speed conditions. His research interests include the
areas of signal processing, condition monitoring,

autonomous systems, and optimization.

HUYNH VAN KHANG received the B.Sc. degree
from the Ho Chi Minh City University of Technol-
ogy, Vietnam, in 2002, and the M.Sc. degree from
Pusan National University, South Korea, in 2008,
and the D.Sc. (Tech.) degree from Aalto Univer-
sity, Finland, in 2012, formerly known as Helsinki
University of Technology. He was a Postdoctoral
Researcher at the Tampere University of Technol-
ogy, Finland, from 2012 to 2013. He has been an
Associate Professor in electrical power engineer-

ing with the University of Agder (UiA), Norway, from 2013 to 2019, where
he is currently a Professor with the Department of Engineering Sciences.
His research interests are condition-based maintenance, applied machine
learning, advanced signal processing, as well as electrical machines and
drives.

KJELL G. ROBBERSMYR (Senior Member,
IEEE) received the M.Sc. and Ph.D. degrees in
mechanical engineering from the Norwegian Uni-
versity of Science and Technology, Trondheim,
Norway, in 1985 and 1992, respectively. He is
currently a Professor and the Head of the Top
Research Center Mechatronics with the Uni-
versity of Agder, Grimstad, Norway. His main
research interests include machine design, rotating
machines, condition monitoring, and vehicle crash
simulations.

TOR I. WAAG received the M.Sc. and Ph.D.
degrees in signal processing for laser light scatter-
ing from the Norwegian University of Science and
Technology (NTNU), Trondheim. His background
is in technical physics from NTNU. He is cur-
rently a Senior Scientist at the NORCENorwegian
Research Center. His work has been concentrated
on the entire chain from sensor data via signal
processing to decision support, mainly for the off-
shore industry in Norway. He is a member of the

Society of Petroleum Engineers (SPE) and of the Norwegian Academy of
Technological Sciences (NTVA). His recent activity within the SFI Offshore
Mechatronics at the University of Agder has been focused on condition-
based maintenance, mainly studying big, slow rotating bearings using vibra-
tion measurements, and acoustic emission.

35852 VOLUME 8, 2020


