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ABSTRACT One of the most commonly method for sound event detection is the traditional convolutional
neural network (CNN) or convolutional recurrent neural network (CRNN) and their variants. However,
the pooling operation of the CNN has the disadvantage of losing the location information of the target object.
We don’t use the pooling operation, retaining ReLU and convolution operation, and we use the dictionary
strong constraints and penalty function prior constraints of the multi-layer convolutional sparse coding
(ML-CSC). We proposed iterative deep neural networks, the unfolded multi-layer local block coordinate
descent networks (ML-LoBCoD-NET), driven by the multi-layer local block coordinate descent algorithm
(ML-LoBCoD) which is extended from the local block coordinate descent (LoBCoD) algorithm. The
ML-LoBCoD-NET can extract features different from the CNN. More importantly, for weakly-supervised
sound event detection task, we proposed the MRNN-Att network which combines the ML-LoBCoD-
NET, a recurrent neural network (RNN), and an attention network. The MCRNN-Att network combines
MRNN-Att and CRNN network for fusing the different features. Furthermore, for semi-supervised sound
event detection task, the MRNN-Att mean teacher model (MRNN-Att-MT) and the MCRNN-Att mean
teacher model (MCRNN-Att-MT) are proposed, in which the MRNN-Att and the MCRNN-Att network
are selected as the student model. These models were tested on the dataset of Detection and Classification of
Acoustic Scenes and Events (DCASE) 2018 Task 4. The F1 score of the MRNN-Att-MT on the development
set was 22.83%, which was 8.77% higher than the baseline system. The score of the MRNN-Att-MT on the
evaluation set was 15.68%, which was 4.88% higher than the baseline system. The MCRNN-Att-MT model
had an F1 score of 20.35% on the development set, which was 6.29% higher than the baseline system and
the F1 score of 14.56% on the evaluation set, which was 3.76% higher than the baseline system.

INDEX TERMS Sound event detection, weakly-supervised learning, semi-supervised learning,mean teacher
model, multi-layer local block coordinate descent, convolutional recurrent neural network, attention network.

I. INTRODUCTION
People rely on sounds in the environment to obtain important
information. Sound event detection (SED) can detect specific
audio events from audio recordings, estimate the starting and
offset locations of sound events, and provide a label for each
event. SED has great potential in many applications, such
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as information retrieval, monitoring systems, and automatic
control of devices in smart home systems [1].

The most typical method of SED is to use hidden markov
models (HMMs) [2], support vector machine (SVM) [3],
and non-negative matrix factorization (NMF) [4]. However,
to build a system based on HMMs, multiple labels need
to be provided at the same time. When we choose the
deep learning method for SED, the structure and training of
the neural networks directly allow multi-label classification.
Parameters of the neural networks can simultaneously be
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trained, and the neural networks can output the results [5].
Therefore, in recent years, most SED problems have used
deep learning methods, such as the convolutional neural net-
work (CNN) [6], the convolutional recurrent neural network
(CRNN) [7], or the capsule network [8].

However, the CNN pooling operation has the disadvantage
of losing the location information of the target object [9].
The traditional CNN network is not interpretable [10], and
is a black box method. However, the interpretability is nec-
essary in many applications, such as monitor, health care,
and education. Interpretable machine learning means that
machine learning model can explain why some predictions
are made [11].

Interpretable deep network models are the current research
hotspots. One of the interpretable methods is the optimization
algorithm-driven deep networks [12]. Recently, deep neural
networks driven by optimization algorithms have become
increasingly popular. Gregor and LeCun [13] proposed a
learned iterative soft threshold algorithm (LISTA) network,
which uses a learning matrix to produce the lowest possible
loss in a given number of iterations. Borgerding et al. [14]
proposed a learned approximate message passing (LAMP)
network and a learned vector AMP (LVAMP) network. The
LAMP network significantly improved the LISTA network.
Ito et al. [15] proposed a novel sparse signal recovery algo-
rithm for trainable ISTA (TISTA). TISTA consists of two
estimation units, a linear estimation unit and a minimum
mean squared error (MMSE) estimator-based shrinkage unit.
The numerical results show that TISTA converges faster than
AMP and LISTA.

The convolutional sparse coding (CSC) model and the
optimization algorithms have strong prior knowledge [16].
The CSC prior replaced the traditional image patch-based
model with a global shift-invariant model. It proposes a
global dictionary constrained by a specific structure - a
concatenation of banded circular matrices, which limits the
degrees of freedom introduced by general sparsity-based
model. The dictionary is an important factor in the forma-
tion of the priori, because its atoms represent the signals
that this model can sparsely represent. The l1 sparse con-
straint prior condition is applied to sparse coding solved
by the optimization algorithms [17], [18]. The dictionary
and sparse code of multi-layer convolutional sparse coding
(ML-CSC) also inherit the same prior knowledge [19]. The
ML-CSC optimization algorithms can be converted into the
iterative neural networks, and extract features that are differ-
ent extracted from the CNN. The CNN may not have strong
constraints similar to these algorithms. For CSC problems,
Zisselman et al. [20] proposed a based local block coor-
dinate descent (LoBCoD) algorithm for performing global
the basis pursuit and introduced a new stochastic gradient
descent version of LoBCoD for training the convolutional
filters. For ML-CSC problems, Sulam et al. [21] proposed
a multi-layer ISTA (ML-ISTA) and a multi-layer FISTA
(ML-FISTA) algorithm. The two algorithms can converge
to the global optimum. ML-ISTA-NET is a deep network

structure based on the iterative unfolding of the ML-ISTA
algorithm. The learnable network parameters are updated by
the backpropagation algorithm in deep learning. One iteration
of ML-ISTA algorithms implements a traditional CNN while
a new recurrent architecture emerges with the subsequent
iterations.

Inspired by ML-ISTA and the corresponding itera-
tive unfolding network ML-ISTA-NET, we extend the
LoBCoD algorithm to the multi-layer basis pursuit problem
of ML-CSC. A multi-layer local block coordinate descent
(ML-LoBCoD) algorithm and multi-layer local block coor-
dinate descent network (ML-LoBCoD-NET) with iterative
unfolding are proposed. ML-LoBCoD-NET implements the
representation learning of the signal, and the output of the
deepest convolutional sparse coding is used for classification.
ML-LoBCoD-NET retain ReLU and convolution operation,
use the strong constraints of the ML-CSC algorithm, and
don’t use pooling operation.

Inspired by the CRNN-Att network [22], the MRNN-Att
network combines the ML-LoBCoD-NET, a recurrent neural
network (RNN) and an attention network is proposed. The
MCRNN-Att network combines MRNN-Att and CRNN net-
work for fused the different features. TheMRNN-Att network
and MCRNN-Att network are used for weakly-supervised
sound event detection tasks.

Many methods for solving SED problems rely on a fully
supervised approach using strong labeled data (SLD). How-
ever, strong labeled data needs to label the start and offset
times of the audio events, and the process of creating a large
number of SLD requires a large amount of time, which is a
difficult and expensive process [23]. Recently, many audio
datasets have been weakly labeled and are typically larger
than strongly labeled SED datasets. Compared with SLD,
weakly labeled data (WLD) only knows if there is an audio
event in the record. A strong label is the start and offset times
of the audio event class. A weak label is the class label of
the audios. Weakly supervised learning is studied for sound
event detection from weakly labeled datasets, and some of
the models include the joint separation-classification (JSC)
model [24], the attention and positioning model [25], and
the multiple instance learning (MIL) [26] method. Tarvainen
and Valpola [27] proposed the mean teacher (MT) model
for the weakly supervised learning of images. The mean
teacher model can solve semi-supervised learning problem
and can effectively use unlabeled data. The mean teacher
model includes the student model and the teacher model. The
student model and the teacher model currently all use the
same model. The main purpose of the mean teacher model is
that averaging the model weights over the training steps tends
to produce amore accurate model than using the final weights
directly. A key issue of the mean teacher model is the choice
of the student model. For example, If the student model
is chosen as the traditional model such as SVM, the mean
teacher model can only solve the traditional supervised learn-
ing problem. If the student model is selected as the CRNN
model which commonly used for sound event detection or
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the models we will proposed, the mean teacher model can
solve the weakly supervised learning problem. In summary,
the choice of the student model in the mean teacher model
framework determines whether it can deal with supervised
learning problem or weakly supervised learning problem.
No matter which learning mode is chosen, the mean teacher
model framework can deal with semi-supervised learning.

Inspired by the mean teacher model to solve the
semi-supervised problem, this paper proposes two mean
teacher models for sound event detection tasks in the
domestic environment. The first our proposed mean teacher
model is the MRNN-Att-MT, and the student model is the
MRNN-Att. The second our proposed mean teacher model is
the MCRNN-MT, and the student model is the MCRNN-Att.

The weakly-labeled sound event detection task is the
core problem, the proposed MRNN-Att network is the core
method in this paper. The MRNN-Att network is based on
the ML-LoBCoD-NET which is driven by the ML-LoBCoD
algorithm. The ML-LoBCoD-NET shows the feature extrac-
tion ability different from the CNN for sound event detec-
tion task. The MCRNN-Att network is combined of the
MRNN-Att and the CRNN-Att. We use the MRNN-Att and
theMCRNN-Att as the student model in mean teacher model,
respectively.

The remainder of the paper is organized as follows: the
CRNN-Att network is introduced in Section II-A, and the
CRNN-Att-MT model is introduced in Section II-B. The
ML-LoBCoD algorithm and the ML-LoBCoD-NET are pro-
posed in Section III. In section IV, for the weakly-labeled
weakly-supervised sound event detection task, the MRNN-
Att network based on the ML-LoBCoD-NET network is pro-
posed in section IV-A. Moreover, in order to fully utilize the
feature information of the CNN and ML-LoBCoD-NET net-
work, the MCRNN-Att network is proposed in section IV-B.
In section V, for the weakly-labeled semi-supervised sound
event detection task, the MRNN-Att-MT is proposed. More-
over, the MCRNN-Att-MT is proposed for sound event
detection task in section V. The experimental results and
analysis are given in Section VI. The conclusion is given
in Section VII.

II. BACKGROUND
A. THE CRNN-ATT NETWORK FOR SOUND EVENT
DETECTION TASK
For sound event detection task, a weakly-supervised learning
model is need. The CRNN-Att network is a common model
for sound event detection task [25], which is described below.
A CNN consists of three basic components, convolutional
layers, pooling layers, and fully-connected layers. A convolu-
tional layer first performs convolution operations to produce
a set of linear activation, which then is fed into a non-linear
activation function like ReLU or tanh. Pooling layers are usu-
ally used after each convolutional layer to reduce the repre-
sentation size of convolutional output and the computational
burden of the next layers. The pooling function divides its
input into a set of rectangles, and each sub-region generates

a summary statistic of the input nearby. The use of pooling
is very useful for extracting the most effective information
from an area. After several convolutional layers and pooling
layers, the fully connected layers are adopted at the end of
a CNN. A fully-connected layer in a CNN is similar to the
layer in a standard neural network where the neurons in the
adjacent layers are fully pairwise connected and the neurons
in the same layer share no connection.

The advantage of a CNN is that it can effectively process
the spatial structure data with large width and height. The
function of a RNN is to be extended to longer sequences. In a
RNN, a hidden layer with a self-joining unit acts as mem-
ory that accumulates information over time from the input
sequence. However, there is the problem that the gradient
disappears when training the RNN to capture long-term
dependency. To combat the gradient disappearance prob-
lem, several techniques have been proposed, such as long
short term memory (LSTM) [28] and gated recurrent unit
(GRU) [22]. The LSTM and GRU architectures accumu-
late information by replacing self-joining units with memory
blocks, which better capture the long-term dependencies in
time series data.

The CRNN is a network structure that combines a CNN
and a RNN, benefiting from the advantages of both. A RNN
can work well in a time domain while a CNN can apply a
linear convolutional filter in the time domain and frequency
domain of local features. In addition, a CRNN has proven to
work well in sound event detection tasks [7].

The attention mechanism can increase the focus on the
important time frames through weighting, and the attention
layer can automatically select the important frames of the tar-
get and ignore the irrelevant parts (such as background noise
segments). It can also be viewed as a weighting factor for
learning each frame. The system can suppress the background
noise, and thus the whole system is more robust [22]. The
CRNN-Att network that combines a RNN and an attention
network has also been used for sound event detection tasks
and has achieved good results [25].

B. THE MEAN TEACHER MODEL BASED ON THE
CRNN-ATT NETWORK FOR SOUND EVENT
DETECTION TASK
For semi-supervised sound event detection task, the mean
teacher model is a new method [27]. The mean teacher model
can effectively utilize large amounts of unlabeled data. The
mean teacher model based on the CRNN-Att network was
used for SED task in Detection and Classification of Acoustic
Scenes and Events (DCASE) 2018 challenge and obtained
the first place [29]. Then the mean teacher model based
on the CRNN-Att network was as the baseline system in
DCASE 2019 challenge [30].

The mean teacher model consists of a student model
and a teacher model, and the teacher model uses the same
model as the student model [27]. For sound event detec-
tion task, the student model in mean teacher model uses a
weakly-labeled and weakly-supervised deep learning model.
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The input of the student model and the teacher model is the
same sample with different noise. The output of the student
model and the teacher model both include strong labels and
weak labels. The main purpose of the mean teacher model
is to average the parameters of the student models on the
training steps to obtain the parameters of the teacher models.
It is easier to obtain accurate results with the teacher model
that uses the average parameters than with the student model
that directly uses the final parameters. Thus the final output
of the strong and weak labels of the mean teacher model are
the strong and weak labels obtained from the teacher model.

For weakly labeled training data, there are three losses,
which are the classification loss, strong consistency loss,
and weak consistency loss. The classification loss is the
multi-class cross entropy loss of the weak labels generated
by the student model and weak reference labels of the training
data. The strong consistency loss refers to the consistency loss
of time frame level between the strong labels generated by the
student model and the strong labels generated by the teacher
model. The weak consistency loss refers to the consistency
loss of the clip level between the weak labels generated by the
student model and the weak labels generated by the teacher
model.

There are two losses for unlabeled training data, the strong
consistency loss and weak consistency loss.

The five loss functions are weighted for optimization. The
backpropagation algorithm is used to update the parameters
of the student model. After the parameters of the student
model are updated, the parameters of the teacher model
are updated to an exponential moving mean or a random
weighted mean of the student parameters.

III. THE PROPOSED ML-LoBCoD ALGORITHM AND
ITS ITERATIVE UNFLOD NETWORK
The pooling operation in the CNN has the disadvantage
of losing the location information of the target object.
We don’t use the pooling operation, retaining ReLU and
convolution operation, and we use the dictionary strong
constraints and l1 penalty function prior constraints of the
multi-layer convolutional sparse coding (ML-CSC). The iter-
ative unfolded multi-layer local block coordinate descent
networks (ML-LoBCoD-NET) is proposed in this section.
The ML-LoBCoD-NET is driven by the multi-layer local
block coordinate descent algorithm (ML-LoBCoD) which is
extended from the local block coordinate descent (LoBCoD)
algorithm.

A. THE PROPOSED ML-LoBCoD ALGORITHM
Given a set of convolutional dictionaries {Dj}Jj=1 or convolu-
tional filter {DL,j}Jj=1 with appropriate dimensions, the global
signal X ∈ RN can be represented by the slice-based multi-
layer convolutional sparse coding (MLCSC-S) as follows:

X = D101 =

N∑
i=1

PT1,iDL,1α1,i, ‖01‖0,∞ ≤ λ1, (1)

01 = D202 =

N∑
i=1

PT2,iDL,2α2,i, ‖02‖0,∞ ≤ λ2, (2)

. . .

0J−1 = DJ0J =
N∑
i=1

PTJ ,iDL,Jαj,i, ‖0J‖0,∞ ≤ λJ . (3)

where the norm l0,∞ is defined as the maximal number
of non-zeros in the vector; 0j is the sparse representation
of the j-th layer; PTj,i is the operator that extracts the i-th
n-dimensional patch from the j-th layer sparse representa-
tion 0j; DL,j is the j-th layer local dictionary; αj,i is αi of the
j-th layer; λj is a super parameter; N is the number of slices,
and the N in each layer should be different. For the sake of
simplicity, it assumed that all layers have the same N. Let
00 denote signal X, and then the MLCSC-S model can be
rewritten as follows:

0j−1=Dj0j=
N∑
i=1

PTj,iDL,jαj,i,
∥∥0j∥∥0,∞≤λj, ∀1≤ j≤J .

(4)

According to Formulas (4), the multi-layer basis pursuit
problem proposed in this paper is as follows:

min
{αj,i}

N
i=1

1
2

∥∥∥∥∥0j−1 −
N∑
i=1

PTj,iDL,jαj,i

∥∥∥∥∥
2

2

+ λj

N∑
i=1

∥∥αj,i∥∥1 ,
j = 1 . . . J . (5)

The slice-based local block coordinate descent algo-
rithm is extended into the multi-layers. Then, a slice-
based multi-layer local block coordinate descent algorithm
(ML-LoBCoD) is proposed. The ML-LoBCoD algorithm
divides the layer sparse vector 0j into a local vector {αj,i}Ni=1,
and then the optimal solution for needles αj,i is searched
for. The other needles are fixed and regarded as constants.
Equation (5) can be written as

min
αj,i

1
2

∥∥∥∥∥∥∥∥(0j−1 −
N∑
n=1
n 6=i

PTj,nDL,jαj,n)− P
T
j,iDL,jαj,i

∥∥∥∥∥∥∥∥
2

2

+λj
∥∥αj,i∥∥1 , i = 1 . . .N . (6)

By defining Rj,i = (0j−1−
∑N

n=1
n6=i

PTj,nDL,jαj,n) as the layer

residual of the contribution of the needle αj,n in each layer,
Equation (6) can be rewritten as

min
αj,i

1
2

∥∥∥Rj,i−PTj,iDL,jαj,i∥∥∥22+λj ∥∥αj,i∥∥1 , i = 1 . . .N (7)

Equation (7) is further organized as follows:

min
αj,i

1
2

∥∥Pj,iRj,i−DL,jαj,i∥∥22+λj ∥∥αj,i∥∥1 , i = 1 . . .N (8)

where Pj,i ∈ RN×n is defined as the operator that extracts
the i-th n-dimensional patch from the j-th layer convolu-
tional sparse coding 0j. The optimal convolutional sparse
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representation of each layer is updated using the soft thresh-
old formula. The updated form is αk ← αk−1 −

∂f
∂αk−1

,
where f denotes the error term in the objective function of
Equation (8). The derivative formula can be given as follows:

∂f
∂αj,i

= DTL,j(Pj,iRj,i − DL,jαj,i) (9)

Similar to the ML-ISTA, the update of the needle αj,i is
expressed as

αkj,i=Sλ(α
k−1
j,i +D

T
L,j(Pj,iRj,i−DL,jα

k−1
j,i )), i = 1 . . .N ,

j = 1 . . . J . (10)

where Sλ is a soft threshold function, which can also
be replaced by the ReLU function [21]; Pj,i represents
the operation of image to column; PTj,i represents the
operation of column to image; DL,j represents the trans-
posed convolution operation; andDTL,j represents convolution
operation.

The proposed slice-based multi-layer local block coordi-
nate descent algorithm is shown in Algorithm 1. The input
signal is the signal y contaminated by the noise w, and the
output is the layer sparse representation {0j}Jj=1 or needle
{{αj,i}

N
i=1}

J
j=1. The local convolutional dictionary {DL,j}Jj=1,

the top convolutional sparse coding 00, and the top layer
residual R0 are initialized. In each iteration process, first,
the local residual Rkj,i is obtained according to the local resid-
ual Rk−1j of the previous iteration and the i-th needle αk−1j,i
of the j-th layer convolutional sparse code of the previous
iteration. Secondly, the needle αkj,i is updated using the opti-
mization Formula (10). All the updated needles combine the
convolutional sparse coding 0kj = {αj,i}

N
i=1 of the j-th layer.

Thirdly, the layer residual Rkj is computed by 0kj−1 of the
(j− 1)-th layer and 0kj of the j-th layer. The convolutional
sparse coding of the next layer is updated. The iteration
process is repeated K times until the optimized deep convo-
lutional sparse coding is obtained.

Algorithm 1 Slice-Based Multi-Layer Local Block Coordi-
nate Descent Algorithm(ML-LoBCoD)

Input: signal x;
Initialization: Local convolutional dictionary {DL,j}Jj=1,
00 = x,R1 = x;
1. Iterative: k = 1 : K ;
2. Number of layers: j = 1 : J ;
3. Number of needles: i = 1 : N ;
4. Calculate local residual: Rkj,i = Rk−1j +

PTj,iDL,jα
t−1
j,i

5. needle update: αkj,i = Sλ(α
t−1
j,i + D

T
L,j(Pj,iRj,i −

DL,jα
t−1
j,i ))

6. Update layer residual: Rkj = 0
k
j−1 − DL,j 0

k
j

Output: Layer sparse representation {0j}Jj=1 Or needle
{{αj,i}

N
i=1}

J
j=1

FIGURE 1. The unfolding ML-LoBCoD-NET using three layers in three
iterations.

B. THE PROPOSED ITERATIVE UNFOLDED MULTI-LAYER
LOCAL BLOCK COORDINATE DESCENT NETWORK
(ML-LoBCoD-NET)
The slice-based multi-layer local block coordinate descent
algorithm (ML-LoBCoD) provides an effective algorithm
for the multi-layer basis pursuit. The iterative unfolding
multi-layer local block coordinate descent network (ML-
LoBCoD-NET), which is similar to the ML-ISTA-NET [21],
is proposed, as shown in FIGURE 1.

The LoBCoD algorithm is unfolded into a layer of neu-
ral networks. The ML-LoBCoD algorithm is unfolded into
a multi-layer neural network. ML-LoBCoD-NET iterates
K times to form a recurrent structure because the algorithm
iterates many times to obtain the optimal performance. Its
parameters are the same as a traditional CNN, and thus
the network parameters remain unchanged. In FIGURE 1,
the ML-LoBCoD-NET is a three-layer feedforward neu-
ral network. One iteration of the ML-LoBCoD-NET cor-
responds to the traditional CNN. Three iterations of the
ML-LoBCoD-NET correspond to FIGURE 1. The input of
ML-LoBCoD-NET is X and the output is 03.
Firstly, the input signal is X , and the initial values 01, 02

and 03 are generated by a standard convolution operation.
0′1 is generated by a deconvolution operation using 02.
0′2 is generated by a deconvolution operation using 03.
Then, the final initial value 01 is obtained by weighting 01
and 0′1, and the final initial value 02 is obtained by weighting
02 and 0′2. β is a weight. When β = 0, the signal doesn’t sat-
isfy the ML-CSC model; when β = 1, the signal satisfies the
ML-CSC model. In this experiment, the value of β gradually
increased from 0 to 1.
Secondly, the first iteration of the algorithm is unfolded

to the three-layer network corresponding to the third column
in FIGURE 1. The CSC estimator 0̂1 of the first layer is
obtained by the ML-LoBCoD algorithm using 00 and 01.
The CSC estimate 0̂2 of the second layer is obtained by the
ML-LoBCoD algorithm using 0̂1 and 02. The CSC estimate
0̂3 of the third layer is obtained by the ML-LoBCoD algo-
rithm using 0̂2 and 03.

38036 VOLUME 8, 2020



J. Wang et al.: Research on Semi-Supervised Sound Event Detection Based on Mean Teacher Models

TABLE 1. Classification accuracy of several classification networks
on MINIST.

Thirdly, the second iteration of the algorithm is unfolded to
the three-layer network corresponding to the fourth column
in FIGURE 1. The CSC estimator of the first layer 0̂1 is
obtained by the ML-LoBCoD algorithm using 00 and 01.
The CSC estimator 0̂1 of the first layer is obtained by the
ML-LoBCoD algorithm using 00 and 01. The CSC estimate
0̂2 of the second layer is obtained by the ML-LoBCoD algo-
rithm using 0̂1 and 02. The CSC estimate 0̂3 of the third
layer is obtained by the ML-LoBCoD algorithm using 0̂2
and 03.
Finally, the third iteration of the algorithm is unfolded to

the three-layer network corresponding to the fifth column
in FIGURE 1. The CSC estimator 0̂1 of the first layer is
obtained by the ML-LoBCoD algorithm using 00 and 01.
The CSC estimate 0̂2 of the second layer is obtained by the
ML-LoBCoD algorithm using 0̂1 and 02. The CSC estimate
0̂3 of the third layer is obtained by the ML-LoBCoD algo-
rithm using 0̂2 and 03. A fully connected layer is added after
0̂3 as a classifier.

ML-LoBCoD-NET was tested on the Mnist dataset
(http://yann.lecun.com/exdb/mnist/). The classification accu-
racy rates of the CNN, ML-ISTA, ML-FISTA, ML-LISTA,
Layered Basis Pursuit (LBP), and ML-LoBCoD are given
in Table 1. The classification accuracies of the ML-ISTA,
ML-FISTA, and ML-LoBCoD network under different
iteration times are given in FIGURE 2. As shown
in Table 1, the classification accuracy of the ML-LoBCoD
network is higher than the classification accuracy of the
CNN and ML-ISTA on the MINIST dataset. In addi-
tion, the classification accuracy of the ML-LoBCoD net-
work is better than the classification accuracy of the
ML-ISTA and ML-FISTA in FIGURE 2, and the clas-
sification accuracy of the ML-LoBCoD network is more
stable than the classification accuracy of the ML-ISTA
and ML-FISTA.

ML-LoBCoD-NET was tested on the CIFAR10 dataset
(https://www.cs.toronto.edu/ kriz/cifar.html). The classifica-
tion accuracy rates of the CNN, ML-ISTA, ML-FISTA,
ML-LISTA, LBP, and ML-LoBCoD are given in Table 2.
As shown in Table 2, the classification accuracy of the
ML-LoBCoD network is higher than the classification
accuracy of the CNN, ML-ISTA, ML-FISTA, ML-LISTA
and LBP on the CIFAR10 dataset. The ML-LoBCoD
network is better at extracting features than the CNN,
ML-ISTA,ML-FISTA,ML-LISTA and LBP on the CIFAR10
dataset.

FIGURE 2. Classification accuracies of the three network under different
iteration times.

TABLE 2. Classification accuracy of several classification networks
on CIFAR10.

IV. THE PROPOSED MRNN-ATT NETWORK BASED ON
ML-LoBCoD-NET FOR SOUND EVENT DETECTION TASK
In this section, for the weakly-supervised learning problem
of sound event detection task, we first replace the CNN
network of the CRNN-Att network in section II-A with the
ML-LoBCoD-NET network. The MRNN-Att network based
on the ML-LoBCoD-NET network is proposed for sound
event detection task in section IV-A. Moreover, in order to
fully utilize the feature information of the CNN and the
ML-LoBCoD-NET network, the MCRNN-Att network is
proposed in section IV-B.

A. THE MRNN-ATT NETWORK
The proposed MRNN-Att network is shown in FIGURE 3.
The input is a log-mel spectrogram of an audio clip. The
output is the prediction of the strong label and weak label,
where the prediction of the weak labels data is used for the
weak label training, and the prediction of the strong labels for
locating the time location of the sound. The network includes
the ML-LoBCoD-NET with K iterative unfoldings, a RNN
network, and an attention network. The ML-LoBCoD-NET
is used to extract features of the audio clip. The RNN network
uses a two-layer Bi-GRU network. The Bi-GRU network can
be used to capture the context information of sound events
and can simulate well the long-term mode of the entire block.
The attention network has two FNN layers with softmax and
sigmoid layers.

One output of the network is the strong label, which is
given as follows. The first attention layer uses the sigmoid
activation function to predict the probability of occurrence of
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FIGURE 3. The framework of the MRNN-Att network for
weakly-supervised learning.

FIGURE 4. The framework of MCRNN-Att network for weakly-supervised
learning.

each class at each time step, which can deal with the time
overlap problem of multiple events. It can generate a class
strong label Zatt (c, t). The other output of the neural network
is the weak label. To predict the occurrence probability of
each class at each time step, the second attention layer uses
the softmax function, and the sum is 1. The final weak
label O(c), c = 1, 2, . . .C of each audio clip is determined
by the weighted average of the element-by-element multi-
plication of the output of the first attention layer and second
attention layer

O(c) =

∑T
t=1 Zclass(c, t)Zatt (c, t)∑T

t=1 Zatt (c, t)
. (11)

where Zclass(c, t) and Zatt (c, t) are denoted as the output of
the first attention layer and the second attention layer. T is
the temporal resolution of the input spectrogram or the feature
map or the number of time frames.

For the training problem, the loss function uses the multi-
class cross-entropy loss

E = −
1
N

N∑
n=1

C∑
c=1

P(c, n)logO(c, n). (12)

O(c, n) and P(c, n) represent the weak prediction labels and
the weak reference labels for the n-th sample of the c-
th class, respectively. The batch size is N, and the total
number of classes is C. By calculating the gradient of the
loss function with respect to the network parameters using
back-propagation algorithm, the parameters of the neural
network can be updated.

B. THE MCRNN-ATT NETWORK
The proposed MCRNN-Att network is shown in FIGURE 4.
The input is a log-mel spectrogram of the audio clip and

FIGURE 5. Schematic diagram of the mean teacher model for
semi-supervised learning.

the output is the prediction of the strong label and weak
label. The network includes the ML-LoBCoD-NET with K
iterative unfoldings, a CNN network, a RNN network, and an
attention network. In this paper, a three-layer CNN network
is used. The output of the CNN network and ML-LoBCoD-
NET are fused and fed into the RNN network. The RNN
network also uses a two-layer Bi-GRU network. The attention
network can increase the attention to important time frames
by weighting and can automatically select and participate in
important frames of the target while ignoring the irrelevant
parts.

V. THE PROPOSED MRNN-ATT-MT MODEL FOR SOUND
EVENT DETECTION TASK
In this section, for the semi-supervised learning prob-
lem of sound event detection task, we first replace the
CRNN-Att network in the MT model in section II-B with
the MRNN-Att network. The MRNN-Att-MT model is pro-
posed for sound event detection task. The MRNN-Att-MT
model uses the MRNN-Att network as a student model.
Moreover, theMCRNN-Att-MTmodel is proposed for sound
event detection task. The MCRNN-Att-MT model uses the
MCRNN-Att network as a student model.

A schematic diagram of the mean teacher model is shown
in FIGURE 5. The inputs of the mean teacher model are
unlabeled in the domain training set and the labeled training
set. The outputs of the mean teacher model are the strong
label and weak label. The mean teacher model consists of
the student model and teacher model. Both the student and
teacher model evaluate the input applied noise (η, η′). The
student model outputs strong labels and weak labels. The
teacher model also outputs strong labels and weak labels.
Five loss functions are computed. After the parameters of the
student model have been updated with the backpropagation
algorithm, the teacher model weights are updated as an expo-
nential moving average of the student weights.

The specific definition of the loss function is given below.
In the semi-supervised setup, the weakly labeled data DA =
{xi, yi}

NA
i=1 and unlabeled data DU = {xUi }

NU
i=1 are used.

Parameters of the student model are denoted by θ , and the
parameters of the teacher model are denoted by θ ′. f (x; θ )
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indicates weak labeled output of the student model. The weak
labeled output of the teacher model is represented by f (x; θ ′).
The strong labeled output of the student model is represented
by fstrong(x; θ ), and the strong labeled output of the teacher
model is represented by fstrong(x; θ ′).

Firstly the multi-class cross entropy loss function
Lce(x, y, θ) in the supervised training is defined as follows:

Lce(x, y, θ) = −
∑

(x,y)∈DA

ylogf (x, η; θ ). (13)

Secondly, given the sample x of two disturbance inputs η
and η′ and the two network disturbance parameters θ and
θ ′, the strong consistency loss between the strong prediction
label of the student model fstrong(x, η; θ ) and the strong pre-
diction label of the teacher model fstrong(x, η′; θ ′) is defined
as the mean square error loss form as follows:

Lconsstrong(x, θ) =
∥∥f (x, η; θ )− f (x, η′; θ ′)∥∥22 . (14)

The weak consistency loss between the predictive weak
label of the student model f (x, η; θ ) and the predictive weak
label of the teacher model f (x, η′; θ ′) are defined as the form
of multi-class cross entropy loss as follows:

Lconsweak (x, θ) = −
∑

x∈DA∪DU

f (x, η; θ )log f (x, η′; θ ′). (15)

Finally, the total loss for training the student model is defined
as

L(θ ) =
∑

(x,y)∈DA

Lce(x, y; θ )+ λ1
∑
x∈DA

Lconsstrong(x, θ)

+λ2
∑
x∈DU

Lconsstrong(x, θ)+ λ3
∑
x∈DA

Lconsweak (x, θ)

+λ4
∑
x∈DU

Lconsweak (x, θ). (16)

The parameters λ1, λ2, λ3 and λ4 control the relative impor-
tance of the consistency term in the total loss. In this study,
the values of λ1,λ2,λ3 and λ4 were set to 1 for simplicity.
The training process is organized as follows:

(1) The input of the mean teacher model are unlabeled in
the domain training set and labeled training set. Data
are input into the mean teacher model to generate the
output, which are strong labels and weak labels.

(2) Five losses are calculated, and then the total loss is
calculated according to Formula (16).

(3) Parameters of the student model are updated using the
backpropagation algorithm based on minimizing the
total loss.

(4) Using the parameters of the student network,
the parameters of the teacher model are updated to
the average value of the current student model and the
previous student model.

(5) The above processes are repeated until the network
converges.

TABLE 3. Development dataset and evaluation 10s clip number and the
number of sessions.

VI. EXPERIMENT
A. DATASET
The dataset used in this paper for the experiment was the
dataset for the DCASE 2018 Challenge Task 4 [31]. The task
used weakly labeled data (without timestamps) to evaluate
large-scale detection systems for the sound events. A sub-
set of the audio set was extracted from YouTube videos,
consisting of various sound categories that occur in a home
environment. The dataset of DCASE 2018 task4 include the
development dataset and evaluation dataset. The develop-
ment set include a training set and a test set. The training
set included a labeled training set, unlabeled in the domain
training set, and an unlabeled offset from the domain training
set. The labeled training set included 1578 clips (2244 class
occurrences), 14412 clips unlabeled in the domain training
set, and 39999 clips unlabeled out of the domain training
set. The validation set was 20% of the labeled training
set. The test set contained 288 clips (906 events). The test
data was annotated with the time boundary of each marked
event. The test set was annotated with strong labels and time
boundaries (obtained by human annotators). The evaluation
set included 880 clips (3227 events). The audio clips were
divided into nine categories: alarm, speech, dog, cat, dishes,
frying, blender, running water, vacuum cleaner, and electric
shaver. Table 3 shows the number of labeled training sets and
test sets of the development set and the evaluation set 10s clips
along with the number of complete sessions for each activity.

B. FEATURE EXTRACTION
The log Mel spectrum is widely used in the sound
events detection [32]. So we used log Mel filters to pro-
cess audio clips. Each audio clip was first resampled at
44.1 KHZ because we believe that resampling at low
frequencies may confuse some categories like ‘‘electric
shaver/toothbrush’’and ‘‘vacuum cleaner’’. After resampling,
we apply a short-time Fourier transform with a window size
of 2048 and an overlap of 512 between neighboring windows
to extract the spectrogram of audio clips. Following this con-
figuration the good resolution in both the time and frequency
domains is provided. Then a Mel filter bank with 64 bands
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FIGURE 6. Log Mel spectrum of each audio event.

is applied to the spectrogram, and a logarithmic operation is
performed to obtain the log Mel spectrogram, which is the
time and frequency representation feature. Thus for a 10s clip,
a 864×64 featurewas obtained. The logMel spectrum of each
audio event are shown in FIGURE 6.

C. EXPERIMENTAL SETUP
In this study, the ML-LoBCoD-NET in MRNN-Att network
and in the MCRNN-Att network used three-layer convolu-
tional sparse coding. The first layer had 64 filters, the kernel
size was (4, 8), and the step size was 2. The second layer had
64 filters, the kernel size was (3, 12), and the step size was 2.
The third layer had 64 filters, the kernel size was (3, 12), and
the step size was 2. The CNN network in the MCRNN-Att
network used a three-layer convolution neural network with
64 filters per layer, the kernel size of convolution layer was
(3, 3), the step size was 1, and the kernel size of the pooling
layer was (2, 4).

The development dataset are divided into the training
dataset and test dataset. The 80 percent of the training dataset
are used to train the model. The 20 percent of the training
dataset as the validation dataset are used to verify the F1 score
of the training model, and the results on the validation dataset
are used to adjust the model parameters of the training model
to obtain an optimal training model. To evaluate the per-
formance of the training model on the development dataset,
the test dataset are put to the training model to obtain per-
formance indicators. The predicted strong labels on the test
dataset are obtained. Moreover, the performance indicators
such as F1 score based on the predicted strong labels and
ground truth are obtained. The performance indicators of the
test dataset represent the experimental results of the develop-
ment dataset. Furthermore, the evaluation dataset are put to
the optimal training model to obtain performance indicators,
such as F1 score, based on the predicted strong labels and
ground truth. This training and test process is the same as the
baseline system [33].

In the training phase, different hyperparameters are used to
train different models, and the trainingmodel with the highest
F1 score on the validation set is selected. The selection range
of the hyperparameters are as follows. The learning rate are
selected from 0.1, 0.01, and 0.001. The sampling frequency
are selected from 44.1KHZ, 16KHZ, and 8KHZ. The Mel
frequency points are selected from 128, 64, and 32. The win-
dow shift are selected from 512 and 256. The batch size are
selected from 8, 16 and 32. EMA are selected from 0.9, 0.99,
and 0999. After expensive experiments, the optimal learning
rate is selected 0.001, the optimal sampling frequency is
selected 44.1KHZ, the optimal mel frequency is selected 64,
the optimal window shift is selected 512, the optimal batch
size is selected 8, the optimal EMA is selected 0.99, and the
number of iterations is 100.

We choose ER and F1 score as evaluation metric. Error
rate (ER) is used as a secondary metric to assess errors in
terms of insertions, deletions, and substitutions. F1 was used
to evaluate the model, which is defined as follows:

F1c =
2TPc

2TPc + FPc + FNc
. (17)

where TPc, FPc and FNc represent the true, false positive, and
false negative numbers of the sound event class C, respec-
tively. The average of the F1 scores of the final model was
calculated using the macro average

F1macro =

∑
c∈1,...C F1c

C
. (18)

where C represents the number of the sound event class,
which is 10. All the ER and F1 calculations in this paper used
the sed_eval kit provided in the competition [32].

The equipment used in the experiment was an Nvidia
Geforce 1080 Ti GPU, and each experiment needed to run
for about seven hours.

D. EXPERIMENTAL RESULTS AND ANALYSIS
The input of the baseline system [33] provided by the DCASE
2018 Task 4 is a log Mel spectrogram of the audio clip,
the output is the F1 value. The baseline system is the CRNN
network, which includes the CNN network and the RNN
network. The first place in the DCASE 2018 Task 4 used the
mean teacher model, which is a fusion model [30]. In order to
compare with our proposed model, we use the single model
of the first place, called GCRNN-Att-MT. The GCRNN-Att-
MT is a mean teacher model in which the student model is
GCRNN-Att, which includes the CNN network, a Bi-GRU
network, and an attention network. The CNN network in
the GCRNN-Att-MT model used a three-layer convolutional
neural network with 64 filters per layer. For each filter,
the kernel size was (3, 3), the step size was 1, and the kernel
size of the pooling layer was (2, 4). The RNN network used a
2-layer RNN network with 64 filters per layer and the batch
size is 24. Moreover, the number of iterations was 100. In this
study, the proposed models was compared with the baseline
system, the GCRNN-Att-MT model, and the GCRNN-Att
network using the F1 values.
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TABLE 4. The F1 score and error rate of BASELINE, MRNN-Att, MCRNN-Att
and GCRNN-Att models.

The F1 score and error rate (ER) of baseline, MRNN-Att,
MCRNN-Att and GCRNN-Att models are given in Table 4.
For the development set in Table 4, the F1 scores of the
MRNN-Att model and the MCRNN-Att model were respec-
tively 2.18% and 1.95% higher than those of the baseline sys-
tem, which indicates that the attention network can improve
the performance of sound event detection by focusing on the
relevant frames to ignore irrelevant frames. The F1 score
of the MRNN-Att model was 0.68% higher than that of
the GCRNN-Att model. The F1 score of the MCRNN-Att
model was 0.45% higher than that of the GCRNN-Att model.
These results indicate that the MRNN-Att model and the
MCRNN-Att model were better than the GCRNN-Att model,
and the extracted feature of theML-LoBCoD-NETwas effec-
tive. For the evaluation set in Table 4, MCRNN-Att model
was 0.43% higher than baseline system, and was 0.27%
higher than GCRNN-Att system.

The F1 score and Error rate of different mean teacher
model systems are given in Table 5. For the development set
in Table 5, the F1 score of the MRNN-Att-MT model was
8.77% higher than that of the baseline system. The F1 score
of the MCRNN-Att-MT model was 6.29% higher than that
of the baseline system. These results show that the sound
event detection effect of the MRNN-Att-MT model and the
MCRNN-Att-MT model on the development set was better
than the baseline system. The F1 score of the MRNN-Att-
MT model was 3.49% higher than that of the GCRNN-Att-
MT model. The F1 score of the MCRNN-Att-MT model was
1.01% higher than that of the GCRNN-Att-MT model. This
indicates that the sound event detection effect of MRNN-Att-
MT and MCRNN-Att-MT was better than that of GCRNN-
Att-MT on the development set.

For the evaluation set in Table 5, the F1 score of the
MRNN-Att-MT model was 4.88% higher than that of the
baseline system. The F1 score of theMCRNN-Att-MTmodel
was 3.76% higher than the baseline system. This shows
that the sound event detection effects of the MRNN-Att-
MT model and the MCRNN-Att-MT model were better than
that of the baseline system (CRNN). The F1 score of the
MRNN-Att-MT model was 0.95% higher than that of the
GCRNN-Att-MT model. Comparison of F1 scores between
the MCRNN-Att-MT model and the GCRNN-Att-MT model
indicates that the performance of the ML-LoBCoD-NET for
extraction feature was better than that of the CNN network.

The performance index of the competition ranking is
F1 score, and ER is the reference index. The value of ER in

TABLE 5. The F1 score and error rate of different mean teacher model
systems.

TABLE 6. The F1 score and error rate of the proposed model with mean
teacher model and without mean teacher model systems.

our experiments being on par with baseline in Table 4 and
Table 5. We mention two differences between the proposed
model and the other two leading methods. Firstly, the number
of parameters in the proposed approach does not grow with
the depth of the model. Secondly, sound event detection
methods based on traditional deep learning almost employ
batch normalization operations which is known to improve
the performance and convergence rate of the trained model.
As our presented method relies only on the CSC prior, we did
not include such batch normalization operators.

The F1 score and error rate (ER) of the proposed model
with mean teacher model and without mean teacher model
systems are given in Table 6. The F1 score of the MRNN-
Att-MT model on the development dataset was 6.59% higher
than that of the MRNN-Att model, and the F1 score of
the MCRNN-Att-MT model was 4.34% higher than the
MCRNN-Att model. The F1 score of the MRNN-Att-MT
model on the evaluation dataset was 4.9% higher than the
MRNN-Att model. The F1 score of the MCRNN-Att-MT
model was 3.33% higher than the MCRNN-Att model. These
results indicate that the mean teacher model can promote the
sound event detection effect, thus improving the F1 score
of the development set and evaluation set. The error rate of
MRNN-Att-MT was 0.95% lower than MRNN-Att; the error
rate of MCRNN-Att-MT was 0.82% lower than MCRNN-
Att, which indicates that the proposed model with mean
teachermodel is better than the proposedmodel withoutmean
teacher model.

The F1 scores of ten classes audio events using four sys-
tems without mean teacher model are given in Table 7. The
F1 score of the MRNN-Att model was significantly better
than the baseline system in terms of ‘‘cat’’, ‘‘dog’’, and
‘‘running water’’ class, and was significantly better than the
GCRNN-Att in terms of ‘‘blender’’,‘‘cat’’ and ‘‘dog’’ class.
The F1 score of the MCRNN-Att model was significantly
better than the baseline system in terms of ‘‘ringing’’, ‘‘dog’’,
and ‘‘running water’’ class, and was significantly better than
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TABLE 7. The F1 scores of ten classes audio events using four systems without mean teacher model.

TABLE 8. The F1 scores of ten classes audio events using four systems with mean teacher model.

the GCRNN-Att in terms of ‘‘blender’’,‘‘Electric shaver’’ and
‘‘Vacuum cleaner’’ class.

The F1 scores of ten classes audio events using four sys-
tems with mean teacher model are given in Table 8. The
F1 score of the MRNN-Att-MT model was significantly bet-
ter than the baseline system in terms of ‘‘ringing’’, ‘‘cat’’, and
‘‘dog’’ class, and was significantly better than the GCRNN-
Att-MT in terms of ‘‘ringing’’, ‘‘cat’’, and ‘‘dog’’ class. The
F1 score of the MCRNN-Att-MT model was significantly
better than the baseline system in ‘‘ringing’’ and ‘‘dog’’ class,
and was significantly better than the GCRNN-Att-MT in
’’dishes‘‘,‘‘dog’’ and ‘‘speech’’ class.

VII. CONCLUSION
The MRNN-Att network for weakly-labeled sound event
detection task is proposed in this paper. The CNN pool-
ing operation has the disadvantage of losing the loca-
tion information of the target object. We don’t use the
pooling operation, retain ReLU and convolution oper-
ation, and use the strong constraints of the ML-CSC
model. The MRNN-Att network based on the ML-LoBCoD-
NET which is driven by the ML-LoBCoD algorithm. The
ML-LoBCoD-NET shows the feature extraction ability dif-
ferent from the CNN for weakly-supervised sound event
detection task.

Furthermore, the MRNN-Att-MT and the MCRNN-Att-
MT model, the two mean teacher models, are proposed to
solve the semi-supervised sound event detection problem.

The MRNN-Att and the MCRNN-Att network are selected
as the student model in the mean teacher model, respectively.

The proposedmodels were tested on the DCASE2018 Task
4 dataset. The results of these experiments showed that
the F1 score of the proposed MRNN-Att-MT model and the
MCRNN-Att-MT model were superior to the F1 score of the
baseline and GCRNN-Att network for sound event detection.
Furthermore, the F1 score of the MRNN-Att-MT model was
superior to the F1 score of the GCRNN-Att-MT model. The
F1 score of the MRNN-Att model and the MCRNN-Att
model were superior to the F1 score of the baseline system.
Adding an attention network can improve the performance
of sound event detection. The sound event detection effects
of the MRNN-Att model and the MCRNN-Att model were
better than that of the GCRNN-Att model. These results
indicate the ML-LoBCoD-NET shows the feature extraction
ability different from the CNN for sound event detection task,
and the proposed MRNN-Att network can be used in sound
event detection task and is superior to the baseline system.

There is still a lot of room for improvement in the
MRNN-Att network, such as adding the different attention
networks or data augmentation methods. The MRNN-Att
network is also used for acoustic scene classification and
audio tagging.
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