IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 4, 2020, accepted February 12, 2020, date of publication February 17, 2020, date of current version February 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974521

Trajectory Outlier Detection on

Trajectory Data Streams

KEYAN CAO"“12, YEFAN LIU"“, GONGIJIE MENG!, HAOLI LIU!,

ANCHEN MIAO', AND JINGKE XU 12

ICollege of Information and Control Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2Liaoning Province Big data Management and Analysis Laboratory of Urban Construction, Shenyang Jianzhu University, Shenyang 110168, China

Corresponding author: Keyan Cao (caokeyan@sjzu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602323, in part by the National
Postdoctoral Foundation of China under Grant 2016M591455, in part by the Youth Seedling Foundation of Liaoning Province under Grant
Inqn201913, and in part by the Natural Science Funds of Liaoning Province under Grant 2019MS264 and Grant 20180550019.

ABSTRACT The detection of abnormal moving on trajectory data streams is an important task in
spatio-temporal data mining. An outlier trajectory is a trajectory grossly different from others, meaning there
are few or even no trajectories following a similar route. In this paper, we propose a lightweight method to
measure the outlier in trajectory data streams. Furthermore, we propose a basic algorithm (Trajectory Outlier
Detection on trajectory data Streams-TODS), which can quickly determine the nature of the trajectory.
Finally, we propose an Approximate algorithm (ATODS) to reduce the detection cost. It is space approximate
algorithm which can effectively reduce the amount of calculation. The cost of ATODS algorithm can satisfy
the demand of trajectory data streams. Our method are verified using both real data and synthetic data. The
results show that they are able to reduce the running time without reducing the accuracy.

INDEX TERMS Outlier, trajectory stream, moving object.

I. INTRODUCTION

With the development of sensor network,GPS (Global Posi-
tioning System), wireless communication and other technolo-
gies, mobile intelligent devices with positioning function are
widely used, generating a large number of trajectory data
streams of moving objects, such as taxi track data streams,
animal migration data streams, personal mobile data streams
in large public places and so on. The trajectory data stream is
continuously generated every day. For example, the vehicle
trajectory is based on the collection of vehicle GPS, with
an average daily data volume which varies from 10 million
to 100 million, generating TB level data trajectory stream
information every day. The mobile phone trajectory is based
on the sampling of cellular base station, with an average daily
data volume which varies from 1 billion to 10 billion, with the
total data volume of TB or PB [1]. It can be seen that we have
entered the era of trajectory data streams.

A lot of valuable time-effect information is hidden in the
trajectory data streams, and researchers are urgently required
to analyze it in time to find out the problems and solve them
in time [2], [3]. Moving objects in public places tend to have

The associate editor coordinating the review of this manuscript and

approving it for publication was Yongqiang Zhao

VOLUME 8, 2020

similar moving trajectories, such as the flow of people in
scenic spots or in stations, and behaviors that deviate from
this trend are considered abnormal movements [4]. In terms
of traffic, vehicles deviating from their normal trajectory may
be caused by drivers’ drunken driving or sudden physical
discomfort. In terms of safety supervision in public places,
some moving trajectories deviate from the flow of people,
and there may be potential security risks, such as theft or acts
that endanger public safety. As shown in Figure 1 in order to
ensure the safety of tourists in tourist attractions and maintain
the normal sightseeing order, real-time monitoring of the
movement of passengers in a certain scenic spot is performed.
1 ~ 3 indicate the sequence of collection of tourist location
information and the location of the tourist at that moment.
It can be seen from the figure that tourists o1, 02, 04, and o5 all
follow the flow of people from attractions 1 to attractions 2,
but tourist 03 is different from others. So,tourist 03 is regarded
as an abnormal moving object. There are several possibilities
for this abnormal situation, maybe the tourist 03 is lost, or he
is not an ordinary tourist, but a criminal with a special attempt.
However, no matter what the reason is, it needs to attract
the attention of scenic area managers, and timely provide
help or stop the occurrence of some situations. It can be seen
that real-time detection of abnormal moving objects based

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 34187


https://orcid.org/0000-0001-6843-4524
https://orcid.org/0000-0001-5070-1305
https://orcid.org/0000-0003-3241-4913
https://orcid.org/0000-0002-6974-7327

IEEE Access

K. Cao et al.: TODS

A
oy 0
N o

04 F]

g 0s i1
Altractions 1

-

Attractions 2

FIGURE 1. Application example of trajectory data streams.

on trajectory data streams has important practical application
value.

In this paper, we present efficient algorithms for the
outliers detection on trajectory data streams over sliding win-
dows. In summary, the major contributions of this work are
as follows:

A new algorithm Trajectory Outlier Detection on trajec-
tory data Streams(TODS) is designed for outlier detection
on trajectory data streams. The algorithm is able to quickly
determine the nature of an outlier by lightweight definition,
to further improve the efficiency.

We propose an approximate approach for Trajectory Out-
lier Detection (ATODS) based on TODS by distance tree
structure. In this way, the such amount of calculation is
effectively reduced, thus meeting with the real-time criteria
of processing trajectory data streams.

In the remainder of this paper, we introduce related work
in Section II. After that, we formally define outlier problem
in Section III. Section IV introduces our methods for outlier
detection on trajectory data streams. An extensive experi-
mental evaluation of the performance of the algorithms is
presented in Section V. Finally, Section VI concludes the
work and briefly discusses future work.

Il. RELATED WORK

A. TRAJECTORY ANOMALY MEASUREMENT

Trajectory data is a kind of spatiotemporal data, which has
become a hot research topic in recent years [5], [6]. Trajec-
tories are usually represented by several interrelated static
points, which makes the object distance measurement method
[71, [8] in traditional outlier detection unable to be directly
used to measure the distance between trajectories.

In 2000, reference [9] proposed to represent the trajectory
as several independent global attributes. The disadvantage
of this method is that too many parameters are considered
when measuring the abnormality of the trajectory, and the
determine method is too complicated, which is only suitable
for the trajectory with short and simple path.

In 2008, reference [10] proposed to measure the trajectory
outlier based on the Hausdorf distance function,which was
originally used for image similarity measurement. Although
the trajectory is also composed of points, it is different from
the image because the trajectory has more time dimension
than the image, which has an impact on the measurement of
outliers. The Hausdorf distance function only considers the
geometry of the trajectory, not the time dimension.

34188

In 2009, reference [11] proposed to use k continuous tra-
jectory points as the basic comparison unit to represent the
local characteristics of the trajectory, and proposed a distance
function based on the measurement of the degree of matching
of the basic comparison unit.

The existing measurement of trajectory outliers usually
divides the trajectory into trajectory segments, and then cal-
culates the distance between trajectory segments. The main
method of measurement is very complex and cannot meet the
real-time requirements of trajectory data stream algorithm.

B. MOVING OBJECT INDEX

This application is directed to the environment of trajectory
data streams, and provides outlier moving object detection
services in the context of free space and limited space appli-
cations [12]-[14]. The following describes the existing index
structure from two aspects.

At present, there are many ways to optimize based on
update strategies. LUGrid (Lazy Update Grid) [15] and R-tree
(LUR-tree) [16] proposed the use of delayed insertion and
deletion methods to deal with the problem of frequent index
updates caused by moving object location updates. RUM-tree
(RUM-tree) [17] proposed to use update memo to solve the
problem of frequent index update caused by the change of the
position of the moving object.

In some practical applications, the information of the mov-
ing object in the future is usually queried [18], which requires
the prediction of the position of the moving object and the
index of the current and future position of the moving object.
The main methods include: transform domain method, origi-
nal space temporal domain method and temporal parameteri-
zation method.

Temporal parameterization method. The main idea is to
construct a minimum bounding rectangle (MBR) function
based on time, so that moving objects in the same time period
can execute any query at any time in the same rectangle. The
time parameter R-tree (TPR-tree) [19] is based on R-tree and
adopts the idea of parameter bounding boxes. The MBR of
the TPR-tree is used to cover a set of moving objects, which
is called a conservative bounding rectangle.

The indexes for historical trajectories are mainly divided
into: overlap method, time-dimension method and index tra-
jectory method.

Method of adding time dimension. The main idea is to
add time dimension on the basis of the R tree to build an

VOLUME 8, 2020



K. Cao et al.: TODS

IEEE Access

index, which is used to process spatial queries with temporal
predicates. The MTSB tree [20] divides the space into disjoint
cells, and then uses the TSB tree [21] to index the objects.
In this way, the TSB tree results of all cells are combined
to support all spatial-temporal range trajectory queries. STR
tree [22] ensure the tightness of the object in time and space,
the identification of the trajectory and the information of its
starting position in MBR are added to the node.

The existing trajectory indexes are based on static tra-
jectory data, which cannot be incrementally maintained and
the indexes are costly. They are not suitable for frequently
updated trajectory data stream.

C. ABNORMAL MOVING OBJECT DETECTION QUERY

In this section, the research status at home and abroad is
introduced from two aspects: outlier detection on trajectory
data and outlier detection on trajectory data streams.

1) OUTLIER DETECTION ON TRAJECTORY DATA

In 2008, Lee et al. [10] proposed a partition-based abnormal
trajectory detection framework, which divided the trajectory
into a set of line segments, and used the line segments to rep-
resent the local characteristics of the trajectory. The algorithm
is mainly composed of a two-layer trajectory segmentation
strategy and a distance-based density hybrid method. The
disadvantage of this method is that when the number of
trajectories is huge, the calculation of the distance between
trajectory segments is very time-consuming, which directly
affects the operation efficiency of the algorithm.

In 2010, Ge et al. [23] proposed a Top — k evolving tra-
jectory outlier detection method (Top-EVE) to detect Top — k
outlier trajectories. First, a grid is established for the space
area, and a direction matrix is defined, and a direction-based
summary vector is generated based on the historical data
of the trajectory. Then the distance between the specified
trajectory and the summary vector is calculated to determine
the abnormal situation of the trajectory.

In 2009, Liu et al. [11] proposed an outlier trajectory detec-
tion algorithm based on R-Tree. This method determines
whether the two trajectories match entirely by detecting the
local abnormality of the trajectory, and then detects the abnor-
mal trajectory. It is proposed to use the distance feature matrix
between the R-Tree and the trajectory to find all possible pairs
of basic comparison units, and then determine whether they
are locally matched by distance calculation. The algorithm
only considers the geometric characteristics of the trajectory,
it does not consider the velocity dimension of the trajectory.

2) OUTLIER DETECTION ON TRAJECTORY DATA STREAMS

In 2009, Bu et al. [23] studied the problem of real-time
detection of outliers in single-trajectory data streams, and the
detection target was anomalous sub-trajectory segments in
single-trajectory streams. Due to the huge amount of data in
the trajectory streams, outlier detection cannot be performed
after being stored. Therefore, the detection in the trajec-
tory stream environment requires high real-time performance,
and the outliers must be detected in real-time processing.

VOLUME 8, 2020

Three sliding windows are defined in the article, and out-
lier detection is performed through incremental maintenance
between windows. The algorithm is only applicable to single-
trajectory data streams.

In 2014, reference [24] proposed to use position infor-
mation between the points in the trajectory for traditional
outlier detection. Further more, in order to consider the speed
dimension, the update of the neighbors of the moving object
was also used as one of the judgment conditions. In brief,
if the moving object does not have a sufficient number of
trajectory neighbors, the trajectory is considered as an outlier.
This method used many parameters to determine the outlier
of the trajectory, and the accuracy of the detection results will
be restricted.

In 2017, Mao et al. [25] proposeed a feature grouping-
based mechanism that divided all the features into two
groups, where the first group (Similarity Feature) is used
to find close neighbors and the second group (Difference
Feature) is used to find outliers within the similar
neighborhood.

Most of algorithms mentioned above all work on static
trajectory data. This means that the algorithm must be exe-
cuted from scratch if there are changes in the underlying data
objects, leading to performance degradation when operated
on trajectory data streams. A few outliers detection algo-
rithms of trajectory data streams, which divided the trajectory
into sub-trajectory segments and the index structure cannot
be incrementally updated, so the algorithms cannot meet the
real-time requirements of trajectory data streams.

lll. PROBLEM DEFINITION
In this section, we first introduce the definition of outliers on

trajectory data streams. Then, we denote the set of n moving
objects as O = o1, 03 - - - 0, Where 0; is a moving object with
id = iand 1 <i < n. Trajectory T; produced by the moving
object o;. The point pﬁ‘ is a point at timebin 7,, that is in the
trajectory Tj, so trajectory 7; consist of points pl! , p[.z, ~~~~~~ .
Outlier definition on trajectory data streams is based on the
definition of outlier for deterministic data.

Definition 1 (Point Neighbor): The two trajectory points
p? and p]“ are respectively points of trajectory T; and 7; at
time u, where i # j. Letd (p? , p;‘ ) be the distance between
point pf and p/’»‘ If d(pf , pjlf ) < R, we say that point p/’.L is
the point neighbor of pf‘ at timet,, with R a given distance
threshold.

For point p!', the set of point neighbors is denoted as N (p}").

Definition 2 (Neighbor Update Probability): Let p? be
the point of trajectory 7; at time ¢, where T; € T'. Let pﬁ‘ -
be the previous time point of p!. Let [N (p}~ 1| be the number
of points in set N(pf‘_l), and N(p!") — N(pf‘_l) the number
of point neighbors in N(p/*~") and not in N(p/*). P is the
neighbor update probability, then

o _ INGETH — NG
, NG

ey

34189



IEEE Access

K. Cao et al.: TODS

TABLE 1. Frequently used symbols.

Symbol Interpretation

0; The i-th moving object

O; Set of points of the o; moving object
T; Trajectory of 0; moving object

T Set of trajectories T; fori =1ton
pl’.l Point of trajectory 7; at time #,

d (pfl , p? ) Distance between point pfl and p?

R Given distance threshold
N(p!) Set of point neighbors of p!’
IN(PD)] Number of points in set N(p!')
yis T e T T
P, Update neighbor probability of point p;

NP —N ()

Number of update neighbors of pf

F(T;) Outlier factor of Trajectory T;

[o(T)| Number of point outlier in Trajectory 7;

4 Number of points in trajectory 7; in Sliding
Window

dis( pf , p? ) Distance between pf-“ and p? NEY

Definition 3 (Point Outlier): pf is the point of trajectory
T; at time t;. N (pr ) is the set of point neighbors of point
p!',and [N(p!")| is the number of points in the p!‘. The k and
P be user specified thresholds, where 0 < k and 0 < P < 1.
If the |N(pf‘)| < k or P;‘ > P then point pﬁl_l is a point
outlier.

In this paper, we use sliding window. Let Weypen; mean
current window, the sliding window is based number points
in window. W is the number of points of each 7; in the current
window.

Definition 4 (Trajectory Outlier Factor): Trajectory T;
consist of pﬁ‘ ,where 0 < i < nand u > 0, W is the window
size, |O(T;)| is the number of point outlier in Trajectory 77,
then

|O(T)]
F(T) = W @)

Definition 5 (Top-k Trajectory Outlier): Let F(T;) be tra-
jectory outlier factor of Trajecoty T;, where T; € T. Accord-
ing to a F(T;) of each T; value, arrange in descending order.
The first top — k outliers are trajectory outlier.

Problem: Trajectory Outlier. Given the parameters, R, k
and P and window size W, the trajectory outlier at each
position of the window are outputted.

An incremental algorithm should be designed, which only
changes the previous dataset with the previous result to pro-
duce the new result. In this paper, we only consider the case
that the slide size of window is 1. We used the count-based
window which always maintains the W most recent points.
Our technique can be easily extended to time-based sliding
window.

IV. OUTLIER DETECTION ON TRAJECTORY

DATA STREAMS

First, we describe the basic algorithm-TODS, it is based on a
lightweight method. Further more, we introduce the approxi-
mate algorithm-ATODS, that according to the Spatiotemporal
correlation of trajectory data streams.

34190

A. BASIC ALGORITHM
In this subsection, a basic algorithm for outlier detection
on trajectory data streams is presented. It is able to quickly
determine the nature of each trajectory. The research based
on trajectory data streams, so the main processes are mainly
divided into two parts, initialization and incremental update.
In the initialization phase, the window contains w points
of each trajectory. Firstly, according to the Definition 1,
the point neighbors should be find for every trajectory point
pf‘ , and set up the set of point neighbors N (pr ) for every pf* .
According to Definition 2, comparing the point neighbor sets
N(p!") of neighbor time data point p!', get the neighbor update
probability p(pf‘ ). According to the Definition 3, we can get
the point outlier at every timebin. The next step is to calculate
the outlier factor of every trajectory 7;. Finally, according
to the outlier factors of each trajectory T7j;, trajectories are
arranged in descending order, and the Top—k tracks are on the
outlier trajectory in initialization phase. The costs of TODS
algorithm are O(n?), where n is the number of trajectories.
The initialization framework of the outlier detection on tra-
jectory data streams is illustrated in Figure 2.

Trajectory data streams

T | n TR TR | T
ERR I S < I P IR R b o
L\t Y | T

‘ Top — k trajectory uutlif:r|

FIGURE 2. Algorithm Framework for Trajectory Outlier Detection.

FIGURE 3. Example of trajectory outlier detection.

As example, the Figure 3 shows that the four trajectories,
Ti...T4, the window size is W = 3. Table 2 shows all
points of trajectory in initialization window. We assume that
R=15m=2,P=0.75and k = 1. At time #1, the point
neighbors of trajectory point pi are pé and pé, so the set of

VOLUME 8, 2020



K. Cao et al.: TODS

IEEE Access

TABLE 2. Example of trajectory data.

Trajectory I t 12} ta
T (1.0,3.5) | (2.0,3.0) | (1.9,2.7) | (3.0,4.0)
T (1.0,3.0) | (2.0,1.0) | (3.0,1.0) | (4.0,1.0)
T; (1.0,2.0) | (2.0,3.2) | (3.0,2.5) | (4.0,2.4)
Ty (1.0,1.0) | (2.0,2.0) | (3.0,0.8) | (4.0,1.2)

TABLE 3. Details of initialization window.

T 1 n P? 1 p? i P
Ti phrly [ {rlrl [ 05 ] {p} 0 0 1
B {p.py. i) {pi} U [ {pipy [0 [{Apf [0
T {pl ool {p3.p7) [ 033] {pi.p3} [ 05 | {pl.pi} |05
T {p3} {r.r4 0 [ {r} T [ {papst [0
PointOutlier| {p}} (r} {p.pi} rh

point neighbor pi is N(p%) = {pé, pé}. At time ?1, the neigh-
bor set of point p}1 is {p;}. The number of neighbors of point
p}1 is 1 < m, so point p}1 is outlier in time #;. At timebin 1;,
the point neighbors of trajectory point p% are pg and pﬁ, the set
of point neighbors p% is N (p%) = {p%, pi}, and neighbor
update probability P% of point p% is 0.5. The neighbor updates
probability pi of point pi is equal 1. At timebin #,, point p%
and pﬁ are outliers. At timebin #3, point p? and pi are outliers.
According Definition 2, the outlier factor of every trajectory:
F(Th) = 03; F(To) = 0.3; F(T3) = 0; F(T4) = 1. In the
initialization window, the trajectory T4 is trajectory outlier.
The Table 3 shows that all details of the example.

In order to meet the requirements of data streams, the abil-
ity of incremental update is needed for the detection of tra-
jectory outliers. When windows slide, the trajectory points at
time 7(u) expired, and the points at time #;4,, will arrival, w
is windows size. Outlier factor incremental update:

FoT)*«W—a+p

Fy1((T) = W 3)

where F,,(T;) is the outlier factor of trajectory 7; in current
window, Fy,1((T;)) is the new factor of trajectory 7; in
next window that is the next window after current window.
If trajectory point pﬁ‘ is outlier, then « = 1, otherwise o = 0.
If trajectory point pﬁH_w is outlier, then § = 1, otherwise
B=0.

When the window slides, time #; expired, time #4 arrives.
Based on the above, we can get the outlier factor in the new
window.

B. APPROXIMATE ALGORITHM
In the basic algorithm, we need to find the nearest neighbor
of all the trace points at every time point. If the number
of trajectories is n, then the complexity of computing the
neighborhood is #>. When there is a lot of trajectories, it will
affect the detection efficiency. In this section, we introduce
the approximate algorithm to improve the efficiency of find-
ing nearest neighbors.

Although the trajectory points may exist in any position
at a time f,, from the point of view of the track, they
have time correlation, that is to say, the two neighbor time

VOLUME 8, 2020

Algorithm 1 TODS Algorithm
Input: Trajectory data streams T
Output: Trajectory outlier

1: Initialize Trajectory outlier set Tp = ;

2: fori=1to |W|do

3:  Calculate the distance between p!' to p]H NEY
4:  Set up set of point neighbor N (pf )

5: end for
6
7
8

: fori=1to |W]|do _
Calculate the neighbor update probability pi,j #*i
According to probability threshold determined point

outlier;
9:  Calculate the outlier factor F(T;)
10: end for

11: Descending order of outlier factor F(T;)
12: Get the top — k trajectories

TABLE 4. Example of ATODS.

Trajectory point Neighbor set
Pl {r).rt}
A [
pe (P, Py P Pl }
pg {pg 717% P}
Pe {P/ s Py }
A {pe.pl}
pg {pg}
pﬁ {pﬁ} —r
Pi {Pz:717j~,17k}
I (r'}
ri {3
P}'J
R
0.5 -~ -~ 0.B
.///
i i
i
0.9 13 0.2 1.3
- ~ - ~
Rjﬂ Pcﬂ H# R#
1.3 /\\““1'8 Ii//\‘\\[_g
0 D u 1
£ R P B

FIGURE 4. Tree structure of ATODS algorithm.

points, the change of the trajectory has some potential rulers.
We need to build a tree structure to store this relationship,
to make use of these rules to conduct neighbor query.

After initialization, we can get the neighborhood set of
every trajectory point. We choose high density point as root
node of tree, and its neighbors are its children’s nodes. The
weight of an edge is the distance between two nodes. The
nearest neighbor with the smallest distance is the left child
node, and the nearest neighbor with the longest distance is
the right child node. Continue using this method to find
grandchildren. When a node has more than one path to the
root node, it is placed at the nearest position to the root node.

34191



IEEE Access

K. Cao et al.: TODS

—8— TODS —B8— TODS
—o— ATODS —&— ATODS
8 —&— IBAT 8 —4&— IBAT

4/4,./,—&”‘*///0
M
2w 2

Running time (s)
Running time (s)

Gk//&,M
43—,/8///8/8,//{
M

—8— TODS
—O6— ATODS
8 —&— IBAT

415//5‘.9,//‘9’/‘
sz

Running time (s)

10 15 20 25 30 10 15
m

(a)

FIGURE 5. Running time vs m value. (a) BJ. (b) TAXI. (c) SYN.

Use this method to fill in the leaf node until the leaf node
cannot be found, It means that the tree has been established.
In the same way, continue building another tree.

For example, in Table 4. At time t,, for trajectory point
pl, the neighbor set N(pf) of is {p},, p'} and neighbor set
N(p}) is {pa, Pt . pj}. We choose high density point, such as
pa as the tree node. Its neighbors pj, and p- are its children’s
nodes. Because of the distance between p; and pZ is 0.5,
and the distance between pl and p~ is 0.8, so pl; is the left
child of root node p; . The neighbor set of pl; is {p4, p&, ply},
and dis(p}), ply) = 0.5, dis(pll, ply) = 0.6, dis(p}}, pl}) =
0.5, then dis(p),, pa) > dis(p},,ply) > dis(p);, p},). Firstly,
we should insert the p/; into the tree structure, if it has already
existed, then the p/; is no longer inserted into the tree again.
According to the information in the Table 4, the tree can be
established as shown in Figure 4.

When the window slides, time 7,4 arrives, we can use this
tree to quickly determine the attributes of trajectory points,
instead of calculating the distance between any two points.
Generally, the number of trajectory is large, and the threshold
m is very small, so it is not necessary to find all its neighbors,
but to find m neighbors to meet the condition of non-outliers.
At time 7,,, p}, is the nearest neighbor of p);. For trajectory
point pj, pj ! is given priority to determine whether it’s the
neighbor to pl; + Accurately calculate the distance between
P and Py *1 and update distance information on the tree.
The second priority is p~ + , because p/’ is the second nearest
neighbor of pl;. Continue searching until m neighbors are
found. For other non-root data points, such as p/’ +1, P s
preferred. When looking for the point neighbor, we should
also consider the update rate of the neighbors. When you
can’t find the neighbors continuously with this tree structure,
it need to consider whether this trajectory point is an point
outlier, or the tree structure needs to be updated. Inserting
the data point into the candidate set, only if the trajectory
point’s neighbors cannot be found in the current tree. When
the number of trajectory points in the candidate set exceeds
the threshold value, it means that the current tree structure
is no longer applicable, so it needs to re-establish the tree
structure according to the trajectory position of the current
time point.

34192

25 30 10 15 20 25 30

(b) (©

V. EXPERIMENTAL EVALUATION

We conduct extensive experiments on two real datasets and a
synthetic dataset to evaluate the running time and accuracy
of the three algorithms developed in this paper: the basic
algorithm (TODS), and the approximate algorithm (ATODS).
For comparison, we implement the outlier detection algo-
rithm (IBAT) [26]. We introduced the experimental setup and
evaluation criteria in the first subsection. The experimental
results and analysis are then introduced in other subsections.

A. EXPERIMENT SETTINGS

We conduct extensive experiments on two real datasets and
one synthetic dataset to evaluate the running time and accu-
racy of the algorithms developed in this paper: the basic
algorithm (TODS), the approximate algorithm (ATODS). For
comparison, we implement the outlier detection algorithm
IBAT. All the algorithms are implemented using Microsoft
Visual C++. The experiments are run on PC with a Core
i3-3.3 GHz CPU and 4G of main memory. We use two
real-world datasets and one synthetic dataset. The real
datasets are (1) Beijing trajectories dataset (BJ), which con-
tains 5,660,692 trajectories. (2) Taxi GPS dataset (TAXI)
[27], [28], which generated by 10,357 taxis. The total num-
bers of points is about 15 million. And we generate a synthetic
trajectory stream dataset (SYN).

B. RUNNING TIME EVALUATION

In order to prove the efficiency of our proposed algorithms,
we first discuss the cost of algorithms. We vary the values
of parameters to compare our algorithms and investigate the
effect of each parameter.

Figure 5 shows the running time of the three algorithms
on three datasets. The running time for all three algorithms
proposed in this paper increase as m increases, because more
data points need to be processed in the R-neighbor set. TODS
and ATODS are faster than IBAT. As expected, the perform
of TODS and ATODS is better than IBAT since R, P, w are
constants. In general, ATODS runs faster than TODS because
it reduces unnecessary calculation.

Next, we study the performance of the proposed methods
with varying distance threshold R. The results are given

VOLUME 8, 2020



K. Cao et al.: TODS

IEEE Access

—8— TODS

Running time (s)
Running time (s)

—8— TODS

Running time (s)

2 2
0 0 0
10 15 20 25 30 10 15 20 25 30 10 15 20 25 30
R R R
() (b) (c)
FIGURE 6. Running time vs R value. (a) BJ. (b) TAXL (c) SYN.
10 10 10
—&— TODS —&— TODS —&— TODS
—6— ATODS —6— ATODS —e— ATODS
8 || —=— 1BAT 8 || —a— 1BAT 8 || —a— IBAT

Running time (s)
- =)
Running time (s)
-~ =)
Running time (s)

IS

\

05 0.6 0.7 0.8 09 05 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
P P
(a) (b) ©
FIGURE 7. Running time vs P value. (a) BJ. (b) TAXI. (c) SYN.
10 10 10
—&— TODS —&— TODS —&— TODS
—e— ATODS —e— ATODS —o— ATODS
8 [| —a— IBAT 8 || —— IBAT 8 || —a— IBAT

Running time (s)
Running time (s)

2 | /é | :;%

Running time (s)

(a)

FIGURE 8. Running time vs W value. (a) BJ. (b) TAXI. (c) SYN.

in Figure 6. R varies from 10 to 30, and the performance of
our algorithms may degrade as R increases. Because more
data points need to be processed in the R — neighbor set.
TODS and ATODS are faster than IBAT. In general, ACUOD
runs faster than CUOD, because it reduces the number of data
points.

In the third experiment, we investigate the running time
of varying neighbor update probability threshold P. The
results are given in Figure 7. The probability threshold varies
from 0.5 to 0.9. The running time decrease as parame-
ter P increases. Notice that TODS and ATODS are faster
than IBAT.

VOLUME 8, 2020

300 400 100 200 300 400

w w

(b) (©

The next experiment studies the running time of the algo-
rithms for window size W. The running time increase for
all algorithms as parameter W increases,because more data
points need to be processed in the current window. The results
are shown in Figure 8.

C. ACCURACY EVALUATION

In this subsection, we give the experimental results about
accuracy on synthetic dataset and real datasets. We study the
effect on accuracy of different parameters. In Figure 9, the m
from 10 to 30. The results show that m value has relatively
small impact on accuracy.

34193



IEEE Access

K. Cao et al.: TODS

Accuracy

FIGURE 9. Accuracy vs m value. (a) BJ. (b) TAXI. (c) SYN.

Accuracy

0.98

—F——— a4
0.96

0.94
—8— TODS
—6— ATODS
—4&— IBAT
0.92
10 15 20 25 30

0.98

0.96

 — —S— e—

0.94
—8— TODS
—6— ATODS
—4&— IBAT
0.92
10 15 20 25 30
R

(a)

Accuracy

Accuracy

0.98

0.96

0.94
—8— TODS
—6— ATODS
—4&— IBAT

0.92

10 15 20 25 30
m
0.98
0.96

0.94
—B8— TODS
—6— ATODS
—4&— IBAT
0.92
10 15 20 25 30
R

(b)

FIGURE 10. Accuracy vs R value. (a) BJ. (b) TAXI. (c) SYN.

Accuracy

0.98

0.96

e

0.94
—8— TODS
—6— ATODS
—4&— IBAT
0.92
0.5 0.6 0.7 0.8 0.9
P

()

Accuracy

0.98

0.96 EE g

FIGURE 11. Accuracy vs P value. (a) BJ. (b) TAXI. (c) SYN.

Accuracy

0.98

0.96

0.94

7’\A\A\‘§:@
—8— TODS
—6— ATODS
—4&— IBAT

100 200 300 400

0.92

(a)

Accuracy

0.94
—8— TODS
—6— ATODS
—4&— IBAT
0.92
0.5 0.6 0.7 0.8 0.9
P
0.98
0.96 ES %
0.94
—&— TODS
—6— ATODS
—4&— IBAT
0.92
100 200 300 400

w

(b)

FIGURE 12. Accuracy vs W value. (a) BJ. (b) TAXI. (c) SYN.

We study the accuracy of the three methods with varying R.
The results are shown in Figure 10, where R varies from
10 to 30. As expected, our algorithms have good efficiency

34194

Accuracy

Accuracy

Accuracy

Accuracy

0.98
0.96
0.94
—8— TODS
—6— ATODS
—&— IBAT
0.92
10 15 20 25 30
m
(c)
0.98
———a
0.96
0.94
—8— TODS
—6— ATODS
—&— [BAT
0.92
10 15 20 25 30
R
(©
0.98

0.96

0.94
—8— TODS
—6— ATODS
—4&— IBAT
0.92
0.5 0.6 0.7 0.8 0.9
P
(©)
0.98
0.96
0.94
—8— TODS
—6— ATODS
—4&— IBAT
0.92
100 200 300 400

()

without loss of accuracy. Because the approximate algo-
rithm does not have any impact on the generation of outlier,
it prunes strictly according to the nature of outliers.

VOLUME 8, 2020



K. Cao et al.: TODS

IEEE Access

We investigate the accuracy of varying P as Figure 11. The
probability P varies from 0.5 to 0.9. The experimental results
show that the accuracy of the algorithm is almost unaffected
by the probability value.

Finally, we study the accuracy of the four methods with
varying windows size. Figure 12 show the accuracy of the
three algorithms on the three data sets. As we expected,
the window size has relatively small impact on accuracy,
because even for the biggest window size, we can still get
a very high accuracy.

The parameters has relatively small impact on accuracy.
As expected, our algorithms have good efficiency without
loss of accuracy. Because the approximate method does not
have more impact on the generation of outlier.

VI. CONCLUSION

In this work, we focus on the detection of abnormal mov-
ing objects over trajectory data streams. After analyzing the
requirements of stream trajectory applications, we propose
a lightweight method to measure the outlier. Our empirical
study result shows that it can effectively detection moving
object outliers. Furthermore we design an ATODS algorithm
on data trajectory streams to reduce the amount of calcula-
tions. In the future work, we will continue studing the trajec-
tory outlier detection in various common data environments.

REFERENCES

[1] J.J. Xu, K. Zheng, M. W. Chi, Y. Y. Zhu, X. H. Yu, and X. F. Zhou, “Tra-
jectory big data: Data, application and technology status,” J. Commun.,
vol. 12, pp. 97-105, Dec. 2015.

[2] J. Zhu, W. Jiang, A. Liu, G. Liu, and L. Zhao, “Effective and efficient
trajectory outlier detection based on time-dependent popular route,” World
Wide Web, vol. 20, no. 1, pp. 111-134, Jan. 2017.

[3] C.Chen,D.Zhang, P.S. Castro, N.Li, L. Sun, S. Li, and Z. Wang, “IBOAT:
Isolation-based online anomalous trajectory detection,” IEEE Trans. Intell.
Transp. Syst., vol. 14, no. 2, pp. 806-818, Jun. 2013.

[4] H.Wu, W. Sun, and B. Zheng, ““A fast trajectory outlier detection approach
via driving behavior modeling,” in Proc. ACM Conf. Inf. Knowl. Man-
age. (CIKM), 2017, pp. 837-846.

[5] S. Shang, L. Chen, C. S. Jensen, J.-R. Wen, and P. Kalnis, “Searching
trajectories by regions of interest,” IEEE Trans. Knowl. Data Eng., vol. 29,
no. 7, pp. 1549-1562, May 2017.

[6] S.Shang, L. Chen, K. Zheng, C. S. Jensen, Z. Wei, and P. Kalnis, ““Parallel
trajectory-to-Location join,” IEEE Trans. Knowl. Data Eng., vol. 31, no. 6,
pp. 1194-1207, Jun. 2019.

[7]1 S. Shang, L. Chen, Z. Wei, S. Christian, C. S. Jensen, K. Zheng, and
P. Kalnis, “Parallel trajectory similarity joins in spatial networks,” VLDB
J., vol. 27, no. 3, pp. 395-420, 2018.

[8] L. Cao, M. Wei, D. Yang, and E. A. Rundensteiner, “Online outlier
exploration over large datasets,” in Proc. 21th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), 2015, pp. 89-98.

[9] E. M. Knorr, R. T. Ng, and V. Tucakov, “Distance-based outliers: Algo-
rithms and applications,” VLDB J. Int. J. Very Large Data Bases, vol. 8,
nos. 3—4, pp. 237-253, Feb. 2000.

[10] J.-G. Lee, J. Han, and X. Li, “Trajectory outlier detection: A partition-and-
detect framework,” in Proc. IEEE 24th Int. Conf. Data Eng., Apr. 2008,
pp. 140-149.

[11] L.X.Liu, S.J. Qiao, and B. L. An, “Efficient anomaly trajectory detection
algorithm based on r-tree,” J. Softw., vol. 20, no. 9, pp. 2426-2435, 2009.

[12] S. Shang, L. Chen, Z. Wei, C. S. Jensen, J.-R. Wen, and P. Kalnis, “Collec-
tive travel planning in spatial networks,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 5, pp. 1132-1146, May 2016.

[13] S. Shang, R. Ding, K. Zheng, C. S. Jensen, P. Kalnis, and X. Zhou,
“Personalized trajectory matching in spatial networks,” VLDB J., vol. 23,
no. 3, pp. 449-468, Jun. 2014.

VOLUME 8, 2020

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

L. Chen, S. Shang, C. Yang, and J. Li, “Spatial keyword search: A survey,”
Geolnformatica, vol. 24, no. 1, pp. 85-106, Jan. 2020.

X. Xiong, M. F. Mokbel, and W. G. Aref, “LUgrid: Update-tolerant grid-
based indexing for moving objects,” in Proc. 7th Int. Conf. Mobile Data
Manage. (MDM), 2006, pp. 13-20.

D. Kwon, S. Lee, and S. Lee, “Indexing the current positions of moving
objects using the lazy update R-tree,” in Proc. 3rd Int. Conf. Mobile Data
Manage. (MDM), Oct. 2003, pp. 113-120.

Y. N. Silva, X. Xiong, and W. G. Aref, “The RUM-tree: Supporting
frequent updates in R-trees using memos,” VLDB J., vol. 18, no. 3,
pp. 719-738, Jun. 2009.

X. Yue, M. Xi, B. Chen, M. Gao, Y. He, and J. Xu, ““A revocable group sig-
natures scheme to provide privacy-preserving authentications,” in Mobile
Networks and Applications. 2019, pp. 1-18.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing
the positions of continuously moving objects,” in Proc. SIGMOD, 2000,
pp. 331-342.

P. Zhou, D. Zhang, B. Salzberg, G. Cooperman, and G. Kollios, ““Close pair
queries in moving object databases,” in Proc. Int. Workshop Geographic
Inf. Syst. (GIS), 2005, pp. 2—-11.

D. Lomet and B. Salzberg, “Access methods for multiversion data,” ACM
SIGMOD Rec., vol. 18, no. 2, pp. 315-324, Jun. 1989.

D. Pfoser, C. S. Jensen, and Y. Theodoridis, ‘“Novel approaches in
Query processing for moving object trajectories,” in Proc. VLDB, 2000,
pp. 395-406.

Y. Bu, L. Chen, A. W.-C. Fu, and D. Liu, “Efficient anomaly monitoring
over moving object trajectory streams,” in Proc. 15th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining (KDD), 2009, pp. 159-168.

Y. Yu, L. Cao, E. A. Rundensteiner, and Q. Wang, “‘Detecting mov-
ing object outliers in massive-scale trajectory streams,” in Proc. 20th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2014,
pp. 422-431.

J. Mao, T. Wang, C. Jin, and A. Zhou, “Feature grouping-based outlier
detection upon streaming trajectories,” IEEE Trans. Knowl. Data Eng.,
vol. 29, no. 12, pp. 26962709, Dec. 2017.

D. Zhang, N. Li, Z.-H. Zhou, C. Chen, L. Sun, and S. Li, “IBAT: Detecting
anomalous taxi trajectories from GPS traces,” in Proc. 13th Int. Conf.
Ubiquitous Comput. (UbiComp), 2011, pp. 99-108.

J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from the
physical world,” in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining (KDD), 2011, pp. 316-324.

J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang,
“T-drive: Driving directions based on taxi trajectories,” in Proc. 18th
SIGSPATIAL Int. Conf. Adv. Geographic Inf. Syst. (GIS), 2010, pp. 99-108.

KEYAN CAO received the M.S. and Ph.D. degrees
in computer science and technology from North-
eastern University, China, in 2009 and 2014,
respectively. She is currently an Associate Profes-
sor with the College of Information and Control
Engineering, Shenyang Jianzhu University. Her
current research interests include data manage-
ment, cloud computing, and query process and
optimization.

YEFAN LIU received the B.S. degree from the
Shenyang University of Technology, China. He is
currently pursuing the master’s degree with the
School of Computer Science and Technology,
Shenyang Jianzhu University. His current research
interest is big data processing.

34195



IEEE Access

K. Cao et al.: TODS

34196

GONGIJIE MENG received the bachelor’s degree
in software engineering from the Jincheng Col-
lege, Nanjing University of Aeronautics and
Astronautics, in 2019. He is currently pursuing
the master’s degree in software engineering with
Shenyang Jianzhu University. He is also conduct-
ing research on pulmonary nodule detection and
urban big data management and application.

HAOLI LIU was born in Bozhou, China, in 1996.
She received the B.S. degree from Shenyang
Jianzhu University, China, in 2019, where she is
currently pursuing the master’s degree with the
School of Computer Technology. Her research
interest is big data analysis.

ANCHEN MIAO received the B.S. degree from
the Liaoning University of Technology, in 2015.
He is currently pursuing the M.S. degree with
the Information and Control Engineering Faculty,
Shenyang Jianzhu University. His research inter-
ests include big data, trajectory data mining, and
outlier detection.

JINGKE XU was born in Anshan, China, in 1976.
He received the ML.E. degree in computer soft-
ware and theory from Northeastern University,
Shenyang, China, where he is currently pursuing
the Ph.D. degree. He is also an Associate Professor
of computer science with Shenyang Jianzhu Uni-
versity. He has published more than 20 articles in
important journals and conferences at home and
abroad, such as the Journal of Computer Research
and Development, the Chinese Journal of Com-
puters and NDBC. His main research interests include spatiotemporal data
management and analysis, data mining, and intelligent optimization. He is a
CCF member and has hosted and participated in a number of national and
provincial scientific research projects.

M AN

VOLUME 8, 2020



