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ABSTRACT With the rise in the use of DC distributed energy resources and the growth of DC electricity
load, the difficulty in improving DC power quality has become an important research direction. The research
on DC power quality has an important impact on the development of DC power distribution theory and
technology. In this paper, an evaluation method that combines empirical mode decomposition (EMD)
with a one-dimensional convolutional neural network (1D-CNN) of DC power quality is proposed. As a
method of data preprocessing, EMD decomposes the original electrical signal into several intrinsic mode
functions (IMFs). Then, the 1-D CNN with a residual module is used to train the data obtained from
EMD and conducts a comprehensive evaluation with different levels. In addition, the proposed network
was compared with other state-of-the-art deep neural networks, and the experiment proved its effectiveness.
Finally, an example analysis is carried out with the data provided by the Gree Photovoltaic Direct-driven
Inverter Multi VRF (variable refrigerant flow) System to show the validity of the proposed method for
evaluating DC power quality in a real case.

INDEX TERMS DC power quality, photovoltaic direct-driven inverter multi VRF, empirical mode decom-
position, one-dimensional convolutional neural network.

I. INTRODUCTION
Currently, to deal with the world energy crisis and achieve
low-carbon development, many countries are actively com-
mitted to using renewable energy sources to replace non-
renewable energy sources for power generation. Due to
the special geographical distribution of renewable energy,
the electricity generated by large-scale renewable energy
resources such as solar energy, fuel cells, and wind energy
needs to be transmitted over long distances [1]. Studies have
shown that the high voltage direct current (HVDC) is the
preferred solution for the long-distance transportation of elec-
trical energy generated by clean energy sources. DC power
distribution systems have many advantages over AC power
distribution systems. For example, they offer higher effi-
ciency and reliability with improved power quality; they
reduce installation costs because they require fewer power
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conversion stages, fewer copper wires and smaller floor
space; DC power distribution can simplify the integration
of renewable energy and energy storage systems; since the
power supply is distributed by DC, there is no reactive power
or skin effect in the system; unlike AC power distribution sys-
tems, the DC power distribution system does not require any
synchronization, so it facilitates plug and play features [2].
The DC transmission grid is a major technological advance-
ment in point-to-point HVDC connection technology and is
being considered by many applications around the world [3].
High voltage direct current (HVDC) power grids are con-
sidered to be an effective solution to the current situation of
heavy use of renewable energy and AC grid congestion [4].
Therefore, the use of direct current transmission to transport
renewable electricity will become increasingly popular.

In recent years, the power quality of both AC and DC sys-
tems has received widespread attention due to the widespread
use of electronic devices and other asymmetric loads [5].
It is obvious that power quality is an important characteristic
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of today’s distribution power systems since loads become
more sensitive, and nonlinear loads are increasing in the
electrical distribution system [6]. However, with the large-
scale construction of power grids, power quality problems
have become increasingly prominent, which not only affects
the safe operation of electrical equipment but also may cause
economic losses. Therefore, improving power quality is of
great significance. To improve power quality, the first prob-
lem is how to effectively evaluate the power quality. The
International Electrotechnical Commission (IEC) has issued
some basic regulations about power quality testing and eval-
uation, such as the IEC 61000 series standards [7]. IEEE has
also issued various standards related to power quality, such
as IEEE 519, 1159, 1459 [8], [9]. Unfortunately, the above
standards are all about AC power quality.

There are many methods for power quality evaluation of
AC systems. First, some traditional methods are used in
evaluating AC power quality, such as the analytic hierarchy
process (AHP) [10], empirical wavelet transform (EWT)
and rational dilation wavelet transform (RADWT) [11],
S-transform [12], and empirical mode decomposition
(EMD) [13]. There are some advantages and disadvantages
of each technique. Specifically, EMD is widely used in the
evaluation of AC power quality but can only decompose
the original data and extract features. The combination of
other methods, such as the neuro-fuzzy system (NFS) classi-
fier [14] and support vector machine (SVM) [15], can achieve
the goal of power quality classification.

Classification networks have been widely applied to eval-
uate AC power quality, including multifusion convolutional
neural networks (MFCNNs) [16], convolutional neural net-
works (CNNs) [17], and pulse coupled neural networks
(PCNNs) [18]. In addition, some combinations of tradi-
tional methods and classification networks have been tried.
Mrutyunjaya et al. detected and classified power quality
events by integrating the Hilbert-Huang transform (HHT)
and weighted bidirectional extreme learning machine
(WBELM) [19]. A novel classification method for power
quality events using wavelet packet transform (WPT) and
extreme learning machines (ELMs) has been proposed in the
literature [20].

All the above methods are for AC and are not suitable
for DC. Compared with AC power, there are no indexes of
frequency, phase and reactive power for the evaluation of
DC power quality [21]–[23]. Affected by the zero-frequency
characteristic of the DC voltage and the structure of the DC
transmission grid, the correlation between the various DC
power quality indicators is significantly enhanced compared
to that of the AC indicators [24]. The forms of DC generation
are various, such as wind energy and solar energy, which fluc-
tuate by the environment [25], [26]. In addition, DC micro-
grids have advantages over conventional ACmicrogrids, such
as being free from reactive power and total harmonic distor-
tion [27]. Connecting DC load directly to the photovoltaic
system may gain better efficiency because the power sup-
plied to the load is transferred through fewer subsystems and

conversion [28]. Considering that the large-scale transporta-
tion of clean energy is mostly based on DC transmission
and that DC power distribution is more efficient than AC
power distribution, research on DC power quality has become
increasingly important [29], [30].

There are only a few articles on the evaluation of DC
power quality. Ciornei et al. proposed that a set of time and
frequency domain indicators for quantifying power quality
problems may occur in DC microgrids [31]. A combination
weightingmethod based onmaximizing deviation to integrate
subjective and objective weight coefficients was presented
in paper [32]. The literature [22] preliminarily discusses the
disturbances specific to DC networks, proposes some indexes
for their characterization and defines indexes for DC power
quality assessment. A fault location method for high voltage
DC transmission lines using the Hilbert-Huang transform and
1-D CNN was proposed in the literature [33].

Although there have been some evaluation methods for
power quality, as mentioned above, the research on power
quality evaluation is still not comprehensive enough. Most
of the existing methods are for AC rather than DC [34], and
there is still a lack of effective methods for DC power quality
evaluation. Additionally, most of the methods are based on
predefined power quality indexes rather than the original
electrical signal, so the accuracy of evaluation results depends
heavily on the selection of the predefined indexes [35], which
is not beneficial for the comprehensive evaluation of power
quality. In particular, there is no well-defined standard for DC
power quality among scholars and utilities. In addition, most
of the relevant studies were based on the data produced by
simulation rather than collected from real applications in a
microgrid [19].

In this paper, a DC power quality evaluation method that
combines EMD and 1D-CNN is proposed to solve these
issues. The input is the original electrical signal, and the out-
put is the corresponding evaluation result. Since this frame-
work is end-to-end, there is no need to use predefined indexes
in the evaluation process. Themapping from the original elec-
trical signal to the evaluation result is automatically learned
by the proposed framework. Then, an example analysis is
carried out with the real data provided by the Gree company
photovoltaic cottage to show the validity of the proposed
method for evaluating DC power quality. To verify the effec-
tiveness of the proposed model, a comprehensive comparison
of accuracy and training timewith other advanced deep neural
networks (DNNs) is conducted, including long short-term
memory (LSTM), a gated recurrent unit (GRU), and residual
networks-50 (ResNet50). Compared to these three networks,
the network proposed in this paper is better, greatly reducing
the number of parameters. The experimental results show
that the proposed method has good performance in both
accuracy and time cost.

II. METHODOLOGIES
This section provides an overview of the related algorithms
used for DC power quality evaluation in the proposedmethod.
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The principle and realization of the theories are illustrated in
detail.

A. DECOMPOSITION ALGORITHM—EMPIRICAL MODE
DECOMPOSITION
EMD is an adaptive signal decomposition algorithm proposed
byHuang et al. in 1998 [36]. Unlike traditional signal analysis
methods such as wavelet transform and short-time Fourier
transform, EMD is a fully data-driven and adaptive method
that is very suitable for processing nonlinear and nonstation-
ary signals. The DC data analyzed in this paper have many
fluctuations, which can be decomposed by EMD.

Considering that the distorted waveform of a transient
signal with DC bias in the field of power transmission can
be conceived as a superposition of various oscillating modes,
we use EMD to separate these IMFs from the original signal,
and these IMFs must satisfy two conditions. One is that the
number of zero crossings and the number of extrema must
either be equal or differ by no more than one, and another
is that the mean value of the envelope defined by the local
maxima and the envelope defined by local minima must be
zero. The details of the EMD algorithm are as follows:

1. Find the location of the local maxima and minima points
of the signal x (n).

2. Interpolate the local maxima using the cubic spline line
to obtain the maxima envelope emax (n), then repeat the same
procedure for local minima to obtain the minima resenvelope
emin (n).
3. Calculate the mean of the maxima envelope and minima

envelope: emean (n) = (emax (n)+ emin (n))
/
2.

4. Calculate the difference between the signal and the mean
of envelopes: h (n) = x (n)− emean (n).

5. Examine whether h (n) satisfies the two conditions of
IMF. If satisfied, select h (n) as the IMF; otherwise, take h (n)
as the input signal and repeat step 1-step 4 until the new IMF
is obtained.

6. Determine the residue: r (n) = x (n)− h (n).
7. The signal decomposition is terminated when r (n) is a

monotonic function or the stop condition of the algorithm is
reached; otherwise, repeat steps 1-6 and take r (n) as the input
signal.

After applying the EMD algorithm, the original signal can
be represented by all the IMFs and the residue as x (n) =∑K

i=1 hi (n)+ rK (n).
To verify the decomposition results of EMD, a synthetic

signal containing a constant is established in MATLAB,
which is given by equation (1):

f = 1+ 0.5 cos(2π × 50t)+ 0.25 cos(2π × 100t)

+0.1× n(t) (1)

Except for the constant component with an amplitude of 1,
the synthetic signal is composed of two harmonic compo-
nents and white noise n(t), and the waveform is sampled at
1,000 Hz. The principle of EMD has its basis derived from
the Hilbert-Huang transform (HHT), which requires neither
any convolution of the signal nor any a priori basis functions.
The only parameter needs to be determined is K, which is the
number of IMFs. According to the literature [19], we choose
K = 3, and the result is shown in Fig. 1.

In Fig. 1, the first row is the original signal and its spec-
trum. We determine that the frequencies are 0, 50 Hz, and
100 Hz, and the corresponding amplitudes are 1 V, 0.5V, and
0.25V. The second to fourth rows are IMF1, IMF2, and IMF3,

FIGURE 1. The decomposition result of EMD.
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and the last row is the residual component. The decomposed
modes and their frequency spectra are illustrated in Table 1.

TABLE 1. Decomposition results of EMD harmonics extraction.

B. CLASSIFICATION METHOD BASED ON DEEP CNN
CNN is a powerful deep neural network inspired by visual
neuroscience, which was first applied to the field of com-
puter vision and has already produced extremely impressive
progress. In this section, the advantages and applicability of
applying a deep CNN named RES-CNN to DC power quality
evaluation are introduced.

1) THE PROPOSED FRAMEWORK BASED ON DEEP CNN
Compared with the neural network without convolutional
layers, CNN boosts performance through several key mecha-
nisms, such as local connections, shared weights and pooling
operations [37]. With a 2-D input image, CNN can effec-
tively extract the features of high-level abstraction through
multiple convolutional layers, which can then be fed into a
fully connected neural network for classification purposes.
The weights inside the CNN are automatically learned during
the training procedure, so the CNN has good adaptability and
requires very little manual operation.

Power quality evaluation can also be regarded as a
classification problem, i.e., the power quality abstracted from
electrical signals can be divided into different levels from
good to bad. Considering that the electrical signals are
one-dimensional, we apply 1D-CNN to classify different
power quality levels. The basis of the 1D-CNN architecture
is similar to that of conventional CNN, so the underlying
patterns of input signals can still be effectively learned by
performing convolution and pooling operations similar to
conventional CNN. The difference is that the use of 1-D input
data requires the application of 1-D filters on the convolu-
tional layers.

As shown in Fig. 2, this paper introduces a classifica-
tion framework based on deep CNN, which demonstrates
the overall framework and consists of EMD and 1D-CNN.
As seen in Fig. 2, the original electrical signal is first prepro-
cessed by EMD to obtain several IMFs, and then these IMFs
are put into 1D-CNN to obtain the final evaluation result.

Before using EMD to decompose data, some measure-
ments of data processing are made. First, three indexes of
voltage interruption, voltage sag and voltage deviation are
calculated for each group of data. According to IEC 61000-
4-29 [38], voltage interruption describes the disappearance
of the supply voltage at a point of the voltage DC distributed

FIGURE 2. The overall framework proposed in this paper.

system for a period of time, typically not exceeding 1 minute.
Voltage sag refers to a sudden reduction in the voltage at
a point in the DC distribution system, followed by voltage
recovery after a short period of time, from a few milliseconds
up to a few seconds. According to IEC TS 62749 [39],
the voltage deviation describes the difference between the
supply voltage and nominal voltage. Another two indexes
of voltage ripple and current ripple can be obtained from
the power analyzer. According to IEEE Std 1515 [40], volt-
age ripple is the maximum AC voltage present on a DC or
low-frequency AC voltage stated in peak-to-peak voltage.
The current ripple is the maximum AC current component
present on a DC or much lower frequency current stated in
the peak-to-peak current.

Then, these metrics of DC data are labeled into different
levels based on the comprehensive label method combined
with the AHP and entropy coefficient method [11], [41], and
the labels obtained are excellent, good, poor, and very poor.
Four typical labels of the group of data are given in Table 2.
If the label is represented as {1, 0, 0, 0}, it means that this
sample belongs to the first category, which means excellent.

TABLE 2. Typical indexes of data samples for labeling.

After labeling, EMD decomposes these data with labels
into several IMFs, and these IMFs are input into a 1-D CNN.
After the training process of the 1-D CNN, we classify every
group of data into different levels from excellent to very poor.

As an electrical signal can be decomposed into different
numbers of IMFs, the problem focuses on how to choose
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FIGURE 3. The structure of the proposed network.

suitable number of IMFs from a signal. To address this
problem, we adopt a simple approach that extracts the first
three IMFs for each input signal. The reason for choosing
the first three IMFs comes from the experience that power
quality events are most correlated with the first three modes
of oscillation [19]. If the electrical signal has only one or two
IMFs, the remaining IMFs are assigned to zero.

2) UNIT CONSTRUCTION OF THE CNN NETWORK
After the IMFs have been extracted, they are fed into the 1D-
CNN, and the architecture of the 1-D CNN proposed in this
paper is shown in Fig. 3. It is composed of pooling layers,
dense layers, rectified linear units and ResBlock.

The ResBlock is used to extract features that consists
of 1-D convolutional layers and an activation function, and
it has a skip connection in addition to the convolutional layer
and the activation function. This strategy is also well known
as residual learning, which improves training efficiency since
it is easier to optimize the residual mapping than to optimize
the original unreferenced mapping [42]. Although residual
learning has been widely used in 2D-CNN, few people have
introduced it into 1D-CNN. We adopt residual learning in
our proposed 1D-CNN and find that residual learning plays
a positive role in improving the classification accuracy of the
network.

3) DESCRIPTION OF THE LAYERS IN RES-CNN
In the deep CNN proposed in this paper, there are different
layers, and they are briefly introduced in the following para-
graphs.

1. 1-D convolutional layer: This layer is responsible for
extracting features, and we compute the dot product between
an area of the input data and a weighting matrix (filter). The
filter slides over the whole data and repeats the same dot
product calculation. ReLU is the most widely used activation
function in CNN,which adds the ability of nonlinear mapping
to the network.

2. Pooling layer: The pooling layer is used to downsample
the signals, which can reduce the quantity of data to be

processed in the next layer, and it can effectively suppress
overfitting while reducing the computational cost of the net-
work. The two most common pooling methods are average
pooling and maximum pooling, which aim to obtain the aver-
age value or to find the maximum value from the elements
covered by the convolution kernel, and we choose the latter
in this paper.

3. Dense layer: In the fully connected layer, each neuron is
connected to all neurons in its previous layer, and it maps the
learned feature representation to the label space. This layer
can integrate local information with category discrimination
in the convolution layer or pooling layer.

4. Softmax layer: This layer is a fully connected layer. Its
function is to map the output of CNN to (0,1) and gives the
probability of each classification. It requires that the number
of neurons is equal to the number of categories and then gives
the result of classification.

4) COMPARISON WITH STATE-OF-THE-ART DNNS
Three advanced DNNs are employed to compare perfor-
mance with the method proposed in this paper. They are
briefly introduced in the following paragraphs, and these
DNNs are shown in Table 3.

TABLE 3. DNNs for comparison in the evaluation of DC power quality.
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FIGURE 4. The structure of the DC microgrid in Gree’s photovoltaic cottage.

1. LSTM: LSTM has achieved great performance in work
about power quality [43], [44]. This is a typical recurrent
neural network (RNN) with a memory unit consisting of a
gated input, a gated output, and a gated feedback loop [45].
In this paper, an improved LSTM with 3 LSTM layers and
1 dense layer is applied for comparison [35].

2. GRU: GRU is another type of RNN that eliminates a
separate storage unit [46]. There is no conclusive result in
comparing performance between LSTM and GRU, and the
performances of the LSTM and GRU depend on the task and
dataset [47]. In this paper, a GRU network with 3 GRU layers
and 1 dense layer is adopted for comparison [35].

3. Resnet-50: Residual networks allow the training of net-
works up to more than 1,000 layers using a structure called
block, and ResNets are widely used in the classification of
images [48]. In this paper, ResNet-50, which is a deep net-
work with 50 layers, is applied to the classification of power
quality for comparison to the proposed network. ResNets
were originally designed for image classification. For the
requirements of power quality evaluation, the dimension of
the input signal is changed from (800 + 41, the insufficient
number is added to zero) to (29 × 29), and a softmax layer
with 4 neurons replaces the output layer.

III. EXPERIMENTS AND RESULTS
In this section, a series of experiments in different aspects
are designed to verify the effectiveness of the evaluation of
DC power quality by using the proposed Res-CNN. The first
experiment was intended to assess the validity of Res-CNN
with ResBlock and the decomposition of EMD. The sec-
ond experiment was performed to compare Res-CNN with
LSTM, GRU and ResNet50 and to analyze the characteristics
of each network.

A. EXPERIMENTAL SETUP AND DATA COLLECTION
We conducted research by using the DC power data provided
by the photovoltaic cottage project of Gree Company in

Zhuhai, China. Gree’s photovoltaic cottage is a DCmicrogrid
system that has the advantages of clean power generation,
safe power storage, reliable power conversion and efficient
power consumption. Fig. 4 shows the structure of the DC
microgrid in the photovoltaic cottage. We simulated real
power consumption by mounting various electronic loads
connected to the DC bus with DC test point A, such as an
energy storage cabinet, an adjustable electronic load and the
photovoltaic direct-drive inverter and an air conditioning sys-
tem as a load, and then collected data from the DC test point at
a sampling frequency of 2.56 kHz. If there is residual power
after meeting the consumption demand of electrical loads,
the DC system can deliver the residual power to the AC grid
in real time to realize the complete utilization of photovoltaic
power. The top view of Gree’s photovoltaic cottage is shown
in Fig. 5.

FIGURE 5. Top view of Gree’s photovoltaic cottage.

The green photovoltaic direct-drive inverter multi-VRF
system exceeds the traditional air conditioning system, seam-
lessly combining photovoltaic power generation with the
power consumption of the air conditioner. In the experimental
setup, the input power of the photovoltaic direct-drive system
is approximately 20 kW, and the output voltage in the DC bus
is approximately 620 V∼670 V.
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An electronic load is a test instrument designed to sink
current and absorb power out of a power source. In this exper-
iment, the electronic load is in constant current mode, and
there are two working states of operation. The first state is the
pulse state, and the current value jumps between 1A and 6A
with a period of 2 ms. The second state is a continuous state,
and its current is approximately 5A with little fluctuation.

The energy storage cabinet manufactured by Gree com-
pany is used as an electric energy load in the experiment.
The rated capacity of this energy storage cabinet is 1.6 MWh,
and its charge-discharge conversion efficiency is greater than
97% when the equipment is in normal operation. In this
experiment, the rated input voltage of the energy storage
cabinet is 620 V with a charging current of 4A.

This experiment uses a power analyzer to collect real
data. The resolution of the power analyzer is 18 bits with
0.01% accuracy. The sampling data of real current, voltage
and some indexes, such as voltage ripple and current ripple
acquired from the power analyzer, are transferred to a com-
puter through a gigabit Ethernet interface.

The real data is decomposed by EMD, and we obtain the
six IMFs. Among them, three IMFs are the decomposition
results of DC voltage, and another three IMFs are of DC
current. In the DC bus of test point A, the range of DC voltage
is 620∼670 V, and the range of DC current is 10∼20 A.
To obtain better training performances, the ranges of the
IMFs are narrowed to 0∼3 before inputting the IMFs into the
networks.

The implementation details of the 1D-CNN are as follows:
for each convolutional layer, the size of the convolution kernel
is set to 16, and the number of feature maps is set to 64.
The first fully connected layer contains 100 neurons, and
the second layer contains 4 neurons because the power quality
is divided into 4 different levels in our simulation. We set the
batch size to 256, and the network is trained for 60 epochs.
Categorical cross-entropy is used as the loss function, and it
is optimized by the Adam algorithm [49].

After data acquisition, we first crop the original signal into
fragments, each fragment contains 800 sampling points, and
there is a partial overlap between adjacent fragments. Then,
these fragments are labeled as one of four different power
quality levels, and the number of each level from excellent to
very poor was 19891, 13514, 12622, and 12355. In addition,
80% of them are chosen as the training set, 10% as the
validation set and 10% as the test set.

B. COMPARISON BETWEEN EMD AND VMD
Variable mode decomposition (VMD) is a completely nonre-
cursivemodal variational method [50]–[52] that usesmultiple
Wiener filtering groups to realize filtering. The VMD algo-
rithm includes two parts: the construction of the variational
problem and the solution of the variational problem.

To compare the performances between 1-D CNN with
EMD and VMD, the parameters of VMD maintain the
same decomposition level as EMD. VMD is a parametric
method that requires careful parameter settings for use.

The performance is greatly influenced by their parameter
settings, but the settings are always empirical with the lack of
theoretical guidance. According to the literature [53], a group
of balancing parameters of VMD, such as the data-fidelity
constraint, the time step of the dual ascent, and the toler-
ance of convergence criterion, are set as 2000, 0 and 10−7,
respectively.

The comparison results of 1-D CNN with EMD and VMD
is shown in Fig. 6, and we know that EMD performs better
than VMD with the proposed 1-D CNN. Compared with
the net with VMD, the net with EMD can achieve higher
accuracy and lower loss. In addition, the training times of
the signal decomposed by VMD and EMD are 1053.50 s
and 839.27 s, respectively. We know that the training process
for VMD requires more time than EMD. Therefore, EMD is
more suitable for the proposed 1-D CNN than VMD.

C. PERFORMANCE ANALYSIS FOR ADDING RESBLOCK
AND EMD
First, this section compares the training effect of RES-CNN
and the network without the residual module, which is
called plain CNN. Second, we put the original data into the
RES-CNN network directly without the EMD process and
then compare the training result with the EMD process. The
experiments are performed using an Intel Core i7-6850K
CPUwith 64GBofmainmemory and aNvidiaGeForceGTX
1080TiGPUwith a graphicsmemory of 11GB. The accuracy
and loss value are obtained on the validation and training set
for each epoch, and the training results of the experiments
under different conditions are shown in Fig. 7.

Fig. 7 shows that the RES-CNN performs much better
than the plain CNN. We can see that the network accuracy
of training is approximately 83% after the residual mod-
ule is removed, but the best training accuracy of Res-CNN
reached 98%. Fig. 7 also presents a comparative experiment
on the effect of EMD on network accuracy. If we put the
original data into RES-CNN without the decomposition of
EMD, it performs poorly; the best accuracy of the training
set is only 72%, and the best loss value is 56%. The above
experiments confirm that the introduction of residual learning
into our proposed RES-CNN and the data preprocessing by
EMD play a positive role in improving the accuracy of the
network.

D. COMPARATIVE ANALYSIS WITH OTHER DNNS
In practice, the training process based on backpropagation
is computed over every epoch. The accuracy and loss value
during the training process are shown in Fig. 8, which shows
the curve of the training accuracy with the number of epochs.
Among these four DNNs, the best performance is provided by
Res-CNN. Although ResNet50 has a deeper hierarchy than
Res-CNN, it does not perform better than Res-CNN, as we
expected. Res-CNN has better generalization capability than
ResNet50. This demonstrates that a deeper network is not
necessary and that the deep CNN with ResBlock is efficient
enough to capture the detailed characteristics of each level.
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FIGURE 6. The comparison results of the 1D-CNN with EMD and VMD.

FIGURE 7. The comparison results with and without residual module and EMD.

The performances of LSTM and GRU are similar.
However, for signals with violent fluctuations, the accuracies
of LSTM and GRU are lower than that of Res-CNN. It can
be seen that the accuracy of Res-CNN is very close to the
maximum at the 39th epoch and then oscillates slightly near
the maximum.

The testing set with 5,838 samples is put into Res-CNN,
and the result of the confusion matrix is shown in Table 4.
The recall values of the level from excellent to very poor
are 99%, 92%, 79%, and 77%, and their precision values are
96%, 97%, 76%, and 79%. This shows that the evaluation
result is very reasonable and convincing.
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FIGURE 8. The comparison results of four different DNNs.

TABLE 4. The confusion matrix of all test samples of Res-CNN.

After plenty of training of different networks, the model
with the best performance in the validation set is chosen
as the final model, and their best performance is recorded
in Table 5. We know that plain CNN has the shortest training
time, and LSTM requires the most training time. The time
of Res-CNN requires approximately 1/6 of LSTM’s training
time. In addition, ResNet50 has the largest number of param-
eters of approximately 45,756,484, which possibly leads to
overfitting. It is obvious that the parameter numbers of LSTM
and GRU are almost the same. Due to the lack of agate in
the structure, the training time of GRU is shorter than that of
LSTM. Res-CNN takes the least time except for plain CNN,
and it performs best.

TABLE 5. The trained models and their performances.

According to the best loss and best accuracy in the valida-
tion set, GRU has the worst performance, and Res-CNN has
the best performance. After making an all-around considera-
tion of the different DNNs, Res-CNN is an optimal choice for
DC power quality evaluation, which has higher classification
precision and less training time cost.

IV. CONCLUSION
Due to the wide application of AC power, most of the current
research on power quality evaluation is aimed at AC power.
Although DC distribution is believed to be a very promising
power supply mode in the future, few people have focused
on DC power quality evaluation research. To address this
issue, a DC power quality evaluation framework consisting of
EMD and 1D-CNN is proposed. First, EMD decomposes the
electrical signal into several IMFs, and then the 1D-CNNwith
residual module extracts features from them automatically
and gives a comprehensive quality evaluation result of the
sampled mass data with high efficiency. In addition, a com-
prehensive comparison with other advanced DNNs is con-
ducted in real cases, including LSTM, GRU and ResNet50.
The experimental results show that the proposed network
has higher accuracy, lower loss, and lower time consumption
compared with other DNNs. In conclusion, the proposed
method is an effective approach for evaluating DC power
quality, especially for the current stage in which the standard
of DC power quality is not yet issued, but renewable energy
is in significant growth.
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