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ABSTRACT In this paper, a minimum-learning-parameter (MLP) based neural control method is proposed
for micro-electro-mechanical system (MEMS) gyroscope with prescribed performance and input quantiza-
tion. For the first time, a logarithmic quantizer (LQ) is employed to generate smooth input control signal
for MEMS gyroscope, which greatly reduces the communication data size as well as actuator bandwidth.
To improve the performance of MEMS gyroscope in the presence of quantization error, a prescribed
performance control scheme consisting of preselected performance boundaries and an error transformation
is utilized, such that preselected transient and steady-state properties can be assured. In contrast to the neural
control strategies subject to the issue of learning explosion, a MLP-based neural network (NN) is introduced
to estimate the unknown uncertainties using the norm of neural weight. To eliminate the effect of quantization
error induced by LQ, a robust quantized control is designed to further ensure the closed-loop system suffering
from discontinuous dynamics with prescribed ultimately uniformly bounded (UUB) performance. In the end,
a series of simulations are presented to validate the superiority of the proposed control methodology.

INDEX TERMS MEMS gyroscope, logarithmic quantizer, minimum-learning-parameter, prescribed
performance control.

I. INTRODUCTION
As an efficient angular rate sensor, micro-electro-mechanical
system (MEMS) gyroscope is extensively utilized in iner-
tial navigation, consumer electronics, automobile and even
national defense industry by virtue of its remarkable advan-
tages over traditional ones, especially its tiny size, easy inte-
gration, higher energy efficiency and availability of mass
production [1]–[3]. Commonly, to obtain the precise infor-
mation of MEMS gyroscope in terms of rotation rate, fast
and accurate tracking of the reference trajectory is of high
priority. However, in industrial application, diverse operating
situations of MEMS gyroscope inevitably induce unknown
external disturbances, which typically degrades the control
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performance. What is more, the parametric uncertainties and
couplings between drive and sense modes resulting from
fabrication flaws further render the MEMS gyroscope having
uncertain dynamics and as a consequence, the measuring
accuracy of angular rate is unavoidably decreased. Hence, it is
of great significance to design an elegant control method for
MEMS gyroscope in pursuit of higher measuring accuracy.

Focusing on raising the measuring accuracy of MEMS
gyroscope, tremendous advanced control schemes have been
proposed, such as sliding-mode control [4]–[6], fuzzy logic
control [5], [7], robust and adaptive control [7], [8], as well
as neural networks (NNs) [6], [9]. As an example, in [7],
the backstepping control, where the controller design con-
tains several steps and, in each step, the virtual control law
is recursively designed such that the ultimately uniformly
bounded (UUB) properties of MEMS gyroscope can be

38596 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6284-1882
https://orcid.org/0000-0002-9811-8845
https://orcid.org/0000-0003-2970-3706
https://orcid.org/0000-0001-7208-6374


H. Si et al.: MLP-Based Neural Guaranteed Performance Control for MEMS Gyroscope With LQ

achieved. In [8], to deal with the issue of term explosion
arising from multiple differentiating, the dynamic surface
control (DSC) is explored, where a first-order low-pass fil-
ter is applied to approximate the time derivative of virtual
control signal and meanwhile, NNs are employed to online
identify the unknown dynamics by virtue of their universal
approximation, such that, the robustness against uncertainties
ofMEMS gyroscope is greatly improved. Despite the fact that
available works [4]–[9] for MEMS gyroscope are of great
superiority, it is worth pointing out that almost all of them
are subject to the following two serious problems. One is con-
cernedwith bandwidth restriction of actuator, i.e., the existing
results for MEMS gyroscope are almost achieved under the
unpractical assumption that the actuator of MEMS gyroscope
can perform with arbitrarily high precision and the capacity
of communication channel from control module to actuator
is large enough to transmit continuous signal with infinite
accuracy, which is in contradiction with the physical truth of
MEMSgyroscope. Another problem is that although previous
works can realize remarkable closed-loop stability with UUB
properties, the upper bound of final tracking error cannot get
rid of the heavy dependence on unknown disturbances and
as a consequence, in pursuit of guaranteed performance in
terms of tracking accuracy, controller parameters are always
required to be repeatedly tuned and some design conservatism
is introduced. Therefore, how to design an advanced control
methodology for MEMS gyroscope considering input quan-
tization and predetermined performance is still an open issue
and deserves deep study.

Quantization, a ubiquitous process in modern digital com-
munication, refers to the conversion of continuous signal
to the one with finite-precision via mapping from infinite
sets to finite sets. With the aid of quantization, the control
signal can be transmitted over a constrained communication
channel, performed with a limited digital microprocessor
while the normal operation of system will not be influ-
enced. Enlightened by the quantization in communication
systems, researchers are more and more focused on quantized
control of uncertain systems subject to input quantization.
Logarithmic quantizer (LQ) [10], [11], one of the most
employed quantizers in digital communication systems, can
largely reduce the communication data size and meanwhile,
it is capable of generating quantized signals with constant
quantization signal-to-noise ratio (SNR) owing to its expo-
nentially transformed quantization levels compared with uni-
form quantizer (UQ) [12], such that the robustness of system
will not change alongwith the variation of control signalmag-
nitude. Nevertheless, the introduction of input quantization
typically induces unexpected quantization error, which will
inevitably influence the tracking accuracy of MEMS gyro-
scope, while to the best of authors’ knowledge, how to make
a compromise between the tracking performance and band-
width restriction is rarely studied in existing results [4]–[9].
Thus, it is an urgent and tough issue to eliminate the influence
of quantization error and guarantee high-accuracy tracking

performance for MEMS gyroscope in the existence of quan-
tized input.

To further improve the tracking performance in both tran-
sient and steady-state phases and remove the design conser-
vatism universally existing in previous control methods for
MEMS gyroscope, which can only ensure the closed-loop
stability with UUB, prescribed performance control (PPC)
proposed in [13]–[15] is an efficient strategy. Nowadays,
PPC has been commonly used in uncertain nonlinear systems
such as air-breathing hypersonic vehicle (AHV) [16], [17]
and [35], robotic manipulator [13] and underwater vehi-
cles [18]. With the aid of a proper equivalent error transfor-
mation function, PPC can assure the tracking error within
predetermined boundaries, such that the prescribed perfor-
mance can be realized without the tedious tuning of design
parameters. For instance, within the framework of the con-
troller design for backstepping, the PPC methodology in [19]
is capable of realizing the tracking of both velocity and
altitude with prescribed performance for AHV. However,
the analytical differentiating of virtual control law inevitably
leads to the issue of differentiating explosion, which may
further affect the normal operation of controller. To eliminate
this obstacle, dynamic surface control (DSC) [20], [21] is
usually combined with PPC, where a first-order low-pass
filter is employed to approximate the time derivative of virtual
control signal. However, to the best of authors’ knowledge,
the available PPC studies are typically designed for actuator
with arbitrarily high performing accuracy, which is not fea-
sible for algorithm implementation in digital microprocessor
of MEMS gyroscope.

In light of the manufacturing defects and diverse working
conditions of MEMS gyroscope, its measuring accuracy is
typically affected by uncertainties containing external dis-
turbances, parametric uncertainties and coupling between
two operation modes. Hence, the accurate identification of
lumped disturbances directly determines the performance
of MEMS gyroscope. Under such circumstances, neural
networks (NNs) are widely employed to online identify
unknown disturbances for uncertain systems [22]–[24] by
virtue of their universal approximation. However, the com-
plex structure of NN unavoidably induces heavy computa-
tional load, such that an unexpected time delay may be intro-
duced to controller, which can further result in poor transient
performance especially under some fast time-varying mea-
suring conditions. Thus, how to avoid the problem of learning
explosion without degrading the identification accuracy is of
great urgency and necessity.

To solve the issues mentioned above, a MLP-based neural
guaranteed performance control for MEMS gyroscope with
logarithmic quantizer is proposed and its superiorities over
available studies are collected in TABLE 4 in APPENDIX,
which can be summarized as follows:
� Different from the available works [4]–[9] under the

unpractical hypotheses that the actuator can perform
with arbitrarily high accuracy and data transmission
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from control module to actuator can be realized
via unlimited communication channel, LQ is firstly
employed to generate finite-precision input control sig-
nal for MEMS gyroscope that possible digital con-
troller can be promoted. In addition, different from
existing quantization error decomposition [25], [35]
relying on the control input to be bounded, which is
hard to ensure before the controller design, a novel
quantization decomposition approach is investigated for
MEMS gyroscope to relax such condition and guaran-
tee closed-loop stability. Furthermore, PPC technique is
explored in controller design in the existence of input
quantization to assure both transient and steady-state
tracking performance within preselected performance
boundaries. Hence, a compromise between the track-
ing performance of MEMS gyroscope and bandwidth
restriction can be obtained.

� Although most existing works [22]–[24] can realize
high-accuracy identification of unknown disturbances
by means of universal approximation of NNs, it is
worth pointing out that almost all of them suffer
from the problem of learning explosion. Inspired by
the minimum-learning-parameter (MLP) technique in
[26], [27] and [36], we employ MLP to reconstruct
the lumped disturbances consisting of external distur-
bances, parametric uncertainties and coupling between
two operation modes, which greatly reduces learning
dimension, such that the computational load is remark-
ably eased without decreasing the identification accu-
racy. What’s more, the application of DSC technique
effectively eliminates the problem of term explosion
caused by analytical differentiation, such that the fea-
sibility of algorithm is notably improved.

� With the aid of Lyapunov stability analysis, the pre-
scribed UUB properties of closed-loop system can be
ensured. Extensive simulation results are presented to
further validate the effectiveness as well as superiority
of the proposed control method.

This rest paper is arranged as follows. The problem for-
mulation and preliminaries will be introduced in Section II.
Section III presents the procedure of controller design and
section IV proposes the performance analysis. Section V
provides a series of simulation results and finally section VI
concludes this paper.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. MODELING OF MEMS GYROSCOPE
The schematic diagram of a z-axis vibrational MEMS gyro-
scope is depicted in Fig. 1 and conventionally, the non-
dimension model of MEMS gyroscope, as borrowed form
[4], [5], [8], [9], [28] can be formulated as:{

ẋp = xv
ẋv = u+ F

(1)

where xp = [xp1, xp2]T and xv = [xv1, xv2]T denote
the displacements and velocities of drive and sense

FIGURE 1. Schematic diagram of a z-axis MEMS gyroscope.

mode, respectively. F = [F1,F2]T represents the lumped
disturbances, which can be described as

F = −(D+ 2�)xv − Kxp + ξ (2)

with

u =
[
u1
u2

]
=

 ux
m
uy
m

 , D =


Dxx
mω0

Dxy
mω0

Dxy
mω0

Dyy
mω0



� =

[
0 −�z
�z 0

]
, K =


√
Kxx
mω2

0

Kxy
mω2

0

Kxy
mω2

0

√
Kxx
mω2

0

 (3)

where ui for i = 1, 2 denotes the input signal for MEMS
gyroscope and m represents the mass of gyroscope. ω0 is the
reference angular frequency. Dxx ,Dyy and Kxx ,Kyy respec-
tively refer to the uncertain damping coefficients and spring
coefficients. Kxy,Dxy are unknown coupling parameters and
ξ is the external disturbances.
Remark 1: It is worth pointing out that the model ofMEMS

gyroscope mentioned in [4], [5], [8], [9], [28] commonly
assume that the input control signal u can be performed
with arbitrary accuracy. While in fact, the widespread use of
digital microprocessor leads to the fact that most electrostatic
actuators ofMEMSgyroscope cannotmeet such requirement.
To break through this restriction, we explore a modified
model of MEMS gyroscope as follows.{

ẋp = xv
ẋv = Q(u)+ F

(4)

whereQ(u) denotes the quantized control signal generated by
LQ, which is formulated as

Q(ui) =


urisign(ui)

uri
1+ ηi

< |ui| ≤
uri

1− ηi
0 |ui| ≤

umi
1+ ηi

, i = 1, 2
(5)

where uri = δ
1−r
i umi with integer r = 1, 2, . . . ,N , umi is the

smallest quantization level and δi = (1 − ηi)/(1 + ηi) is a
positive design parameter, which determines the quantization
density. Generally speaking, the bigger δi is, the more quanti-
zation levels willQ(ui) has and the smoother will quantization
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performance be. With the aid of LQ, the input control signal
is limited in the finite set of U = {±uri,0}, such that the issue
mentioned in Remark 1 is eliminated.
The quantized signal Q(ui) can be considered as the com-

position of a continuous part and a discontinuous one, which
can be described as

Q(ui) = ι(ui)ui + T (ui) (6)

where

ιi(ui) =

{
Q(ui)/ui, Q(ui) 6= 0
1, Q(ui) = 0,

T (ui) =

{
0, Q(ui) 6= 0
−ui, Q(ui) = 0

(7)

Lemma 1 [26]: For ι(ui) and T (ui) in (6), there always exist
the following inequalities.

1− δi ≤ ι(ui) ≤ 1+ δi, T (ui) ≤ umi (8)

Assumption 1 [30]: The reference signals xpdi, its time
derivative ẋpdi, as well as its second derivative with regard to
time ẍpdi for i = 1, 2 are commonly considered to be smooth,
continuous and bounded functions. Accordingly, we assume
a positive constant B0 belonging to a compact set �0 defined
as

[xdpi, ẋ
d
pi, ẍ

d
pi]

T
∈ � ,

{
[xdpi, ẋ

d
pi, ẍ

d
pi]

T
: xd2pi

+ ẋd2pi + ẍ
d2
pi ≤ B0

}
⊂ <

B0 (9)

Control Objective: Under assumption1, for the MEMS
gyroscope modeled as (4), our objective is to design a
MLP-based neural guaranteed performance control with
input quantization to steer position state xp of MEMS gyro-
scope to follow the given trajectory. Under the proposed con-
trol scheme, the prescribed UUB stability of closed-loop sys-
tem can be assured and high tracking accuracy are expected.

B. RADIAL BASIS FUNCTION NEURAL NETWORK
In control field, radial basis function neural networks
(RBFNNs) are commonly applied to approximate arbi-
trary unknown continuous function over a compact set
x̄m ∈ � ⊂ <

m by virtue of its universal approxima-
tion [31], [32] and the output of RBFNN can be formulated
as

y = ωTh(x̄m) (10)

whereω = [ω1, ω2, . . . , ωn]T ∈ <n, x̄m = [x1, x2,. . . ,xm]T ∈
<
m respectively denote the weight and input vector. n is the

number of neural codes and m represents the input number.
h(x̄m) = [h1(x̄m), h2(x̄m),. . . ,hn(x̄m)]T ∈ <n denotes the
basis function of RBFNN and it is typically selected as the
following Gaussian function formed as

hj(x̄m) = exp(−
(x̄m − cj)T (x̄m − cj)

b2
), j = 1, 2, . . . , n

(11)

with cj = [cj1, cj2,. . . ,cjm]T ∈ <m and b being the center and
width parameter of basis function hj(x̄m).
Remark 2: It is notable that the elements of hidden

layer will exponentially grow with the increase of learning
dimension and based on universal approximation theorem,
high-accuracy approximation requires the learning dimension
to be large enough, such that high computational burden will
be induced to the controller, which will further lead to some
severe problems toMEMS gyroscope, especially in some fast
time-varying operation environments.

III. CONTROLLER DESIGN
In this section, the proposed control scheme will be elab-
orated. Its architecture is depicted in Fig. 2 and it is clear
that with the aid of proposed PPC, DSC, LQ and MLPNN
techniques, fast and high-accuracy tracking of reference tra-
jectory with slight computational burden and limited actuator
bandwidth can be realized.

FIGURE 2. Architecture of the proposed algorithm.

A. PRESCRIBED PERFORMANCE CONTROL
Given the dimensionless reference trajectory xpd , the tracking
error ep = [ep1, ep2]T can be defined as

epi(t) = xpi(t)− xpdi(t) (12)

To guarantee the tracking result with prescribed properties,
PPC is an efficient approach to improve the tracking perfor-
mance in both transient and steady-state phases, which can be
described as

−εi_ρi(t) < epi(t) < ε̄iρi(t),∀t ≥ 0 (13)

with εi_, ε̄i being positive constants, ρi(t) for i = 1, 2 being the
preselected performance function and it is typically chosen as
the following exponential decaying one [13]–[15].

ρi(t) = (ρi0 − ρi∞)e−lit + ρi∞ (14)
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where ρi0, ρi∞, li are all positive design parameters and
ρi0 = ρi(0), ρi∞ = ρi(∞), such that ρi0 limits the transient
overshoots, ρi∞ ensures the maximum steady-state track-
ing error and li decides convergence rate of performance
function ρi(t).
Note that it is hard to design control law based on inequal-

ity (13), some equivalent error transformation is required
to eliminate the time-varying constraints exerted on system
states. To facilitate the controller design, the error transfor-
mation function2(zi(t)) is introduced to convert constrained
error into an unconstrained one and it is formulated as

epi(t) = 2(zi(t))ρi(t) (15)

with

2(zi(t)) =
ε̄i exp(zi(t))− εi exp(−zi(t))
exp(zi(t))+ exp(−zi(t))

(16)

where zi(t) is the transformed error. Obviously, 2(zi(t)) is a
smooth, strictly increasing function and one has

lim
zi(t)→−∞

2(zi(t)) = −εi, lim
zi(t)→+∞

2(zi(t)) = ε̄i (17)

Following (15), zi(t) can be subsequently obtained as

zi(t) =
1
2
ln(
εi + ζi(t)
ε̄i − ζi(t)

) (18)

with ζi(t) = epi(t)/ρi(t) being the normalized function.
Lemma 2 [13]: As long as the transformed error zi is

bounded, the MEMS gyroscope tracking error epi is within
the preselected boundaries, i.e., −εiρi(t) < epi(t) < ε̄iρi(t)
always holds.

B. MLPNN
Considering the unknown time-varying disturbances imposed
on the system, fast and accurate online disturbances identifi-
cation is crucial for the performance of MEMS gyroscope.
Thus, we employ RBFNN to approximate the lumped distur-
bances.

Fi = ω∗Ti h(xi)+ εi i = 1, 2 (19)

where xi = [xpi, xvi]T represents the input matrix, εi is the
approximation error and based on universal approximation
theorem [32], [34], as long as the number of neural codes is
large enough, there always exists an ideal value ω∗i such that
εi can be arbitrarily small and one always has

|εi| ≤ ε̄i (20)

where ε̄i is a positive constant.
As mentioned in Remark 1, the node number is required

to be large enough to realize high-accuracy identification
and consequently, the elements requiring to be adaptively
updated will exponentially grow with node number, which
will cause the issue of learning explosion. To reduce the learn-
ing dimension, a MLPNN technique is applied to reconstruct
the lumped disturbances Fi, which is formulated as

Fi =
1
2
W ∗i ||h(xi)||2+ εi i = 1, 2 (21)

where W ∗i = ||ω
∗
i ||

2 is defined as the norm of weight vec-
tor ω∗i . Subsequently, we can easily obtain the approximation
value of Fi, which is defined as

F̂i =
1
2
Ŵi||h(xi)||2 i = 1, 2 (22)

where Ŵ is the estimation value of W ∗, which can be pro-
duced via the following adaptive update law:

˙̂Wi = 0i(evi||h(xi)||2 − κiŴi) (23)

with evi denoting the tracking error of velocity subsystem, 0i
being the adaptive gain, κi being a positive design parameter.
Remark 3: Using MLP technique, we only need to

online update Ŵi rather than each element of ω̂i like the
works [19]–[21], such that the learning dimension is remark-
ably reduced, which greatly eases the computational burden
without decreasing the identification accuracy.

C. QUANTIZEDCONTROL DESIGN
Inspired by the recursive controller design of backstepping
control, MEMS gyroscope system is split up into two sub-
systems and accordingly, the controller design contains the
following two parts.

STEP 1: Recollecting the transformed error zi(t) defined
in (18), taking its time derivation produces

żi(t) = λi(t)(ėpi(t)− ρ̇i(t)epi(t)/ρi(t))

= λi(t)[xvi(t)− ẋpdi(t)− ρ̇i(t)epi(t)/ρi(t)] (24)

with

λi(t) =
1

2ρi(t)
(

1
epi(t)/ρi(t)+ εi

−
1

epi(t)/ρi(t)− ε̄i
) (25)

To guarantee the tracking performance with prescribed
UUB properties, the virtual control law is chosen as

αi(t) = −k1izi(t)+ ẋpdi(t)+
ρ̇i(t)epi(t)
ρi(t)

, i = 1, 2 (26)

where k1i is the controller gain of position subsystem.
To avoid the issue of ‘‘complexity explosion’’ caused by

analytical differentiation of αi(t), we explore a first-order
low-pass filter to obtain the time derivation of virtual control
signal, which is formulated as

τi ˙̄αi + ᾱi = αi, ᾱi(0) = αi(0), i = 1, 2 (27)

with τi being the time delay constant of filter.
Define the filtering error σi as

σi = ᾱi − αi (28)

Then, taking time derivative along (28) results in

σ̇i +
σi

τi
= −α̇i (29)

and obviously

|σ̇i +
σi

τi
| ≤ bi(ẍpdi, żi, epi, ėpi, ρi, ρ̇i, ρ̈i) (30)
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where bi(ẍpdi, żi, epi, ėpi, ρi, ρ̇i, ρ̈i) is a continuous and
smooth function satisfying |bi| ≤ Bi. Now, consider the
following Lyapunov function candidate

Vσi =
1
2
σ 2
i (31)

Considering (29) and (30), we can obtain the time
derivative of Vσi .

V̇σi = σ̇iσi ≤ −
σ 2
i

τi
+ Biσi (32)

Based on Young’s inequality, the following inequality
holds.

Biσi ≤
1
4
B2i + σ

2
i (33)

Substituting (33) into (32) produces

V̇σi ≤ (−
1
τi
− 1)σ 2

i +
1
4
B2i (34)

Simultaneously, considering (24), (26) and (28), żi can be
rewritten in the form of

żi = λi(−k1izi + evi + σi) (35)

Subsequently, consider the Lyapunov function candidate

Vzi =
z2i
2λi

(36)

Combined with (35), its time derivative is formulated as

V̇zi =
ziżi
λi
−

λ̇i

2λ2i
z2i

=
zi
λi
λi(−k1izi + evi + σi)−

λ̇i

2λ2i
z2i

= −(k1i +
λ̇i

2λ2i
)z2i + zievi + σizi (37)

With the aid of Young’s inequality, we have

ziσi ≤
1
4
z2i + σ

2
i , zievi ≤ z2i +

1
4
e2vi (38)

Substituting (38) into (37), V̇zi can be rewritten as

V̇zi ≤ (k1i +
λ̇i

2λ2i
−

5
4
)z2i + σ

2
i +

1
4
e2vi (39)

STEP 2: In this step, the actual control law is elaborated
to eliminate the quantization error as well as ensure the
UUB closed-loop stability of system. Firstly, we define the
tracking error of MEMS gyroscope velocity subsystem as
evi = xvi − ᾱi. Next, using (4) and (6), its time derivative
can be written as

ėvi = Fi + ι(ui)ui + T (ui)− ˙̄αi (40)

Then, select the following Lyapunov function candidate

Vevi =
1
2
e2vi (41)

Based on (21) and (40), taking time derivative along (41)
produces

V̇evi = eviėvi
= evi[Fi + ι(ui)ui + T (ui)− ˙̄αi]

= evi[ι(ui)ui + T (ui)+
1
2
W ∗i ||h(xi)||

2
+ εi]− evi ˙̄αi

(42)

Define the auxiliary control signal υi as

υi = k2ievi +
1
2
Ŵi||h(xi)||2 − ˙̄αi (43)

with k2i being the controller gain of velocity subsystem.
To make up for the quantization error induced by LQ,

adding and subtracting eviυi, (42) can be rewritten in the
following form

V̇evi = eviυi + evi[ι(ui)ui + T (ui)+
1
2
W ∗i ||h(xi)||

2

+ εi]− evi ˙̄αi − eviυi

= eviυi + evi[ι(ui)ui + T (ui)]+ evi(
1
2
W ∗i ||h(xi)||

2
+ εi)

− evi ˙̄αi − evi(k2ievi +
1
2
Ŵi||h(xi)||2 − ˙̄αi)

= eviυi + evi[ι(ui)ui + T (ui)]

+
1
2
eviW̃i||h(xi)||2 − k2ie2vi + εievi (44)

with W̃i = W ∗i − Ŵi being the updating error.
Now, select the actual control law as

ui = −
eviυ2i

(1− δi)
√
e2viυ

2
i + β

2
1i

−
eviumi

(1− δi)
√
e2vi + β

2
2i

(45)

where β1i, β2i are positive design parameters. With the aid of
Lemma 1, we can easily obtain

eviυi + evi[ι(ui)ui + T (ui)] ≤ evi[(1+ δi)ui + umi]+ eviυi
(46)

Meanwhile, the following inequalities apparently hold

−
e2viυ

2
i√

e2viυ
2
i + β

2
1i

≤ −
(eviυi)2

|eviυi| + β1i
< −

(eviυi)2 − β21i
|eviυi| + β1i

≤ β1i − eviυi

−
e2vi√

e2vi + β
2
2i

≤ −
e2vi

|evi| + β2i
< −

e2vi − β
2
2i

|evi| + β2i

≤ β2i − evi (47)

Then (46) can be further rewritten in the following concise
form

eviυi + evi[ι(ui)ui + T (ui)] ≤ β1i + umiβ2i (48)

Substituting (48) into (44), V̇evi can be finally written as

V̇evi≤β1i + umiβ2i +
1
2
eviW̃i||h(xi)||2 − k2ie2vi + εievi (49)
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IV. PERFORMANCE ANALYSIS
Theorem 1: Consider the MEMS gyroscope model (4), the
control signals (45), the virtual control law (26), the adaptive
update law (23) and DSC (27). For any bounded initial con-
ditions satisfying −εi_ρi(0) < epi(0) < ε̄iρi(0), i = 1, 2,
there always exist constants defined by (54), such that all
the involved signals in MEMS gyroscope system converge to
small residual sets and the prescribed tracking performance,
i.e., −εi_ρi(t) < epi(t) < ε̄iρi(t) can be satisfied.

Proof: Choose the overall Lyapunov function candidate
as:

V =
2∑
i=1

[Vσi + Vzi + Vevi + VW̃i
]

=

2∑
i=1

[
1
2
σ 2
i +

z2i
2λi
+

1
2
e2vi +

1
20i

W̃ 2
i ] (50)

With the aid of (34), (39) and (49), taking time derivative
along with (50) produces

V̇ ≤
2∑
i=1

[(−
1
τi
− 1)σ 2

i +
1
4
B2i + (k1i +

λ̇i

2λ2i
−

5
4
)z2i

+ σ 2
i +

1
4
e2viβ1i + umiβ2i +

1
2
eviW̃i||h(xi)||2

− k2ie2vi + εievi +
W̃i
˙̃Wi

0i
] (51)

Recalling the definition of updating error W̃i, using
Young’s inequality, the following inequalities can be obtained

κiŴiW̃i ≤ κi(−
W̃i

2
+
W ∗2i
2

), εievi ≤
1
4
ε̄2i + e

2
vi

eviW̃i||h(xi)||2 ≤
1
2
e2vi||h(xi)||

2
+

1
2
W̃ 2
i ||h(xi)||

2 (52)

With the aid of (23) and (52), (50) can be further rewritten
as

V̇ ≤
2∑
i=1

[−(
1
τi
− 2)σ 2

i − (k1i +
λ̇i

2λ2i
−

5
4
)z2i

− (k2ie2vi −
1
4
β1i −

1
4
||h(xi)||2 − 1)e2vi

− (
κi

2
−

1
4
||h(xi)||2)W̃ 2

i +
1
4
B2i

+ umiβ2i +
1
4
ε̄2i +

κiW ∗2i
2

] (53)

Then, from (53), we can easily obtain that if the following
inequalities

1
τi
− 2 ≥

K
2

k1i +
λ̇i

2λ2i
−

5
4
≥

K
2λi

k2ie2vi −
1
4
β1i −

1
4
||h(xi)||2 − 1 ≥

K
20i

κi

2
−

1
4
||h(xi)||2 ≥

K
2

(54)

hold, it can be derived that

V̇ ≤ −KV + C (55)

with C being a positive constant defined as

C =
2∑
i=1

[
1
4
B2i + umiβ2i +

1
4
ε̄2i +

κiW ∗2i
2

] (56)

The initial conditions are all bounded, so we can make a
feasible assumption that V (0) = A. Subsequently, as long as
K > C/A holds, we can draw the conclusion that ∀t > 0,
V̇ (t) ≤ 0, in other word, V (t) ≤ A always holds. Hence,
the signals involved in closed-loop system are all UUB and
meanwhile, with the aid of Lemma 2, it can be discovered that
tracking error epi always falls into the prescribed boundary,
such that Theorem 1 is eventually proved.

V. SIMULATION RESULTS
To validate the effectiveness of our proposed control
method, several simulations are performed via MATLAB/
SIMULINK. Firstly, the physical parameters of MEMS gyro-
scope, borrowed from [4], are chosen as

m = 1.8×10−7kg, kxx=63.955N/m, kyy=95.92N/m,

kxy = 12.779N/m, dxx = 1.8× 10−6Ns/m

dyy = 1.8× 10−6Ns/m, dxy = 3.6× 10−7Ns/m (57)

Subsequently, the non-dimensional parameters can be
calculated as

k2x = 355.3, k2y = 355.3, kxy = 70.99

Dx = 0.01, Dy = 0.01, Dxy = 0.002, �z = 0.1 (58)

The reference trajectory of displacements is chosen as

xpd (t) =
[
sin(4.17t)
0

]
, t ≥ 0 (59)

Choose the external disturbances ξ as

ξ =

[
20cos(30t)+ 30sin(20t)
10cos(40t)+ 20sin(20t)

]
, t ≥ 0 (60)

TABLE 1 lists the design parameters of the presented
controller.

TABLE 1. Parameters for the proposed control algorithm.

38602 VOLUME 8, 2020



H. Si et al.: MLP-Based Neural Guaranteed Performance Control for MEMS Gyroscope With LQ

A. EFFECTIVENESS ANALYSIS
Using the parameters given above, the first simulation is
conducted to validate the effectiveness of proposed control
schemes, where the initial conditions of MEMS gyroscope
are chosen as xp(0) = [−0.9, 0.5]T , xv(0) = [0, 0]T . The
simulation results are depicted in Figs. 3-6 and obviously,
both transient overshoots and steady-state maximum track-
ing error are restricted to predetermined small values, such

FIGURE 3. Tracking error of position subsystem.

FIGURE 4. Tracking performance.

FIGURE 5. Uncertainties identification.

FIGURE 6. Quantization performance.

that guaranteed tracking performance can be obtained via
appropriately selecting performance functions. Furthermore,
the convergence rate is very fast, as can be seen from Fig. 3,
only after 0.08s, both tracking error of position and velocity
subsystem coincide with the reference trajectory perfectly.
Meanwhile, the quantization performance is clearly reflected
from Fig. 6, where the continuous input signal is converted
to the one taking values in finite sets, such that the issue of
actuator limitation is eliminated and data size requiring to be
transmitted is remarkably lessened. Although the precision
of input signal is notably reduced, high-accuracy tracking
performance as well as identification of uncertainties can still
be available, which is mainly attributed to the effective error
compensation methodology and PPC technique.

B. COMPARATIVE SIMULATIONS
To further demonstrate the superiorities of our proposed
control method over existing ones, some comparative sim-
ulations are performed and presented in this section. Firstly,
the simulations among proposed control scheme, backstep-
ping control [7] are given in Fig. 7. In light of the fairness,
we apply these algorithms with the same control parameters.

FIGURE 7. Comparative simulations between the proposed control and
backstepping control [7].

TABLE 2. Comparisons between the proposed control and the one free
of LQ.

TABLE 3. Comparisons between RBFNN and MLPNN.
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TABLE 4. Comparisons among our control Method and Existing Ones.

The results clearly indicate that both transient and steady-
state tracking performance of the proposed algorithm are
much better than that of backstepping control. In addition, the
proposed method performs faster convergence rate of track-
ing error by virtue of performance boundaries and effective
error transformation mechanism.

In addition, to further clarify the remarkable quantization
performance, a statistic with respect to data size of input
signal as well as tracking accuracy is presented in TABLE 2,
from which we can discover that with the aid of LQ as well
as effective error compensation mechanism, the data amount
of control input required to be transmitted is notably reduced
while the steady tracking accuracy is almost the same as the
case without LQ, such that the compromise between tracking
performance and actuator bandwidth can be finally obtained.

Furthermore, aiming at testifying the superiorities of
MLPNN in terms of computational burden and tracking
accuracy, we conduct the comparative simulations between
MLPNN and RBFNN [34], the simulation results are demon-
strated in TABLE 3, where the average computation time
denotes the average time of updating of each neural weight.
It can be easily discovered that the heavy computation bur-
den of RBFNN appears due to the learning process of each
element of neural weight vectors. Evidently, the computation
time of RBFNN is much longer than MLPNN as the nodes
number further improves. While with the aid of MLPNN, we
can achieve almost the same accurate identification results
with much slighter computation load.

VI. CONCLUSION
In this paper, we propose a MLP-based neural control for
MEMS gyroscope with guaranteed performance and quan-
tized input. Firstly, we employ a LQ to generate input
signal for MEMS gyroscope, the issues of actuator band-
width and communication resource constraints are effectively
eliminated. Considering the quantization error imposing on
MEMS gyroscope system, a PPC technique is employed to
realize guaranteed tracking performance in the existence of

uncertainties. In addition, MLPNN is utilized to realize high-
accuracy identification of lumped disturbances with slight
computational burden. In the near future, we will focus on
an event-triggered fuzzy control scheme with full-state con-
straints in pursuit of reliable operation of MEMS gyroscope
with resource limitation.

APPENDIX
See Table 4.
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