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ABSTRACT Unsupervised segmentation is an essential pre-processing technique in many computer vision
tasks. However, current unsupervised segmentation techniques are sensitive to the parameters such as
the segmentation numbers or of high training and inference complexity. Encouraged by neural networks’
flexibility and their ability for modelling intricate patterns, an unsupervised segmentation framework based
on a novel deep image clustering (DIC) model is proposed. The DIC consists of a feature transformation
subnetwork (FTS) and a trainable deep clustering subnetwork (DCS) for unsupervised image clustering.
FTS is built on a simple and capable network architecture. DCS can assign pixels with different cluster
numbers by updating cluster associations and cluster centers iteratively. Moreover, a superpixel guided
iterative refinement loss is designed to optimize the DIC parameters in an overfitting manner. Extensive
experiments have been conducted on the Berkley Segmentation Database. The experimental results show
that DCS is more effective in aggregating features during the clustering procedure. DIC has also proven to
be less sensitive to varying segmentation parameters and of lower computation costs, and DIC can achieve
significantly better segmentation performance compared to the state-of-the-art techniques. The source code
is available on https://github.com/zmbhou/DIC.

INDEX TERMS Unsupervised segmentation, deep image clustering, deep clustering subnetwork, iterative

refinement loss, overfitting training.

I. INTRODUCTION

Object segmentation is a challenging problem in the field
of computer vision and it has been widely applied in areas
such as object recognition and image classification. Gener-
ally speaking, object segmentation methods can be divided
into three categories, unsupervised, semi-supervised and fully
supervised. The unsupervised methods, such as K-means [1],
EM [2], FH segmentation [3], Active contour [4], normalized
cut [5], meanshift clustering [6], MLSS [7] or SAS [8],
are implemented without prior knowledge about the images.
In the semi-supervised methods [9]-[12], users can label
pixels as foreground or background with interactive segmen-
tation approaches. User input can locate where the object is
(location information), and colour and texture information
contained in the scribbles provide prior knowledge about
what the object is. Fully supervised segmentation methods
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are mostly designed for detecting and extracting specific
semantic object categories in images and accurately labelled
training dataset is required. Currently, deep learning-based
semantic segmentation solutions have also achieved signif-
icant improvement and attracted a lot of attention [13]-[17].

In this paper, we focus on studying the research topic
related to unsupervised image segmentation. A typical unsu-
pervised segmentation algorithm always contains two parts:
feature extraction from images’ pixels and dividing an image
into nonoverlapping regions by pixels clustering, such as
the details described in methods such as normalized cut [5],
MLSS [7] and SAS [8]. For example, a segmentation frame-
work based on bipartite graph partitioning is designed to
aggregate multi-layer superpixels in SAS [8]. In MLSS [7],
a semi-supervised learning strategy is applied to generate
pairwise affinities based on the sparse graph constructed
on pixels and over-segmented regions. Then the pairwise
affinities are applied to the spectral segmentation algorithms.
However, the performance of those methods may suffer from
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FIGURE 1. The illustration of the proposed DIC framework for unsupervised image segmentation. DIC consists of a FTS and a DCS

and DIC is trained by an iterative refinement loss.

two principal drawbacks: being sensitive to the segmentation
parameters such as cluster numbers and the whole flowchart
is complex, which can not be optimized jointly. Neural net-
works have also been applied to solve the unsupervised
segmentation problem. However, the existing framework
such as W-Net [18] involves techniques such as designing
complex loss functions. Hence, the training procedure is
sophisticated.

We argue that a practical unsupervised segmentation
method should exhibit characteristics such as adaptivity for
incorporating additional cues and easiness for joint algorithm
optimization. Encouraged by neural networks’ flexibility and
their ability for modelling complex patterns, a novel unsu-
pervised segmentation framework based on neural network is
proposed. Firstly, a deep image clustering (DIC) network is
designed. DIC contains a feature transformation subnetwork
and a trainable deep clustering subnetwork. An autoencoder
based network architecture is applied to transform the pixel
information of images to high-dimensional features. Then
a deep clustering subnetwork implemented by iteratively
calculating the cluster centers and cluster associations iter-
atively is proposed. Secondly, superpixels are taken as the
grouping cues and a superpixel guided iterative refinement
loss is designed to train DIC effectively. Finally, DIC is
optimized via backpropagation in an overfitting manner on a
single image’s basis. The main contributions of the paper are
summarized as follows and the flow chart of our approach is
shown in Figure. 1.

o We propose a deep image clustering (DIC) model
which consists of a feature transformation subnet-
work (FTS) and a differentiable deep clustering subnet-
work (DCS) for dividing the image space into different
clusters.

« We propose a simple and effective superpixel guided
iterative refinement loss for optimizing the DIC param-
eters in an end-to-end way. DIC can be optimized on a
single image’s basis in an overfitting manner.

o« We achieve highly competitive results on Berkley
Segmentation Databases with performance gains from
0.8319 to 0.8407 in PRI, and from 0.1779 to 0.1390
in GCE, and from 11.29 to 10.18 in BDE.
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The remainder of the paper is organized as follows. The
related work is introduced in section II, the proposed
framework is introduced in section III and the experimental
results are presented in section I'V.

Il. RELATED WORK

A. UNSUPERVISED SEGMENTATION

Many unsupervised segmentation methods have been pro-
posed recently, such as mean-shift (MS), k-means [6], nor-
malized cuts (NCuts) [5], Felzenzwalb and Huttenlocher’s
graph-based (FH) [3], SDTV [19], KM [20], UCM [21],
CCP [22], MLSS [7] and SAS [8]. Mean-shift (MS) [6] builds
a non-parametric probability distribution in a feature space
and applies mean shift filtering in this domain to yield a con-
vergence point for each pixel. Normalized cuts (NCuts) [5]
focuses on minimizing the similarity between groups while
maximizing the associations within groups. Other meth-
ods can be divided into two categories: region-based and
contour-based methods. Region-based unsupervised seg-
mentation methods focus on finding the similarity among
neighbouring pixels and merge them using features includ-
ing color, texture, contour or luminance. Superpixels are
always taken as important cues for aiding segmentation
and one of the typical works is MLSS [7], in which a
multi-layer semi-supervised learning scheme is proposed to
construct a dense affinity matrix over pixels and super-
pixels for spectral clustering. Another highlighted work is
SAS [8], a novel segmentation framework based on bipartite
graph partitioning to is designed to aggregate multi-layer
superpixels. Contour-based methods focus on generating
segmentation masks via contour cues. In [21], the image
segmentation problem is constructed as a contour detec-
tion problem. A contour detection using multiscale local
brightness, color, and texture is proposed firstly. Then an
Ultrametric Contour Map (UCM) is constructed by generat-
ing a hierarchical region tree from contours. In CCP [22],
a contour-guided color palette (CCP) is designed firstly.
Then, it is further fine-tuned by post-processing techniques
such as leakage avoidance, fake boundary removal, and
small region mergence to generate robust segmentation
masks.
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FIGURE 2. The flowchart of the feature transformation subnetwork. The convolution block (CB) consists of a 3 x 3 convolution, a batch-normalization and
a relu. The main task of the max-pooling(MP) with the factor 2 is to downsample the featrure by a factor of 2 and deconvolution(DC) is utilized for
upsampling features by 2 times. The simple convolution(SC) with kernel size 1 x 1 is the last layer which generates the output feature. The input

channel x output channel of each component is displayed as well.

B. DEEP LEARNING AND IMAGE SEGMENTATION

In recent years, we have witnessed great progress for deep
convolutional neural networks [23], [24] based image seg-
mentation and various methods have been proposed. Deep
learning has been applied to solve the problems related to
fully supervised semantic segmentation [13], [14], [16], [17],
[25]-[27], interactive segmentation [28]-[30] and unsuper-
vised segmentation [18], [31], [32]. Besides the fully super-
vised semantic segmentation, deep learning has proven to be
effective in solving the interactive segmentation problem as
well. For example, in [30], the user annotations are converted
into interaction maps by measuring distances of each pixel
to the annotated locations firstly. Then, the forward pass
is performed in a convolutional neural network to generate
an initial segmentation map. Moreover, a backpropagating
refinement scheme (BRS) is designed to correct the misla-
beled pixels. Neural network has been applied to solve the
unsupervised segmentation problem as well. In W-Net [18],
a segmentation framework based on autoencoder is proposed
and a k-way pixel-wise prediction is generated by the autoen-
coder, then the whole network is optimized by a reconstruc-
tion loss and a normalized cut loss jointly. Furthermore,
techniques such as condition random field smoothing and
hierarchical segmentation are used to refine the segmentation
results. However, these methods may suffer from several
drawbacks in applications: (1) The segmentation framework
is of high computation cost; (2) The training procedure
for optimizing the network parameters is sophisticated;
(3) Additional cues such as superpixels cannot be incorpo-
rated into the framework adaptively.

In order to design a more effective and practical neu-
ral network based unsupervised segmentation framework,
a deep image clustering module is proposed in this paper.
DIC utilizes a light-weight network architecture to reduce the
computation cost. Furthermore, a superpixel guided iterative
refinement loss is designed to optimize the DIC parameters in
a simper way. Hence, the unsupervised segmentation network
can be optimized easily in an overfitting manner.
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ill. THE PROPOSED METHOD

In this section, the framework for unsupervised image seg-
mentation is proposed. Firstly, we introduce the deep image
clustering model in subsection III-A, which consists of two
modules: a subnetwork for feature extraction and a deep clus-
tering subnetwork. Then, we present the superpixel guided
iterative refinement loss in subsection III-B. Finally, the over-
fitting training protocol is described in subsection III-C to
optimize the network parameters in an end-to-end way.

A. DEEP IMAGE CLUSTERING MODEL

1) NETWORK ARCHITECTURE FOR FEATURE
TRANSFORMATION SUBNETWORK (FTS)

We use an autoencoder architecture and the skip connec-
tion for constructing the feature transformation subnetwork
(FTS). The CNN for feature extraction is composed of a
series of convolution layers interleaved with batch normal-
ization (BN) and ReLU activations. The architecture of the
feature transformation subnetwork is as shown in Figure. 2,
FTS consists of six convolution blocks, one max-pooling
operation, one deconvolution operation and a simple convo-
lution operation. We use max-pooling, which downsamples
the input by a factor of 2, after the 2nd convolution block to
increase the receptive field. Then the 4th convolution block
outputs are upsampled by deconvolution and concatenated
with the 2nd convolution block outputs to pass onto the Sth
convolution block. After the 6th convolution block and the
simple convolution block, feature Y with dimension C is
generated. We use 3 x 3 convolution filters with the number
of output channels set to 64, 128 or 192 in each block, except
the last CNN layer which outputs C channels. This CNN
architecture is chosen for its simplicity and efficiency. Other
network architectures are also conceivable for such algo-
rithm. The resulting C dimensional features Y can be taken as
coarse cluster associations. In order to aggregate the features
more effectively, ¥ will be passed onto the following deep
clustering module that iteratively updates the pixel-clusters
associations and cluster centers for I' iterations.
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FIGURE 3. The flowchart of the deep clustering subnetwork. DCS contains two iterative steps: calculating cluster associations H

and updating cluster centers <.

2) TRAINABLE DEEP CLUSTERING SUBNETWORK (DCS)
Firstly the extracted feature Y is flattened to the dimension
N x C, where N = H x W, H is the height of image,
W is the width of image and C is the channel number or super-
pixel number (SPN). Then a neural network based clustering
procedure is designed. The cluster centers €2 are defined as
the initializations for feature clustering. Assuming the cluster
centers are defined as Q = {Qq, 2, ..., Qu}, M is the
number of default clusters and £2; is with dimension C x 1.
Then an iterative procedure is applied for adaptive feature
clustering. In the z-th iteration of DCS, the associate rate H'
with dimension N x M is defined to calculate the similarity
between the spatial features and respective centers Q!
; K (Y, QD)

= —, nC{l,...,N}, mC{l,...,M}.
(W, 27H

ey

where « represents the general kernel function. We simply
take the the exponential inner dot exp(a’b) as the kernel
function. For implementing the neural network, the operation
for updating associations in the ¢-th iteration is formulated as:

H' = softmax(Y(Q'~HT) )

With the updated association H', then the cluster centers £’
can be estimated using the weighted summation of Y. Hence
€}, is defined as:

251\7:1 Hyy Yo
Z%:l H,y
Then Q' can be generated respectively. Based on the above
formulations, the associations H? and cluster centers Q! are
updated within I iterations. Once the iteration procedure is
implemented, the final associations H' and cluster centers
Q' are used to construct the aggregated features Y. The

aggregated features are formulated as:

T=H"(@Q"H" )

Ql = 3)
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As T is constructed from a compact basis set, it has the
low-rank property compared with the input Y. It is obviously
that the iterative updating procedure is free of parameters. The
whole pileline of DCS is as illustrated in Figure. 3.

Once the aggregated feature Y is obtained, the final cluster
assignment A, for each pixel is set by selecting the dimension
that has the maximum value of T, using the following rule:

An = arg max(Xu)), jS{l,....C). 5)

Then C can been interpreted as the cluster number in the
following subsections.

B. SUPERPIXEL GUIDED ITERATIVE REFINEMENT LOSS

In the setting of unsupervised image segmentation, there
does not exist reliable supervision information. The training
protocol of DIC is formulated as a classification task in a
self-training manner, in which the superpixel guided group-
ing cues are taken as the principal supervision information.
The intuition behind is that pixels in the same superpixels
tend to be assigned with the same cluster number and the
superpixels can also serve as the cues for refining the object
boundaries. Hence a superpixel guided iterative refinement
loss is defined for network training. Firstly, the constraints
which favor the rule that cluster labels should be the same
for those of neighboring pixels are enforced by superpixels.
K superpixels {Sk},’f:1 are extracted from the input image /,
where {S;} denotes a set of indices of pixels that belong
to k-th superpixels using the technique such as MCG [21],
superpixels with higher quality can generate more reliable
supervision. Hence all of the pixels in each superpixel are
guided to have the same cluster label in the training proce-
dure. In iteration r — 1, A’"! is refined by the superpixels
so as to enforce the label consistency constraint. Assum-
ing S, is the superpixel that contains pixel n, then a his-
togram is constructed by counting the superpixel assignment

VOLUME 8, 2020
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FIGURE 4. Illustration of the iteration clustering process.

A; “lic {Sp} and a superpixel level histogram is built as:

Histy(A'™") = Histy(AT™HY + 1, i C 8. (6)

Finally, the refined superpixel is defined as the following rule:
ALY = arg max; Hist,(j), j S {AT i€ Sy}, nes,.
(N

where {Af_1 li € Sp} stands for the unique label set defined
in Hist,,.

Then the refined superpixel A’~! is taken as the supervi-
sion for training the DIC network in iteration # — 1. Similarly,
A! will be generated and it can be refined subsequently as
the supervision for the 7-th iteration. Given the assignment A’
and the refined superpixel A’, the iterative refinement loss is
defined to optimize the DIC network using cross entropy:

N
Lis=—Y_ AllogAl, ®)
i=1

The iterative clustering procedure is as illustrated in Figure. 4,
we can see that the cluster assignment is updated and refined
iteratively.

C. OVERFITTING TRAINING FOR UNSUPERVISED IMAGE
SEGMENTATION

Encouraged by the works such as deep image prior [33] or
deep decoder [34], an overfitting manner is used for training
the DIC network. Different from many current practices using
large scale datasets, the overfitting training protocol is sim-
pler and the network parameters are not required to be stored.
Given a target image as the input, the training procedure will
be described as below: (1): In the forward process of the
t-th iteration, Y’ is generated by the feature transformation
subnetwork with parameter @}t_ ' (2): The deep clustering
subnetwork runs for I' iterations to aggregate the features
adaptively. Hence the feature Y’ is obtained and the super-
pixel A’ is generated. (3): Then the refined superpixels A’ is
generated. In the backward process, A’ is taken as the super-
vision with the iterative refinement loss. The parameter @}t of
the feature transformation subnetwork is updated according
to the back propagation rule using the iterative refinement
loss L} .. The detailed training and inference procedures are
introduced in Algorithm 1.
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Algorithm 1 The Algorithm for Overfitting Training of DIC
1: Input: I, the RGB image, iteration numbers 7" and I".
Output: A, the cluster assignment.
Generate the superpixels {Si}le -
Initial the network parameter ®19t.
fort =1to T do
Extract the feature Y’ using the feature transformation
subnetwork with initialization @}t_l.

AN AN

7. Initialize the cluster center with 0.
8: forg=1toI" do

9: Generate the associations H9 based on Y’ and Q4!
according to Eq. (2).
10: Update cluster center 29 according to Eq. (3).

11:  end for

12: Generate Y’ based on H' and Q' according to Eq. (4).

13:  Generate cluster A" according to Eq. (5).

14:  Generate the refined cluster A’ according to Eq. (7).

15:  Take A’ as the supervision and the network parameters
@}t are optimized using the iterative refinement loss
defined in Eq. (8).

16: end for

17: AT is taken as the final cluster assignments for image /.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the experimental setup in
subsection IV-A. Then, we compare the empirical results
of our DIC with other state-of-the-arts in subsection IV-B.
Moreover, analysis on the iteration number 7 and clus-
ter numbers for overfitting training is presented in in
subsection IV-C and IV-D. The role of the deep clustering
subnetwork is evaluated in subsection IV-E and the compu-
tational cost is reported in in subsection I'V-F. The analysis
on the application for semantic segmentation is presented in
subsection IV-G.

A. EXPERIMENTAL SETUP

The segmentation results on two Berkley Segmentation
Databases (BSDS300 and BSDS500) [35] which consists
of 300 and 500 natural images respectively, are reported.
To quantitatively evaluate the segmentation results, five crite-
ria are used: 1) Probabilistic Rand Index (PRI) [36]; 2) Vari-
ation of Information (Vol) [37]; 3) Global Consistency Error
(GCE) [35]; 4) Boundary Displacement Error (BDE) [38];
and 5) Segmentation Covering (SC). The segmentation per-
formance is better if PRI and SC is large and the other
three are smaller compared to the ground truths [8]. In the
implementation of the deep clustering module, I is set as 3
according to the cross-validation experiments. In the training
procedure, The training epoch T is set as T = 100, the learn-
ing rate is set as 5 x 1072 and the momentum is set as 0.9.

B. COMPARISON WITH STATE-OF-THE-ART METHODS
In order to evaluate the proposed method DIC compre-
hensively, we compare the average scores of the DIC’s
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FIGURE 5. The visual comparison between DIC and other state-of-the-arts, such as MLSS, SAS.

with sixteen benchmark algorithms, such as Ncut [5],
Mean-shift [6], FH [3], JSEG [39], Multi-scale Ncut
(MNcut) [40], NTP [41], SDTV [19], KM [20], gPb-owt-
ucm [21], MLSS [7], SAS [8], W-Net [18] and CCP [22]
on BSD300 firstly. Similar to the strategy proposed in
MLSS [7] or SAS [8], the optimal Image scale (OIS) is
selected for segmenting images in the Berkley Segmentation
Database. OIS means that the cluster number is selected
optimally for each image. Seven settings as SPN=20,M=16;
SPN=50,M=32;SPN=90,M=32;SPN=120, M=32; SPN=
160, M=64;SPN=200, M=64;SPN=300, M=64 are used to
generate segmentation results for each image and then the
best segmentation masks are selected. The scores of different
methods for comparison are collected from [8], [20], [22] and
the segmentation results are reported in Table. 1, with the
best results highlighted in bold for each criterion. We can
see that DIC achieves the highest PRI 0.8407, the lowest
BDE 10.18, the second-lowest Vol and the second-lowest
GCE scores compared to other methods. In terms of Vol,
gPb-owt-ucm outperforms DIC slightly. CCP achieves a GCE
of 0.127 which is slightly better than 0.139 of DIC. Com-
pared with neural network based W-Net [18], DIC achieves
0.03 point gain in terms of PRI even if the post-processing
procedure is not applied. The performance improvement is
primarily owed to the deep clustering module for feature
aggregation and DIC’s ability to incorporate additional cues
such as superpixels. Moreover the segmentation results on
BSDS500 are reported as well. DIC can obtain the best SC
as 0.66 and PRI as 0.864 compared with methods (reported
in Table.2) such as Ncut [5], Mean-shift [6], MLSS [7],
gPb-owt-ucm [21],SF [42] and W-Net [18]. When compared
with gPb-owt-ucm, DIC achieves higher SC and PRI because
it can aggregate similar superpixels more effectively to gen-
erate fewer superpixels in a self-guided manner. However
the value of Vol will increase due to a smaller amount of
superpixels of DIC.

The visual comparison is illustrated in Figure. 5 as
well in which the segmentation maps generated by
SAS, MLSS and DIC are displayed. We can find that
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TABLE 1. Performance evaluation of the proposed method against other
state-of-the-arts on the Berkley Segmentation Database 300 (BSDS300).

PRI Vol GCE | BDE
Ncut 0.7242 | 2.9061 | 0.2232 | 17.15
Mean Shift 0.7958 | 1.9725 | 0.1888 | 14.41
FH 0.7139 | 3.3949 | 0.1746 | 16.67
JSEG 0.7756 | 1.8217 | 0.1989 | 14.40
MNcut 0.7559 | 2.4401 | 0.1925 | 15.10
NTP 0.7521 | 2.4954 | 0.2373 | 16.30
KM 0.76 24 X X
SDTV 0.7758 | 1.8165 | 0.1768 | 16.24
ASC 0.7738 | 2.0292 | 0.2225 | 16.09
gPb-Hoiem 0.724 | 3.149 | NA 14.795
TBES 0.80 1.76 NA NA
W-Net 0.81 1.71 NA NA
gPb-owt-ucm 0.81 1.68 NA NA
CCP 0.8014 | 2.4723 | 0.1270 | 11.29
MLSS 0.8146 | 1.8545 | 0.1809 | 12.21
SAS 0.8319 | 1.6849 | 0.1779 | 11.29
DIC (proposed) | 0.8407 | 1.7491 | 0.1390 | 10.18

TABLE 2. Performance evaluation of the proposed method against other
state-of-the-arts on the Berkley Segmentation Database 500 (BSDS500).

SC | PRI | Vel

Ncut 0.53 | 0.80 | 1.89
Mean Shift 0.58 | 0.81 1.64
MLSS 0.60 | 0.84 | 1.59
W-Net 0.62 | 0.84 | 1.60
SF 0.65 | 0.851 | 1.43
gPb-owt-ucm 0.65 | 0.862 | 1.41
DIC (proposed) | 0.66 | 0.864 | 1.63

DIC works better in merging similar pixels and separat-
ing diverse regions by learning from local image patterns
adaptively.

VOLUME 8, 2020
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FIGURE 6. Five images are selected to illustrate the procedure of loss convergency. (a) are original images and (b) are the generated

segmentation masks.

TABLE 3. Performance evaluation of iteration number T in the overfitting
training procedure with SPN=100 and M=32 on BSDS300. TC stands for
the time cost measured in seconds.

T 50 100 200 300
PRI 0.8038 | 0.8108 | 0.8094 | 0.8101
VOI | 2.0667 | 1.9905 | 0.1963 | 1.8966
GCE | 0.1569 | 0.1519 | 0.1535 | 0.15923
BDE | 11.62 | 11.37 11.35 11.42
TC(s) | 7.2 15.0 30.1 44.7

C. EVALUATION OF ITERATION NUMBER T FOR
OVERFITTING TRAINING
DIC is optimized using an overfitting manner on a single
image’s basis. There is a trade-off between the iteration epoch
and the segmentation performance. If more iterations are
used, the computation costs will increase, otherwise the train-
ing procedure may not converge. An experiment is conducted
to evaluate the effect of different iteration numbers 7 with
SPN=100 and M = 32 on the segmentation performance,
and the evaluation results are displayed in Table. 3. As shown
in Table. 3, PRI of 0.8038 can be achieved when 7' = 50.
If T = 100, PRI can be boosted to 0.8108 and the segmen-
tation performance gains can be witnessed for the measures
Vol, GCE and BDE as well. When T is set as a value larger
than 100, only marginal performance gain can be witnessed,
but the computation cost will increase greatly. When T is
small, similar superpixels have not been merged successfully,
probably because the algorithm will fail to converge with
small 7. It’s observed that the overfitting training procedure
will converge in around 100 iterations. Larger 7 may increase
the computation cost dramatically, but the segmentation per-
formance has been improved marginally. Hence 7 = 100 is
set as the default setting in the following experiments.
Moreover the training convergence analysis of the over-
fitting training procedure is presented as well. Firstly, five
images are selected and the corresponding segmentation
results are displayed in Figure. 6. Then the curves of
losses defined in Eq.(8) for the overfitting training pro-
cedure within 150 iterations are displayed in Figure. 7.
It can be witnessed in Figure. 7 that, the loss will decrease
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FIGURE 7. The training convergency analysis corresponding to images
in Figure. 6 is displayed.

slowly when T > 50 and the overall losses will converge
in around 100 iterations, which can proof the observation
in Table. 3 that the segmentation performance will change
slightly when 7' > 100.

D. ROBUSTNESS TO DIFFERENT CLUSTER NUMBERS

In this subsection, the segmentation performance condi-
tioned on different cluster number C is evaluated. As shown
in Table. 4, the performance of SAS will drop sharply when
the cluster number increases, while the DIC is less sensitive
to the number of superpixels. We find that DIC can generate
relatively satisfactory results by learning from local image
patterns adaptively even if the default cluster number is large.
On the contrary, the performance of SAS will drop sharply
as the cluster number C increases due to the phenomenon
that consistent regions may be divided into small regions
when the cluster number if large. It indicates that the adaptive
clustering mechanism of DIC tends to converge to optimal
solutions by merging similar pixels into one cluster adap-
tively. The visual comparison is as shown in Figure. 8, we can
see that the performance of DIC is more reliable when the
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FIGURE 8. The visual comparison between the segmentation performance of SAS and DIC with various superpixel numbers.
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FIGURE 9. lllustration of the role of the deep clustering subnetwork. The first row demonstrates the original images, and the results without and with

deep clustering module are listed in the second and third rows respectively.

TABLE 4. Performance evaluation of SAS and DIC with different
superpixel numbers (SPN) on BSDS300. M is the default cluster number
defined in Eq. (1).

PRI Vol GCE | BDE
SAS SPN=20 0.8015 | 2.0615 | 0.1843 | 12.48
SAS SPN=50 0.7841 | 2.6450 | 0.1406 | 12.85
SAS SPN=90 0.7683 | 3.1573 | 0.1131 | 13.26
SAS SPN=120 0.7590 | 3.4474 | 0.1020 | 13.44
SAS SPN=200 0.7476 | 3.9640 | 0.0837 | 13.64
SAS SPN=300 0.7392 | 4.3732 | 0.0727 | 13.80
DIC SPN=20,M=16 | 0.8039 | 1.8294 | 0.1837 | 11.55
DIC SPN=50,M=32 | 0.8140 | 1.9084 | 0.1638 | 11.37
DIC SPN=90,M=32 | 0.8093 | 1.9870 | 0.1537 | 11.17
DIC SPN=120,M=32 | 0.8097 | 2.0163 | 0.1526 | 11.34
DIC SPN=160,M=48 | 0.8088 | 2.0270 | 0.1511 | 11.40
DIC SPN=200,M=64 | 0.8090 | 2.0551 | 0.1485 | 11.40
DIC SPN=300,M=64 | 0.8081 | 2.0705 | 0.1416 | 11.34

setting of superpixel numbers changes. Even if SPN is set
to a large value such as 300, DIC can also assign the same
cluster number to the pixels with similar color or texture
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cues by extracting more effective features and by adaptively
features aggregating. By contrast, the segmentation errors
may increase for SAS when the cluster number grows, which
is fundamental because the representation ability of the fea-
tures extracted by the traditional spectral analysis technique is
limited and the k-means clustering is a lack of the mechanism
for aggregating similar clusters accommodatively.

E. THE ROLE OF DEEP CLUSTERING SUBNETWORK

The deep clustering subnetwork is one of the major contri-
butions in the proposed method and DCS works as a module
for elaborately clustering. In this subsection, the role of DCS
is evaluated. When DCS is not used, a softmax operation
is applied for cluster number assignment as a replacement.
According to the comparison and analysis in the above sub-
section, we set SPN=50 and M = 32 to evaluate the role
of DCS. The quantitative evaluation is listed in Table. 5.
When DCS is not used, the PRI will drop from 0.814 to
0.8064 and Vol will increase from 1.9084 to 1.9890, which
indicates that DCS is more effective in aggregating pixels
with similar features in the deep clustering process than the
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FIGURE 10. The visual illustration of the unsupervised segmentation results of DIC and the semantic segmentation results of
Deeplabv2-VGG-DIC-SCCN generated by images in PASCAL VOC 2012 dataset.

TABLE 5. Performance evaluation of method with different superpixel
numbers (SPN) on BSDS300. wo stands for without.

PRI Vol GCE | BDE
SPN=50 wo DCS 0.8064 | 1.9890 | 0.1635 | 11.41
SPN=50 with DCS | 0.8140 | 1.9084 | 0.1638 | 11.37

TABLE 6. The Average Time Costs Measured in Seconds Corresponding to
Different Superpixel Number for Processing Images in Berkley
Segmentation Database. MLSS and SAS run on intel i7-6700k CPU with
32G RAM, and DIC runs on a GTX1080 GPU with 32G RAM.

SPN 20 50 90 120 | 200 300
MLSS(CPU) | 21.1 | 31.5 | 539 | 67.8 | 128.3 | 275.5
SAS(CPU) 9.9 154 | 243 | 357 | 75.2 153.8
DIC(GPU) 133 | 149 | 155 | 159 | 16.6 21.5

simple softmax operation. The role DCS is also visually
illustrated in Figure. 9. It’s evident that the pixels with similar
or diverse color or texture can be merged or separated by DCS
with higher accuracy, while the simple softmax operation
tends to generate over-merged segmentations (see the 1st,
3rd and 4th examples in Figure. 9) or always fails to merge
pixels with similar features (see the Sth, 6th and 7th examples
in Figure. 9).

F. ANALYSIS OF THE COMPUTATION COST

The computation cost of DIC is evaluated in this subsection.
Two algorithms MLSS and SAS are selected for compari-
son and the results of time cost comparison are illustrated
in Table. 6. For DIC, the iteration number I" of DCI is set
as 3, the overfitting training epoch T is set as 100 and M is
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set according to the superpixel numbers described in Table. 4.
MLSS and SAS run on intel i7-6700k CPU with 32G RAM
using Matlab R2016a, and DIC runs on a GTX1080 GPU
with 32G RAM using Tensorflow 1.5.0. It’s obvious that
DIC and SAS are faster than MLSS in general and we can
find that DIC is comparable to or faster than SAS when the
superpixel number is more significant than 20. When the
SPN increases, the computation costs of MLSS and SAS
will increase dramatically, while the computation cost of
DIC changes slightly. For example, DIC takes around 21.5s
for segmenting an image with size 321 x 481 on aver-
age when SPN=300, while SAS takes 153.8s and MLSS
takes 275.5s. DIC is almost 13 times faster than MLSS. The
results indicate that neither the segmentation performance
nor the computation cost of DIC is sensitive to the param-
eters such as cluster number, while the costs of segmentation
framework based on spectral analysis will increase greatly as
the SPN raises. Moreover, the computation cost of DIC can
be reduced easily by controlling the training epochs 7 for
different applications according to the analysis in Table. 3.
Even if DIC runs on a 1080 GPU while MLSS and SAS can
only work on CPU, it is obvious that neural network based
framework has higher potential for being optimized with the
development of optimization algorithms and hardware, com-
pared with the traditional spectral analysis based frameworks.

G. APPLICATION FOR SEMANTIC SEGMENTATION

In order to evaluate the quality of unsupervised clusters
of DIC more comprehensively, the generated usupervised
superpixels are utilized for semantic segmentation. The
joint training and inference framework proposed in [17]
which uses the superpixels to improve the segmentation per-
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TABLE 7. Overall accuracy on PASCAL VOC 2012 test dataset initialized with VGG. The loU of twenty categories and the mean loU are presented.
Especially, the comparison with other semantic segmentation methods is presented.

=
= = @ 9o £ 3 - = o
g &8 B 88 v . TS & =2 o £ F £ 5 8 & 3
Method 5 22 £ 8 2 B8 S 3 2 £ & &% % E 2 mloU
DeconvNet + FCN + CRF [25] 89.939.379.763.968.287.481.286.128.577.062.079.080.383.680.258.883.454.380.765.072.5
GMF [43] 85.243.983.365.268.389.082.785.331.179.563.380.579.385.581.060.585.552.077.365.173.2

Deeplabv2-VGG-DenseCRF [44] 89.1 38.3 88.163.369.787.183.185.029.376.556.579.877.985.882.457.484.354.980.564.172.7

Deeplabv2-VGG-GCREF [45] - - -
CRF-RNN [15]
Deeplabv2-VGG-SCCN [17]

- - 738

90.455.388.768.469.8 88.382.485.132.678.564.479.681.986.481.858.682.453.577.470.174.7
89.851.187.460.475.086.181.084.135.385.663.184.485.280.081.559.384.459.777.368.174.9

Deeplabv2-VGG-DIC-SCCN

90.052.287.960.875.386.381.684.534.385.865.284.285.680.682.061.084.458.977.468.875.3

formance is applied for semantic segmentation. Then the
DIC superpixels are incorporated into the SCNN of [17].
The experiment is conducted on PASCAL VOC 2012 [46]
which is a famous segmentation dataset containing a training
set, a validation set and a test set, with 1464, 1449 and
1456 images each. Following common practice, we aug-
ment the dataset with the extra annotations provided by [47].
This gives us a total of 10,582 training images. The dataset
provides annotations with 20 object categories and one
background class. We do not provide evaluation scores
such as PRI, GCE or SC on PASCAL VOC 2012 dataset
because the ground truths of semantic boundaries are inac-
curate due to the dilated boundary pixels. In the experiment,
Deelabv2-VGG [44] is connected with DIC superpix-
els, SCCN and the pairwise network to construct a
model Deeplabv2-VGG-DIC-SCCN. As shown in Table. 7,
Deeplabv2-VGG-DIC-SCCN achieves a mean IoU of 75.3!
on the test set which is higher than Deeplabv2-VGG-
SCCN (74.9) and other VGG+-CRF based models such as
CRF-RNN (74.7), GMF (73.2) and DeconvNet+FCN+CRF
(72.5). Compared with the framework built on SLIC super-
pixels, the mean IoU of Deeplabv2-VGG-DIC-SCCN is
0.4 points higher. This is primarily because the quality of
DIC superpixels generated by deep image clustering is better
and they can provide more reliable supervision in the training
procedure. The reported results also indicate the advantages
of the proposed DIC superpixels in boosting the segmen-
tation performance. The visual illustrations of DIC results,
semantic segmentation results of images in PASCAL VOC
2012 dataset are displayed in Figure. 10.

V. CONCLUSION

We have presented a novel framework for unsupervised
image segmentation based on neural network. One of our
major contributions is that a neural network based deep image
clustering model is designed for dividing the image space into
different clusters by updating cluster centers and cluster asso-
ciations iteratively. Then another contribution can be summa-
rized as incorporating the low-level superpixels into DIC by

1 http://host.robots.ox.ac.uk:8080/anonymous/Y UT4XH.html

34490

designing an iterative refinement loss to optimize the DIC
parameters in an end-to-end way, in which the superpixels
can serve as the grouping cues for encoding complex image
patterns. Moreover, DIC is utilized to generate superpixels by
learning from local image patterns in an overfitting manner.
Compared with other unsupervised segmentation methods,
DIC is less affected by the segmentation parameter, such as
cluster numbers and of lower computation cost. Extensive
experimental results on Berkley Segmentation Databases and
PASCAL VOC 2012 database have also revealed the superior
performance of DIC in both of the quantitative and perceptual
evaluation.
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