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ABSTRACT The successful application of fuzzy control depends to a large extent on the parameters of some
subjective decisions, such as fuzzy membership function (MF). Fuzzy logic controller (FLC) implementing
augmented output MFs as compare to input MFs is presented to improve the accuracy, robustness, and
performance of the system. The best possible combination of input and output MFs is introduced to
distribute the uniform input MFs and augmented output MFs in the treatise. The simulation of the 2-Inputs
1-Output Fuzzy Control System is performed in many nonlinear processes. Then, the experimental outcomes
of the uniformly and augmented distributed output MFs are compared under similar circumstances. The
experimental outcomes are in a virtuous covenant with the simulation outcomes. The experimental outcomes
show that the root mean square error (RMSE) is reduced around 75.3% and bringing down the relative
error to the acceptable range (≤±10%). The control accuracy is improved and the robustness is boosted
by reducing the RMSE through the FLC with augmented-distributed output MFs. Moreover, the cost and
energy efficiency in any fuzzy system will be improved by implementing the augmented-distributed output
MFs using the best possible combination of input and output MFs.

INDEX TERMS Fuzzy control system, membership functions, relative error, root mean square error.

I. INTRODUCTION
Fuzzy control systems (FCS) enable humans to make deci-
sions and control real-time applications based on inaccurate
linguistic information. Zadeh [1] introduced the concept of
fuzzy sets as a means of expressing uncertainty and ambigu-
ity. Since then, the fuzzy set theory has become a hot topic in
different disciplines. In a FCS, membership functions (MFs)
and fuzzy rules have a major impact on the control system
performance [2]. Consequently, tuning of the MFs has been a
crucial task for fuzzy system design.

Nowadays, the focus of fuzzy related research is on the
continuous development of innovative prediction and opti-
mization techniques to maximize user comfort and minimize
energy consumption. However, control accuracy is the most
critical part which contributes to system performance but
has largely been ignored by researchers. In most studies,
the Mamdani model has been used because of its simplicity
and effectiveness. The Mamdani model relies on MFs with
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fixed boundaries which affect the performance of the FLC
because, for particular input values, variation inMFs and their
granularity provide different results [3].

The FLC characteristics play a significant part in achieving
better performance in the nonlinear control system. The non-
linear recital of the FLC is very much sensitive to the position
and length of the fuzzy set MF. The base length of the MF
and the position of its peak affect the triggering level of the
fuzzy rule. The heftiness of the FLC to parameter changes can
exist in the appropriate settings of the MF. However, despite
its significant role, the number of studies on MFs design
is limited. Triangular MFs are widely used in FCS because
they are simple and easy to compute. Triangular MFs per-
form better concerning the steady-state behavior specifically
with cumulative preferred location. The augmented output
MFs approach, on the other hand, enhances the compactness
of the logical scenario and ultimately increases the control
accuracy [4].

In the literature, different optimization methods have been
reported for MF optimization. These optimization tech-
niques include artificial neural networks [5], particle swarm
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optimization (PSO) [6], ant colony algorithm (ACO) [7] and
genetic algorithm (GA) [8]. However, these algorithms are
very time consuming since complex computation is required
for convergence [8]–[10]. The time consumption is due to the
fact that these methods need either prior extensive training
of networks (e.g. ANN) [11] or require updating of many
particles as in PSO and ACO methods. GA also needs to
calculate the suitability and to discard the least suitable candi-
date solution members after every generation. It is, therefore,
not feasible to practically implement these methods using
commercially available microcontrollers [12].

Based on machine learning algorithms and fuzzy logic,
multiple techniques have been utilized in various fields for
different purposes, but there is no accurate way to deter-
mine the span, the granularity or the shape of appropriate
MFs [13]. The MFs and fuzzy rules are designed to rely
heavily on the expert’s knowledge in the relevant application
areas. Therefore, it is not an easy task to analyze how MFs
affect the system’s response in the event of a change in the
MFs standard. Consequently, augmented output MFs using
specific length and position remains uninvestigated due to the
lack of auxiliary experimental statistics [14], which is the key
motive of this research.

It has already been reported that the performance linearity
of the fuzzy system enhances with the increase in output
MFs [15]. However, the requirement of tuning an increased
number of MFs only worsens the convergence issues.

In this work, we have presented a new and simple algorithm
for the tuning of MFs. It is shown that, for a given monotonic
system, by determining the effects of relative variation in
the positions of output MFs peaks and incorporating the
results in the de-fuzzification process, accurate results can
easily be achieved. It is also shown that for higher number
of output MFs, the tuning of only the first and the last MFs
using the proposed algorithm eliminates the need for opti-
mization algorithm, that require large computational sources,
at least for small data scenario especially where targeted
system behavior is already known. The simulated and exper-
imental results are provided for the uniformly-distributed
output membership functions (UOMFs), and augmented-
distributed output membership functions (AOMFs) for
2-Inputs 1-Output FCS.

Section 2 presents the simplified overview of the complete
architecture of the proposed model. Section 3 explains the
algorithm design in detail. The simulation setup is described
in section 4. Section 5 defines the experimental setup utilized
for the implementation of proposedmodel. Section 6 provides
the comparison and analysis of simulation and experimen-
tal results. The conclusion and future work is presented in
section 7.

II. SYSTEM MODEL OVERVIEW
The fuzzy model is designed for a general control system
that takes inputs from two sensors i.e. Sensor One (SN-1)
and Sensor Two (SN-2) and provides a pulse width modu-
lated (PWM) output signal as shown in Fig.1 Since most of

FIGURE 1. Block diagram of whole system.

FIGURE 2. Block diagram of 2-Inputs 1-Output FCS.

the modern sensors provide transistor-transistor logic (TTL)
compatible output voltage levels (i.e. 0 – 5 V), therefore these
two sensors (SN-1 and SN-2) can be assumed to measure any
physical parameter e.g. temperature, pressure, humidity etc.
The system output in the form of a Pulse Width Modulated
(PWM) signal is chosen due to its higher efficiency and
lesser power loss during the driving of various loads e.g.
motors. The PWM output signal is presented in terms of
percentage (%).

Isosceles-triangles are used to define MFs for these fuzzy
sets. Each MF has two parameters to characterize. In order
to keep simplicity, the current fuzzy model is designed for a
system exhibiting monotonic behavior only.

Fig. 2 shows the simplified architecture of the fuzzymodel.
The proposed model takes inputs from two sensors i.e. SN-1,
and SN-2. The output of each sensor is proportional to its
corresponding sensing parameter. The generated signals are
provided to two fuzzifiers each of which generates two fuzzy
variables after necessary signal conditioning. An inference
engine received these fuzzy variables. A rule-block con-
taining pre-defined rules is also connected to the inference
engine. Based on the four fuzzy inputs and the pre-defined
rules, the inference engine provides four outputs using the
min-AND operation to a de-fuzzifier. The de-fuzzifier then
provides a crisp value at its output.

III. ALGORITHM DESIGN
The input values from sensors are described in the fuzzy
model in terms of percentage i.e. from 0% to 100%. In this
work, 0 V and 5 V are considered as 0% and 100% respec-
tively. But themodel can equally be applied on systemswhere
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FIGURE 3. MFs and section distribution for SN-1 and SN-2.

TABLE 1. Summary of input parameter ranges, associated MFs and their
respective sections.

input voltage ranges are not TTL compatible. The ‘‘Sen-
sor Amplification & Voltage Adjustment’’ module, shown
in Fig. 2, translates the signals from sensors (0 – 5 V) into
different ranges, defined in the model for each input sensor.

A. FUZZIFIER
The fuzzifier interprets the fuzzy inputs as linguistic values
and produces output in the form of a fuzzy set of the linguistic
variable. Five triangular MFs are defined which are further
categorized into four sections for the whole range of each
input variable. the distribution of names of the MFs along
with their associated sections and ranges is summarized in
Table 1.

Fig. 3, shows the graphical view of the above mentioned
categorization of four sections and five MFs for each input
variable.

A design of the fuzzifier unit, shown in Fig.4, is taken from
[16] and employed in the model to generate fuzzy outputs
for a single sensor. For each input variable, one fuzzifier unit
is needed in this model. Fig. 4 shows that the input signal
in the range of 0-5 V is first multiplied by a factor of 25 in
order to emulate the complete range defined for each variable
in the model. The output of the multiplier (x) is provided
directly to a four-channel subtractor as well as a section-
comparator. The four-channel subtractor identifies the input
value by subtracting range boundary values from it i.e. 25,
50, 75, 100. Section comparator compares the input (x) with
the range boundaries to determine the section occupied by
the input value. The output of the four-channel subtractor
serves as input data of a multiplexer whereas the output from
section comparator is connected to the selection lines of the
multiplexer. A divider module connected at the output of
multiplexer divides the outcome of multiplexer by 25. The
output of the divider generates f1, f3 output values of fuzzifier
whereas a further subtraction from ‘1’ generated either of f2,
f4 output values.

FIGURE 4. Connectivity scheme of various modules in a fuzzifier unit.

B. INFERENCE ENGINE
The inference engine is comprised of 4 AND operators. The
fuzzifier provides four inputs to the inference engine which
uses the min-AND configuration to acquire the R output.

The total number of rules required for all the defined ranges
of a fuzzy system is determined by factor mn, where n =
number of inputs and m = maximum number of overlapping
fuzzy sets. For this fuzzy model, n = 2 and m = 5, therefore
the total number of rules are (5 × 5) 25. Fuzzy rules with
singleton values of UOMFs (5 input and 5 output MFs) and
AOMFs (5 input and 9 output MFs) are shown in Table 2 and
Table 3.

C. RULE BLOCK
Two crisp values of SN-1 and SN-2 are accepted by the rule
block. It elastically outputs singleton values (S1, S2, S3, and
S4) under the algorithm rules defined in the fuzzy system.
Four rules are needed to obtain the individual singleton values
for two input variables. After receiving the two crisp input
values, the rule block divides the treatise into the sections.
Each section contains 2 fuzzy variables and is responsible to
trigger the rules and generates the resulting output.

D. DE-FUZZIFIER
The de-fuzzifier section controls the output of the system and
thus has a significant impact on the accuracy of the control
system. Usually, equal numbers of input MFs and output
MFs are considered for designing a fuzzy control system.
However, in our proposed aomfs approach, the accuracy is
enhanced by (i) setting the output MFs to a higher number
than input MFs and (ii) applying the proposed tuning algo-
rithm on the first and last output MFs only. Fig. 5 shows
the isosceles-triangles used to design the Mfs. The base of
triangle is defined by the line y-z whereas point ‘X’ shows the
original position of triangle peak. For aomfs case, the algo-
rithm for tuning of the first and last isosceles-triangle is
mentioned below
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TABLE 2. Fuzzy rules with singleton values (5 input & 5 output).

TABLE 3. Fuzzy rules with singleton values (5 input & 9 output).

FIGURE 5. Tuning procedure of isosceles-triangle.

1. Determine the required singleton values corresponding
to all output MFs.

2. Represent all output MFs with isosceles-triangle i.e. the
position of their peak lie at the middle point of the base
(x= (y+ z) / 2) as shown in Fig. 5. With these settings,
the peak of the triangle after tuning is represented with
‘b’ in Fig. 5. Initially for all the triangles b== x would
be obtained for these positions in the real scenario.

3. To achieve better accuracy, the base of the first
and last isosceles triangle is half of all the other
triangles.

4. The first and last MFs would need tuning only if the
inputs lie in section one or section four of both input
sensors. Following is the tuning scheme for all possi-
bilities:

a. IF (b == x) : no tuning is needed
b. ELSE IF (b < x) : (S1 and/or S4 = (x - Q1) / 100)
c. ELSE IF (b> x) : (S1 and/or S4 = (x+Q2) / 100)

S1 for section 1 and S4 for section 4 must be tuned using
the given formula and remaining singleton values will
be the same (as step 1).
Here
Q1 = (x - b) ∗ p
Q2 = (b - x) ∗ p

FIGURE 6. Design of five fuzzy MFs for the output variable.

b = Peak of the triangle after tuning
p = Scaling factor (range from 0.33 – 0.37)

Sx shows the values of S1 and /or S4 after tuning
in Fig. 5.

5. If the input values lie only in middle sections i.e. section
2 and/or 3 of both sensors then tuning of MFs are not
needed.

6. If the input values are in different sections of both
sensors then tuning of MFs only required when any
input value lies in section one or four or both input
values lie in these sections.

The distribution of fuzzy MFs for 5, 7, and 9 output MFs
system is presented in Table 4 where Fig. 6, 7, and 8 show
that the graphical representation of the MFs distributions 5,
7, and 9 output MFs system respectively.

Graphical representation of our proposed nine distributed
fuzzy MFs using the tuning algorithm associated with the
output are shown in Fig. 9. Fig. 10 shows the results of 9
AOMFs after tuning with different values of ‘‘b’’.

The process of defuzzification provides a crisp value out-
put after evaluating its inputs [17], [18]. In this scenario,
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TABLE 4. Ranges of 5, 7 & 9 output MFs.

FIGURE 7. Design of seven fuzzy MFs for the output variable.

FIGURE 8. Design of nine fuzzy MFs for the output variable.

eight inputs are assigned to the de-fuzzifier. The inference
engine generated four output values R1, R2, R3, and R4
and rule block generated four output values S1, S2, S3, and
S4. De-fuzzifier evaluates crisp standard output using cen-
ter of average (COA) process as shown in Equation (1),
here i = 1 to 4.

COA =

∑
Si ∗ Ri∑
Ri

(1)

TheMF of the output variable design contains five/seven/nine
functions through a similar range of interpretation criteria.

The de-fuzzifier consists of 4 multipliers for Si ∗ Ri,
in which 2 adders are used, one for 6Ri and the other for

FIGURE 9. Design of our proposed fuzzy MFs for the output variable.

6Si ∗ Ri, and only divider for equation (1). In the end, the de-
fuzzifier generates an evaluation of crisp output [16].

For the performance evaluation of the proposed model,
we used mean absolute error (MAE), mean absolute percent-
age error (MAPE), and root mean square error (RMSE)which
are represented in Equations (2), (3), and (4):

MAE =
1
K

∑k

c=1
|Mi − Di| (2)

MAPE =
1
K

∑k

c=1

|Mi − Di|
si

× 100 (3)

RMSE =

√
1
K

∑k

a=0
(Mi − Di)2 (4)

where ‘K’ indicates the No. of observations, ‘M’ is the
MATLAB Simulated value, and ‘D’ is the Measured value.

IV. SIMULATION SETUP
MATLAB Simulink R2016b was used to develop the system,
and MATLAB simulations were carried out to verify the
cogency of the designed MFs. Different models of 2-Inputs
1-Output FCS for the linear system keeping five uniformly
distributed input MFs fixed with different output MFs (5, 7,
9) had been simulated as given in Table 5. To find the best pos-
sible solution for error reduction and accuracy improvement
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FIGURE 10. Result of 9 AOMFs after tuning (with different values of ‘b’).

TABLE 5. Comparison of different 2-Inputs 1-Output models with 5 input
MFs and different output MFs (for linear system).

for a fuzzy system, numerous scenarios were simulated using
similar input values of both sensors in the complete range.

Similarly, simulation of different models of 2-Inputs
1-Output FCS using different combinations of input and out-
put MFs had been performed as given in Table 6. Uniformly
distributed input and output MFs had been used in 2-Inputs
1-Output FCS and these adjacent MFs overlap each other by
50%. To determine the maximum error, similar inputs from
the two sensors were used to simulate different scenarios over
the entire range of all models. After that, using the proposed
AOMFs approach, different models using the tuning algo-
rithm had been simulated and the error had been reduced
significantly.

To test the better accuracy of the proposed AOMFs
approach, different models of 2-Inputs 1-Output FCS for
the nonlinear system were simulated. Using identical input
values to the full extent for all models, simulation of various
cases was conducted. A comparison of these models with the
proposed AOMFs approach is given in Table 7.

The same number of fuzzy rules and best suitable singleton
values had been used for all the 2-Inputs 1-Output FCS using

TABLE 6. Comparison of different 2-Inputs 1-Output models using
different input and output MFs (for linear system).

5 input MFs & different output MFs. The pattern should be
the same for fuzzy rules and singleton values, after increas-
ing or decreasing the input or output MFs.

V. IMPLEMENTATION
The proposed tuning algorithm is implemented through
Atmel ATmega 328P microcontroller. The particular micro-
controller is chosen due to its low price, availability on
commercial basis and provision of built-in analog-to-digital
conversion system.

Voltages in the range of 0 to 5 V are applied at the two
analog input pins of themicrocontroller to represent the 0% to
100% variation of input signals from TTL compatible outputs
of sensors. The computed results of the proposed models
are used to generate corresponding Pulse Width Modulated
(PWM) signal at the output pin of the microcontroller. The
generated PWM can then be used to control the actuation
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FIGURE 11. Experimental setup.

FIGURE 12. Comparison of relative error between four models
of 2-Inputs 1-Output (using uniformly distributed input and output MFs).

rates (e.g. fan speed, motor speed etc.) in any control system.
The authentic disparity of the output pulses in terms of their
duty cycle is measured through a digital oscilloscope (Model:
GDS-810C).

A fuzzy model with the proposed tuning algorithm has
been implemented using the Arduino platform. This system
strictly describes a fuzzy logic technique. Every class has
the following functions: selection of section, identification of
membership functions, fuzzification, generation of inference
engine, defuzzification. Exception handling and conditional
statements are also incorporated in the system.

VI. OUTCOMES AND DISCUSSION
In literature, usually, the FLC designs are based on uniformly
distributed the equal number of input and output MFs (e.g.
3/3, 4/4, 5/5, and 7/7 input/output MFs) [12]. [14]. [19]–[22].
The experimental results, Fig. 12, show that such FLCdesigns
are prone to large errors even if applied for the linear system.
It is evident the relative error values of more than 10 % are
produced in many instances which ultimately leads to higher
values of RMSE, MAE, and MAPE as these FLC designs.

The relative errors can be reduced significantly by employ-
ing higher number of output MFs as compared to input MFs
in FLC design. The experimental results of relative error for
a 2-Inputs 1-Output FCS having uniformly distributed MFs
are shown in Fig. 13. While keeping the 5 input MFs fixed,

FIGURE 13. Comparison of relative error between three models
of 2-Inputs 1-Output for linear system (5 input MFs & different output
MFs).

the output MFs are varied from 5 to 9. It can be seen that,
in comparison to 5 output MFs, the relative errors in 9 output
MFs case stays well below 10% throughout the input range
except for the very low input values. The results for 5 output
MFs case, however, produces relative errors of more than
10% in many instances throughout the range of input values.
This indicates that using higher number of output MFs as
compared to input MFs in FLC design, tuning of only first
and/or last MFs is required. This is in contrast to the case of
the same number of input/output MFs where the tuning of
almost all MFs is needed to achieve better accuracy.

From Fig. 13, it can be seen that increasing the number
of output MFs to 7 worsens the relative errors in comparison
with 5/5 input/output MFs case in the first half of the input
range. Analysis of a number of simulation results on different
FLC designs reveals that the best results can be obtained if
the number of output MFs are set according to the following
criteria.

No. of Output MFs = 2∗(No. of Input MFs)− 1 (5)

The authenticity of this relation is determined through simu-
lations for 2-Inputs 1-Output models using up to 5 inputsMFs
and up to 9 output MFs.

In order to further reduce the relative errors in the very
low region, the AOMF approach is used for the case 5 input
and 9 output MFs. The results, Fig. 14, show that even the
AOMF approach alone is not able to reduce the errors. How-
ever, it can be seen that after applying the tuning algorithm,
the relative errors are significantly reduced down to 10%.

A comparison of RMSE, MAE, and MAPE values of
2-Inputs 1-Output models of the linear system is given
in Table 5. It can be seen that our proposed approach using
AOMFs (with tuning) provides the most accurate results
determined either in terms of maximum relative error (%),
RMSE, MAE, and MAPE.

The proposed approach of FLC design using AOMFs along
with the tuning algorithm is also implemented on designs
with 3/5, 4/7 input/output MFs. Fig. 15 shows the experimen-
tal results of the two FLC designs. It can be seen that the pro-
posed tuning algorithm can adequately reduce the maximum
relative error. The results show not only a significant decrease
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TABLE 7. Comparison of different 2-Inputs 1-Output models using
different input and output MFs (for nonlinear system).

FIGURE 14. Comparison of relative error between two models of 2-Inputs
1-Output for linear system (AOMFs without & with tuning).

FIGURE 15. Comparison of relative error between different models
of 2-Inputs 1-Output for linear system (3, 4 input MFs and AOMFs without
& with tuning).

in the maximum relative error (%) but also an improvement
in the values of RMSE, MAE, and MAPE as shown in Table
6. The proposed approach of FLC design, therefore, offers
much better system accuracy than approaches.

The efficacy of our proposed approach to design accurate
FLCwith monotonic and nonlinear output is also determined.
Fig. 16 shows the experimental results of 2-Inputs 1-Output
FCS with uniformly distributed different numbers of output

FIGURE 16. Comparison of relative error between four models of 2-Inputs
1-Output for nonlinear system (5 input MFs and different output MFs).

FIGURE 17. Comparison of relative error between different models
of 2-Inputs 1-Output for nonlinear system (3, 4 input MFs and AOMFs
without & with tuning).

MFs while keeping the 5 input MFs fixed. It is evident that,
even in this scenario, increment in output MFs reduces rela-
tive errors. The best results (<10% maximum relative error)
are, however, obtained for the case of 5/9 input/output MFs
after applying the tuning algorithm.

Similarly, the maximum relative error in 2-Inputs 1-Output
FCSwith 3 or 4 inputMFs and 5 or 7 output MFs respectively
reduces significantly, down to < 10%, after tuning of only
first and last outputMFs as shown in Fig. 17. The comparative
view of errors shown in Table 7 clearly shows the proposed
approach of AOMFs (with tuning) shows much better perfor-
mance even in the case of nonlinear output values.

Furthermore, the proposed system provides better accuracy
and stability not available in any FCS model in the liter-
ature. Moreover, we did not compare the proposed model
with other models available in the literature according to the
authors’ knowledge, there is no existing FCS model that has
successfully implemented AOMFs (with tuning) in existing
FCSmodel and which provides the best possible combination
of input and output MFs to improve system’s accuracy. Using
the best combination of input and output MFs with the tuning
of first and last MF can improve the system’s accuracy better
than other models available in literature using ANN, GA, etc.

VII. CONCLUSION AND FUTURE WORK
The main purpose of this research is to find the best possible
relationship that exists between the number of input and
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output MFs and the stability of the controller, i.e. the speed
required for the controller to reach a steady state. This helps
engineers in the robotics and control fields gain insight into
the key factors required to design a stable system. The key
points of our research are summarized as
1. Our proposed approach is based on the Mamdani model

which is easy to implement with much less computational
burden. In literature, most of the authors use ANN and
GA to optimize MFs in FCS. In this paper, we reduced
RMSE of 2-Inputs 1-Output FCS by almost 75.3% and
also, reduced MAPE, and MAE by 73.9%, and 77.3%
using simple Mamdani model.

2. In general, the authors simulated some observations and
finalized the results. In our proposed approach model,
we have simulated at least 51 observations in the complete
range of the treatise to find out the best solution. If we
reduce the no. of observations (36) then our results will be
far better than this (RMSE = 0.78405, MAE = 0.43942,
MAPE = 0.87843).

3. Keeping the same number of input MFs will produce the
same number of rules and just increasing the output MFs
(No. of output MFs = 2 ∗ No. of Input MFs - 1) with
the tuning of (first and last) MFs provides us much better
system’s accuracy and reduce the huge amount of errors.

4. Model outcomes show a substantial improvement by
studying the effects of the AOMFs and the efficiency
of the FCS, it was observed that the proposed AOMFs
approach provides the best FCS from the accuracymetrics.
Finally, it can be inferred that the use of the AOMFs
approach is more effective for the performance metrics of
the controller.

The simulation results are in good agreement with the mea-
sured PWM. Therefore, the analysis of the number of out-
put MFs and its distribution on FLC in this paper can be
considered to be effective. In particular, using the proposed
AOMFs approach, the control accuracy required in the (≤±
5%) range has been successfully achieved, thus verifying the
effectiveness of the designed MFs. Therefore, the proposed
approach can be used as a system design tool for FLC appli-
cations in any other industrial field.

In future work, we should like to implement our proposed
approach on more than one output FCS and we also plan to
implement the proposed approach in more than two inputs
(3 or 4) and one output FCS to improve the accuracy of the
system.
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