
Received January 28, 2020, accepted February 13, 2020, date of publication February 17, 2020, date of current version February 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974487

A Design and Verification Methodology for a
TrustZone Trusted Execution Environment
HAIYONG SUN AND HANG LEI
School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

Corresponding author: Haiyong Sun (haiyong.sun@foxmail.com)

ABSTRACT Hardware support for isolated execution (e.g., ARM TrustZone) enables the development of
a trusted execution environment (TEE) that ensures the security of the code and data while communicating
with a compromised rich execution environment (REE). The ability to satisfy various security services is
complicated and usually consists of trusted applications, a trusted kernel and a secure monitor. However,
formally verifying the security of an entire TEE security remains challenging. We present a methodology
for designing a TEE in a way that enables verification of its security properties. Our methodology consists of
forcing a trusted application and kernel to communicate with an REE via a narrow interface and compile and
link them with a small secure monitor that implements the interface and runs at the highest privilege level.
We provide functional verification of the secure monitor to ensure that it correctly switches the TEE/REE,
communicates with the REE at a pre-defined memory space and has no integer overflow vulnerability.
We also perform a verification of the secure monitor’s scheduler to ensure that it satisfies information
flow noninterference. We present a modular verification framework that can prove an end-to-end security
property for cross-language programmes (e.g., C and assembly languages). Our evaluation suggests that the
methodology scales to real-world TEE applications.

INDEX TERMS Formal verification, information flow noninterference, trusted execution environment,
TrustZone.

I. INTRODUCTION
The rapid development and extensive application of the
mobile internet offers substantial convenience to people’s
lives. With an increase in the number of cyber-attacks, users’
information security is facing an increasing number of serious
threats. A user’s private information can be compromised
due to a host of reasons, including vulnerabilities in the OS,
hypervisor, and insufficient access control. Recognizing this
problem, the ARM TrustZone [1] provides an isolated TEE
and REE (rich execution environment) for the upper software
system by securely extending the processor, memory and
peripherals. Users’ security-sensitive information can be sep-
arated from the compromised REE (e.g., iOS and Android).
To minimize the trusted computing base (TCB), a TEE usu-
ally does not implement complex software modules, such
as a file system and network protocol stack, but instead
relies on the compromised REE for basic services, such as
storage and network communication; the burden of correctly

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan Zhang.

programming TEE software and ensuring security remains
with the programmer.

Unfortunately, many security vulnerabilities exist in the
TEE, such as the Qsee TrustZone kernel integer overflow
vulnerability [2] and the HTC getting caught storing finger-
print data in unencrypted plain text [3]. To guarantee a strong
security of the TEE, we analyse the attack model of the TEE
and propose a verificationmethodology to verify that the TEE
preserves security properties.

A. THREAT MODEL
The illustration of our threat model in Fig. 1 lists all the
system components that are under the attacker’s control. The
adversary may fully control all of the hardware in the ARM
system-on-chip board, including solid state disks (SSD),
RAM chips, and network cards in the system, except the
CPU and TrustZone-protected RAM (TZRAM). The adver-
sary may record, replay and modify network packets or files,
as well as read or modify data after it leaves the TEE using
physical probing or similar techniques. We assume that the
adversary cannot physically attack the CPU or TZRAM to

33870 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7928-7654
https://orcid.org/0000-0001-7736-2251

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

FIGURE 1. Threat Model: The adversary controls the rich OS, hypervisor,
and any hardware beyond the CPU package and TrustZone-protected
RAM, which may include both unprotected RAM chips and storage
devices. The adversary also controls the network. The TA, Trusted Kernel
and Secure Monitor are the only trusted software components.

extracts secrets. The adversary may also control all of the
system software in the REE, including the rich OS and the
hypervisor. This adversary is general enough to model privi-
leged malware running in the REE system software to access
data by inspecting disks and memory.

We assume a user that wishes to protect the security-
sensitive information processed by the TEE. We assume that
the TEE is not designed to write security-sensitive informa-
tion outside the TrustZone-protected area. However, the TEE
may have bugs such as accidental writes of security-sensitive
information to TrustZone-unprotected RAM, as well as
exploitable bugs, such as integer overflow, buffer overflow
and dereferences of uninitialized or corrupted pointers, which
could result in security-sensitive information leaking out of
the TEE.

Therefore, we design and verify that the TEE cannot leak
secrets even in the presence of a powerful adversary. How-
ever, DOS attacks, covert channel and side-channel attacks
are outside the scope of this paper.

B. DESIGN AND VERIFICATION METHODOLOGY
Our approach is based on multi-level architecture: the trusted
application (TA) level that contains the application logic,
the trusted kernel level that provides core APIs (e.g., mem-
ory management) and the secure monitor level that provides
scheduling between a TEE and an REE and encrypted chan-
nels for communication. We limit the memory access per-
missions of the TA and trusted kernel to the secure zone by
establishing a TrustZone address space controller. As a result,
we restrict the interaction between the TEE and the REE
to the narrow interface implemented by the secure monitor.
For the secure monitor, we need to prove the following tasks:
the secure channel always reads/writes data in a pre-defined
memory space; the scheduler always saves registers into and

loads new values from proper places and then switches to
a proper execution environment; and the secure monitor’s
implementation satisfies the information flow noninterfer-
ence property. To complete these verification tasks, the fol-
lowing challenges need to be addressed:

• Cross-Language Specification—Some parts of software
modules must be written in both C and assembly for var-
ious reasons. For example, the secure monitor’s secure
channel is written in C, but its scheduler is written in
ARM assembly. How do we specify clear and precise
behaviour semantics for both C and assembly language
in a unified verification framework?

• Security Property modelling—How do we model a clear
and precise security property for different domains? If
we express the property in terms of the abstraction level
specification, then what will this task imply for the
programme implementation level? We need to model
properties at different levels of abstraction and translate
between or link separate properties.

• Proving Security—Research [4], [5] indicates that
refinements may not propagate security guarantees.
In addition, some abstraction level specifications may
atomically preserve security properties. However, its
non-atomic implementation may temporarily break the
properties during intermediate states. Thus, we must
strengthen the refinement relation and carefully formu-
late the security of an API’s implementation.

The modular verification framework that we proposed can
be used to verify the end-to-end security of a system software
and adequately address these challenges. First, a security
property is proven at the abstraction level functional speci-
fication. Second, we apply bi-simulation techniques to auto-
matically obtain a sound security guarantee for the C and
assembly implementation level. We demonstrate the efficacy
of our verification framework by applying it to complete the
secure monitor’s verification tasks.

The primary contributions of this work are listed as fol-
lows:

• A design methodology to build a TEE using a narrow
interface to communicate with the REE.

• A modular verification framework for end-to-end secu-
rity verification of software systems or critical modules
written in both C and assembly.

• A security proof of the TEE critical module—secure
monitor, which is completely formalized in the Coq
proof assistant [6].

The remainder of this paper is organized as follows.
Section II introduces the TEE design architecture and anal-
ysis of impact of different TEE architectures on formal ver-
ification tasks. Section III discusses the challenges when
verifying the security of the secure monitor. Section IV
describes our modular verification framework and its imple-
mentation in Coq. Section V describes the security verifi-
cation of the secure monitor using our modular verification
framework. Section VI provides a performance evaluation

VOLUME 8, 2020 33871

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

of our TrustZone-based TEE and an analysis of its security.
Section VII and Section VIII discuss related work and the
conclusions, respectively.

II. TEE DESIGN BASED ON TRUSTZONE
In this section, first, we introduce the design architecture
of the TEE. Second, we introduce the design of a secure
communication channel. Last, by comparing the multi-level
architecture and traditional monolithic architecture, we illus-
trate the advantages of the multi-level architecture proposed
in this paper.

FIGURE 2. TEE multi-level architecture, where the privilege level
increased from EL0 to EL3.

A. TEE MULTI-LEVEL ARCHITECTURE
From top to bottom (Fig. 2), the entire TEE software stack is
divided into user level, kernel level and TrustZone level.

At the user level, applications in REE that can request
security services are named secure applications (SAs); the
remainder of the applications are named client applications
(CAs), and applications in TEE are named trusted applica-
tions (TAs). The security service request from SA to TA
will involve cross-environment communication and context
switching. To ensure that the interaction details are trans-
parent to application developers, both the REE and the TEE
encapsulate the TEE client API and the TEE internal API,
respectively.

At the kernel level, the Linux kernel provides more com-
plete system services, such as memory management, pro-
cess management, network communication, and file system
management, while the trusted kernel provides memory man-
agement and process management. Although we chose the
Linux kernel as the REE kernel, developers can choose other
common kernels.

At the TrustZone level, the secure monitor provides the
low-level TrustZonemechanisms that are responsible for exe-
cution environment scheduling, communication and protec-
tion.

B. SECURE CHANNEL
To serve its memory needs, the TEE requires physical RAM
dedicated to the TAs, trusted kernel and secure monitor.

The TrustZone ensures that the REE cannot address or access
any TrustZone-protected RAM, TZRAM (TEE RAM).
To serve a secure monitor’s communication, a piece of unpro-
tected RAM is used as shared memory between the TEE and
the REE.

To protect user private data, a secure channel is imple-
mented in the secure monitor and consists of a channel_recv
API and a channel_send API. Specifically, the channel_recv
copies encrypted data from the shared memory to a TEE
buffer and then decrypts the data, and channel_send encrypts
data in the TEE buffer and then copies the encrypted data to
the shared memory.

C. IMPACT OF DIFFERENT TEE DESIGN ON FORMAL
VERIFICATION TASKS
The design of TEE is flexible: it can be either a monolithic
architecture or a multi-level architecture. For the former, TA
has the authority of key management and can communicate
directly with the REE. For the latter, the key management and
communication are hosted by the secure monitor. The follow-
ing section provides a more detailed comparative analysis of
a secure storage method with different architectures.

FIGURE 3. Secure storage method that illustrates the impact of different
TEE design architectures on formal verification tasks.

Consider the SeStore method in Fig. 3(a), which acts as
a secure storage function. The SeStore receives encrypted
data from the REE. The method decrypts the encrypted data,
performs some computing work, and writes the computation
results to a buffer. The buffer is encrypted and written back
to the REE. Proving security of this SeStore method is chal-
lenging. The code writes the results of the computation to a
stack-allocated buffer without checking the size of the inputs.
This step may produce a vulnerability that can be exploited
to overwrite the return address, execute arbitrary code and
leak secrets. Therefore, the proof must show that the result
does not exceed the buffer size. SeStore directly writes to
a location outside the TEE. The proof must show that the

33872 VOLUME 8, 2020

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

written data are either encrypted or independent of secrets.
The latter requires the tracking of secrets in the entire TEE
memory. Thus, building a scalable verification framework is
challenging for arbitrary user code.

Fig. 3(b) shows the SeStoremethod that has been rewritten
to use our secure channel. The method calls channel_recv
to retrieve data from the channel, which reads and decrypts
encrypted data from the REE. After computing the results,
the method calls channel_send to write data to the channel,
which internally encrypts the data and writes to it back to
the REE. Observe that there are no direct communications
to nonsecure memory for this SeStoremethod. Thus, we only
need to track secrets in the secure monitor execution space
instead of the entire TEE memory.

As previously mentioned, the formal verification task with
the monolithic architecture needs to consider the implemen-
tation details of each single TA, which will increase the
difficulty of formal verification and reduce the scalability of
verification due to the increase in the number of TAs or the
complexity of programme logic. The formal verification task
with our multi-level architecture will not be affected by the
implementation details of each single TA. With TrustZone
hardware protection, only one-time verification of the secure
monitor module can guarantee the security of the TEE, which
reduces the difficulty of formal verification. We divide the
verification task of TEE security into two subtasks: 1) verify
the functional correctness of the secure monitor; and 2) verify
that the securemonitor satisfies information flow noninterfer-
ence.

III. VERIFICATION CHALLENGES
We discuss key challenges when verifying the functional cor-
rectness and noninterference property of the secure monitor.

A. VERIFICATION OF THE SCHEDULER
The scheduler of the secure monitor is an indispensable com-
ponent of the TrustZone-based TEE. Verification of its imple-
mentation is essential in building trusted software systems.
However, implementation of the scheduler requires low-level
operations, such as manipulation of stack pointers and return
code pointers, which prevents the accurate specification of
the code behaviours.

As shown in Fig. 4, the scheduler implements schedul-
ing by detecting the direction of the schedule request (lines
2-5 of (a)), toggling the processor mode bit (lines 6-7 of
(a)), saving and restoring the processor state (by calling
the TEE_switchctxt subroutine, line 8 of (a)) from the cor-
responding execution environment context stack, and then
switching to a target environment (line 19 of (b)). We explain
the challenges of verifying the scheduler code using a small
example with an SA process and a TA process (Fig. 5).

1) MANIPULATION OF RETURN CODE POINTERS
When a function returns, it needs the value stored on top
of the stack as the return address. The return address of a
normal function is the same address passed to it by the caller.

FIGURE 4. Scheduling example between TEE and REE.

FIGURE 5. Two simple processes.

However, TEE_sched changes the stack pointer. When the
TA process refers to TEE_sched , TEE_sched does not return
to TA. Instead, it returns to the SA process shown in Fig. 5.
To verify TEE_sched , we need to prove that it always uses a
valid return address.

2) SPECIFYING THE SCHEDULER
As shown in Fig. 5, before TEE_sched returns to the call-
ing process (e.g., process SA), the control has been trans-
ferred to a different process (process TA). This approach
presents issues: Should the channel_send/recv code (parts of
behaviour of the process TA) be considered part of the sched-
uler? How can TEE_sched be specified without knowing in
advance whether the channel_send/recv will be called?

B. END-TO-END SECURITY VERIFICATION
To prove the security properties from the abstraction end
to the implementation end, we usually automatically derive
the implementation level security property from a refinement
relation and a proof of the abstract security property. As dis-
cussed in the following section, security is not automatically
preserved across a refinement relation.

VOLUME 8, 2020 33873

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

1) NONDETERMINISTIC SECURE PROGRAMME
A potential issue is that a nondeterministic secure programme
can be refined into a more deterministic but insecure pro-
gramme, which is known as the refinement paradox. For
example, assume two programmes P and Q and a secret
Boolean value stored in §, where Q is a refinement of P.
The P randomly prints either true or false but the Q directly
prints the value of x . Obviously, P is secure since its outputs
have no dependency on the secret value, but Q is insecure.
In the operating system verification community [7], [8], this
issue is avoided by disallowing specifications from exhibit-
ing any domain-visible nondeterministic programmes. More
formally, using an unwinding condition [9], [10] to define a
noninterference property, for any domain d and state transi-
tion machineMwith single-step transition semantics TM, we
say that M is secure for if the following property holds for
all states s1, s2, s1′, and s2′:

Od (s1) = Od (s2) ∧ (s1, s ′1) ∈ TM ∧ (s2, s ′2) ∈ TM

H⇒ Od
(
s ′1

)
= Od

(
s ′2

)
,

where Od (s) is a domain-visible function that is defined in
terms of the programme state. Note that despite that P is
obviously secure, it does not actually satisfy the unwinding
condition defined above (with the same inputs, its outputs
may be different) and thus is not provably secure. This means
that we must prohibit programmes such as P above.

FIGURE 6. Security violating refinement.

2) INCOMPATIBILITY BETWEEN REFINEMENT RELATIONS
AND DOMAIN-VISIBLE FUNCTIONS
A new issue will be produced when we prove end-to-end
security properties based on refinement relations and domain-
visible functions. The issue arises from the fact that both
refinement relations and domain-visible functions are defined
in terms of the programme state, and they are both arbitrarily
general. This means that certain refinement relations may
behave poorly with respect to the domain-visible function.
Fig. 6 illustrates an example. Assume the programme state
consists of three variables a, b, and c at both levels. The
domain-visible function is the same at both levels: a and b are
invisible while c is visible. Suppose there is an abstract swap
function saying that the values of a and b are swapped, and
the value of c is unchanged. Additionally, suppose there is a
refinement relation R that relates two states where a and b
have the same values, but c may have different values. Using

this refinement relation, we can prove that the implementa-
tion end swap follows the abstraction end swap specification.
Since the swap specification is deterministic and holds the
unwinding condition, it is a secure programme. Nevertheless,
this example fails to preserve security across refinement,
as the implementation end leaks the secret value of a into
the visible variable c . Indeed, the root cause of this issue is
that the domain-visible state (e.g., variable c) is not contained
by the refinement relation R. Thus, one solution to this issue
is to restrict refinements to ensure that security properties are
preserved. More formally, given the domain d , to show that
machine m refinements M under the refinement relation R,
the following property must be proved for all domain-visible
states σ1, σ 2 of M and all domain-visible states s1, s2 of m :

OM;d (σ1) = OM;d (σ2) ∧ (σ1, s1) ∈ R ∧ (, σ 2, s2) ∈ R

H⇒ Om ;d (s1) = Om ;d (s2)

IV. MODULAR VERIFICATION FRAMEWORK
In this section, we present the basic model of our modular
verification framework and the notion of end-to-end security,
which can address the challenges mentioned in section III.

A. BASIC MODEL
Our framework consists of two parts: i) an atomic module
verification framework that will enable us to rapidly and
easily define as many atomic modules for verification as we
need; and ii) a compositional verification technique that will
enable us to link all verified atomic modules. We provide a
formalization of atomic modules and their composition.
Definition 1 (Atomic Module): An atomic module is a

state transition system that is extended with predicates M =
(S,T, 9), where

1) (S,T) is a state transition system, that is,

• S is a set of programme states (consists of global
abstract states and function input/output argu-
ments),

• T is the transition relation T of type P (S× S), (P
is a power set operator),

2) 9 is the interface specifications of M, that is,

• For each t ∈ T, It is an invariant, a predicate on S,
and ft (S, S′) is an update (step) relation, a predicate
on S(pre-) and S′(post-) states.

• For each t ∈ T, ψt = It ∪ ft and ψt ∈ 9.

Note that our definition is slightly different from most
traditional definitions of automata as we move concepts in
traditional definitions of automata (e.g., input/output events)
into the programme state, which can simplify the formal
specifications and proofs.

We define the logic from verifying an atomic module to
composing all verified atomic modules.
Definition 2 (Verified Atomic Module): Given the atomic

module M, we define a verified atomic module as
M,L `RC : 9, where

33874 VOLUME 8, 2020

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

• C is the interface procedures of M, for each t ∈ T,
ct ∈ C,

• L represents the interface specifications that underlay
the called interface procedures,

• R is the refinement relation between C and 9.
In addition to M’s underlay specifications L, a verified

atomic module means that every interface procedure in C
strictly follows its specification in 9. All the verification
processes of an atomic module follow the same pattern:

M,L `id C : 66 `R ∅ : 9
M,L `RC : 9

i) proofs of correctness for the C or assembly code, which
can be stated as M,L `id C : 6 (where 6 is the separation
logic [11] specification and id means no abstraction exists
between C and 6);
ii) proofs of the C code specifications refine 9, which can

be formulated as 6`R∅ : 9.
Whenwe verify usingmodules, themodule will commonly

require the interface procedures of another module. However,
arbitrary module interaction or dependencies may create an
issue in that the invariant held in one function can be easily
broken when it calls a function defined in another module.
To avoid this problem, we divide the atomic modules into dif-
ferent layers according to their abstraction levels. Only mod-
ules with identical state views (i.e., at the same abstraction
level) can be composed at the same layer, which eliminates
most unwanted interaction and dependencies when we reason
about one small atomic module. Inspired from compositional
verification technology [12], [13], we list our composition
rules as follows:
Definition 3 (Parallel Composition): Given the two veri-

fied atomic modulesM1,L `RC1:91 andM2,L `RC2:92,
we define M =M1 ⊕M2,L `R C1 ⊕ C2:91 ⊕92, where
M1 andM2 have identical state views.

Using parallel composition, we can link atomic modules at
the same abstraction level and obtain the entire verified layer.
Next, we present the definition of vertical composition, which
can link atomic modules at different abstraction levels and
obtain a fully verified large module or system.
Definition 4 (Vertical Composition): Given two veri-

fied atomic modulesM1,L1`RC1:L2 andM2,L2`SC2:92,
we define M = M1 ⊕M2,L1`R◦SC1 ⊕ C2:92, where M1
andM2 exist at different abstraction levels.

B. END-TO-END SECURITY
As presented in section A of IV, to build a verified atomic
module, we introduce an intermediate specification6, which
seems to define a new ‘‘real machine’’ m that will mimic
real programme implementations in terms of domain-visible
states and logics while mimickingM in terms of programme
states and transitions. Our end-to-end security is proven in
two steps: first, we prove the security properties for the
abstract machine M; and second, similar properties can be
proven for m using a refinement relation and the security
properties ofM. However, the state transitions and state types

of two different machines may differ. We assume that all
machines under consideration use the same type for domain-
visible states. In practice, our secure monitor proves that the
use of a bi-simulation relation [14] between the m and M

obeys this assumption.

1) ABSTRACT MACHINE M SECURITY
As described in section B of III,M security indicates that each
individual transition preserves the noninterference property
and requires a functional correctness proof as a precondition.
Definition 5 (Functional Correctness): We state that the

machine M is functional correct with the specifications
9, which is written Correct(M, 9), when each transition
t(t ∈ T) of the machine follows its corresponding specifica-
tion ψ(ψ ∈ 9).
Definition 6 (Security): We state that the machine M is

secure for domain d with the specifications 9 when
Lemma 1: Correct(M, 9)
Lemma 2:

∀s1, s2 ∈ SM,s
′

1, s
′

2.Od (s1) = Od (s2) ∧
(s1, s1′) ∈ TM∧(s2, s2′) ∈TM

H⇒ Od
(
s ′1

)
= Od

(
s ′2

)
Lemma 2 is a noninterference property that guarantees that

a transition for which d is active in its target state depends
only on the domain-visible states. In particular, a transition
that ends in a state where the domain d is active is not
influenced by data owned by the other domain.

2) REAL MACHINE m SECURITY
Similar properties can be proven for the real machine using
the bi-simulation relation and the security properties of the
abstract machine M. The following corollary states the non-
interference property for the real machine.
Corollary 1: Let 6m = {σ |∃s .σ bisim

⇐⇒ s} be the concrete
states with the bi-simulation relation.

∀σ1, σ2 ∈ 6m , σ ′1, σ
′

2.

Od (σ1) = Od (σ2) ∧ (σ 1, σ
′

1) ∈ Tm ∧ (σ2, σ ′2) ∈ Tm
H⇒ Od

(
σ ′1

)
= Od

(
σ ′2

)
Proof Sketch: Since σ1 and σ2 are in 6m , then s1ands2

exist such that σ1
bisim
⇐⇒ s1 and σ2

bisim
⇐⇒ s2. We follow the

assumptions and the definition of ‘‘ bisim⇐⇒’’ that Od (s1) =
Od (s2). According to the relation of bi-simulation, for i =

1, 2,si′ exists such that (si, si′)∈ TM and σi′
bisim
⇐⇒ si′. Thus,

Od
(
σi
′
)
= Od

(
si′

)
. We conclude the proof by showing that

Od
(
σ1
′
)
= Od

(
s ′2

)
according to lemma 2.

C. IMPLEMENTATION
This framework has been implemented in several modelling
languages and formal verification tools. To integrate all mod-
elling language and tools and minimize the semantic gaps at
specification interfaces, we provide an integrated verification

VOLUME 8, 2020 33875

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

platform (Fig. 7) such that all verifications can be performed
in Coq. The platform integrates C code verification, assembly
code verification, programme abstraction, and the end-to-end
property proofs. We have discussed the end-to-end security
and its proofs. Next, we will provide additional implemen-
tation details about the C/assembly code verification and
programme abstraction.

FIGURE 7. Integrated verification platform where the clight code can be
generated by clightgen parser and the assembly code can be modeled
according to our ARM assembly modelling language.

1) C CODE VERIFICATION
Since Verifiable C [15] is a separation logic that applies to
the real C language and works in the Coq proof assistant
environment, we use Verifiable C to specify the API of each
function and prove that each function’s body satisfies its API
specification. To specify the API of a C function in Verifiable
C, a person writes
DECLARE f WITH v

PRE [params]
PROP (P) LOCAL (Q) SEP (R)
POST [ret]
PROP (P) LOCAL (Q) SEP (R) .
where f is the name of the function, params are the
formal parameters, and ret is the return type. The sep-
aration’s precondition and postcondition have the form
PROP (P)LOCAL (Q) SEP (R), where P is a list of pure
propositions, Q is a list of local/global variable bindings, and
R is a list of separation logic predicates that describe the
contents of memory. TheWITH clause describes the abstract
values v that can be referred to anywhere in the precondition
and postcondition. Additional usage information of Verifiable
C can be checked in [16].

To prove the functional correctness of each function, based
on preconditions (input data structures available in parame-
ters and global variables), we should prove that the function’s
return value and changes to the data structures follows its
predicates in the postconditions.

2) ASSEMBLY CODE VERIFICATION
We model the ARM assembly code as a state machine with a
register set and a memory state. An assembly atomic module
can be considered a set of functions, where each function is
the sequence of statements s0;s1; . . . ;sn .

FIGURE 8. Syntax of ARM assembly code.

The syntax of the ARM assembly is shown in Fig. 8.
Variables in Vars consist of machine registers (e.g., r0, r8, sp,
lr, and pc), CPU flags (e.g., N, Z, C, and V) and memory.
Memory is modelled as a map: addr → val, where addr is
an integer type that denotes the memory address and val is
designed as a Coq inductive type as follows:

Inductive val : Type :=
|Vundef:val
|Vint:int −→ val
|Vptr:Positive −→ int −→ val.
where val is either a machine integer—a pointer: a pair of
a memory addresses and an integer offset with respect to
this address—or a Vundef value that denotes an arbitrary bit
pattern, such as the value of an uninitialized variable.

Memory accesses are encoded using mem.load (a:addr) :
optionval and mem.store (a:addr) (va:val) :option mem.
Assignment statements can assume one of following two

forms: (1) v:=e sets v ∈ Vars to the value of expression e, and
(2) reg:=load(e) sets reg ∈ regs to the value of the memory
at address e.
The control flow changes with b and bl statements, which

override the value of pc. be encodes a jump to an arbitrary
location, either in the current function or the beginning of
a function. ble is semantically equivalent to the ARM bl
instruction. bl puts the address of the next instruction into
lr , jumps to the instruction pointed by the label address (e) to
execution and eventually returns to the caller by overriding
pc using lr .
We define the state σ as a valuation of all variables in Vars.

Let σ (v) be the value of the variable v ∈ Vars in the state
σ , and similarly let σ (e) be the valuation of expression e in
state σ . Let stmt(σ) be the statement executed in state σ . The
semantics of the statement s ∈ Stmt is given by the transition
relation T over pairs of pre and post states, where (σ, σ

′

) ∈ T

if and only if s = stmt(σ) and an execution of s exists starting

33876 VOLUME 8, 2020

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

FIGURE 9. Operational semantics of s∈Stmt : (σ,σ
′
) ∈ T iff 〈s, σ 〉⇓σ

′
and

stmt (σ) = s.σ [x 7→y] denotes a state that is Identical to σ , with the
exception that variable x evaluates to y . The memory update expression
mem [x:=y] returns a new memory that is equivalent to mem, with the
exception of index x . next(e) is the address of the subsequent instruction
in the assembly programme after decoding the instruction starting at
address e.

at σ and ending in σ
′

. We define operational semantics for
Stmt in Fig. 9 and use standard semantics for the remaining
statements. The sequence π = [σ0, . . . ,σn] is referred to as
an execution trace if (σi, σi+1) ∈ T for each i ∈ {0, . . . , n−1}.
We also use stmt(π) to denote the sequence of statements
executed in π . The semantics of the function f ∈ P(Stmt) is
given by the transition relation T over pairs of pre and post
states, where (σ, σ

′

) ∈ T if and only if f = stmt(π) and an
execution of a sequence of statements [s0;s1; . . . ;sn] starts at
σ and ends in σ

′

.
We study the TEE_switchctxt (Fig. 4 (b)) expressed in our

ARM assembly modelling language, as shown in Fig. 10.
In Fig. 10 (a), we represent an assembly function as a Coq
list and the (list instruction) as the contents of a sequence
of instructions. The CtxtPool represents the location of the
saved context of TEE and REE. The (SAimm(Int.repr20))
is a formalization of immediate number 20. In Fig. 10 (b),
we formalize the expected behaviour of the list instruction.
Specifically, these instructions will load and restore machine
registers from and to a proper memory space. The current
execution environment id must be greater than or equal to
0 and less than 2.

Next, we can prove that the TEE_switchctxt implements
its API specification TEE_switchctxt_spec_api using a cor-
rectness lemma, as follows.

Lemma Correctness: forall mm
′

n n
′

rs rs
′

,(
m
′

, rs
′
)
= exec_instrsTEE_switchctxtrsm

→ n = rs#r0 → n
′

= rs#r1
→ TEE_switchctxt _spec_api m (n n’ rs) m’ (rs’).
Proof. . . .Qed.

3) PROGRAMME ABSTRACTION
The functional definition of the TEE_switchctxt can be for-
malized in Coq as this mathematical function:

FunctionTEE_switchctxt_functional
(a : Abs)(nn′ : Z) (rs : Regs) : (Abs ∗ Regs) :=
(a{ctxt : ZMap.set n rs(ctxt a)},
ZMap.get n′ (ctxta)).

FIGURE 10. ARM assembly model and API specification of the
TEE_switchctxt function, where the symbol ‘‘rs#pc← v1’’ means
updating pc’s value to v1, where pc is an element of rs.

where Abs is the secure monitor abstract data (additional
implementation details in section V). Z is Coq’s type for
(mathematical) integers. Regs represents machine registers.
This functional definition saves the register context of envi-
ronment n and restores the register context of environment n’.
According to the abstract definition, we provide the following
functional specification:

Inductive TEE_switchctxt_spec_functional :=
|forall a a’ n n’ rs rs’,
TEE_switchctxt_functional a n n′ rs = (a′, rs′)
→ 0 <= n < 2
→ 0 <= n′ < 2
→ TEE_switchctxt_spec_functionala (n n’ rs) a’ (rs’).

As shown in the following definition, we connect the
implementation level memory to the abstract data by an
equivalence relationship.

Definition EqRelation (m:mem) (a:abs):Prop :=
m.loadCtxtPool0 = r8(ZMap.get0(ctxta))
∧m.load CtxtPool4 = r9(ZMap.get0(ctxta))
∧. . .

∧m.load CtxtPool20 = sp(ZMap.get0(ctxta))
∧m.load CtxtPool24 = lr(ZMap.get0(ctxta))
∧m.load CtxtPool(SM_CTX_SEC) =
r8(ZMap.get 1(ctxta))
∧m.load CtxtPool(SM_CTX_SEC+ 4) =
r9(ZMap.get1(ctxta))
∧. . .

∧m.load CtxtPool(SM_CTX_SEC+ 20) =
sp(ZMap.get1(ctxta))
∧m.loadCtxtPool(SM_CTX_SEC+ 24) =
lr(ZMap.get1(ctxta)).

VOLUME 8, 2020 33877

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

We prove that the TEE_switchctxt coincides with its func-
tional specifications by a bi-simulation proof. Once we com-
plete the code correctness proof and simulation proof, we can
reason the security properties based on the abstract functional
specifications without regarding the implementation details
of the code.

V. SECURITY VERIFICATION OF SECURE MONITOR
In section B of IV, we provide a security definition, where the
noninterference property requires that a transition in a domain
cannot be influenced by the data owned by the other domain.
However, data may be passed between the REE domain and
TEE domain, which can introduce explicit data dependencies.
We need to reduce the security condition to noninterference
in the special case where no communication occurs, with
the exception of the secure channel. This reduced property
formalizes the intuition that if the secure channel is removed,
then the secure monitor cannot introduce a communication
channel via machine registers, a context memory pool or any
other way.

At the abstract machine level, we decompose the security
verification task into 1) correctness verification of secure
monitor’s API implementation (e.g., integer overflow check-
ing, and accessible border checking) and 2) noninterference
verification of the scheduler. Corollary 1 (section B of IV)
guarantees the corresponding security over the real machine
level.

A. CORRECTNESS OF SECURE MONITOR’S API
1) ABSTRACT STATE
We formalize the secure monitor’s abstract state as a Coq
record that consists of 3 separate fields: shmem, cid and ctxt .
Record BufInfo{

addr : Z;
len : Z;
contents : listbyte}

Record Context{
r8 : Z; r9 : Z; . . . ; sp : Z; lr : Z; pc : Z}.
Definition CtxtPool := ZMap.tContext.
Record Abs{
shmem : BufInfo;
cid : Z;
ctxt : CtxtPool}

The shmem represents shared memory between the TEE
and REE, which is the BufInfo type with the buffer’s address,
length and contents.

The cid is an integer type and represents the current exe-
cution environment id.

The ctxt is the CtxtPool type. At the abstract level, the
CtxtPool is no longer the location of saved machine context;
instead, we formalize it as a Coq finite map (ZMap.t).

2) VERIFICATION PLAN
As discussed in section III, instead of treating the entire
secure monitor as a single abstraction, we can divide it into
individual abstraction levels, such as the TEE_switchctxt at a

low abstraction level and channel_send/recv and TEE_sched
at a high abstraction level. The correctness proof can be
performed in a smaller module, and a larger module can
be achieved by cross-abstraction links. The cross-abstraction
link means that a high-level programme can directly call the
low-level specifications without considering the underlying
concrete implementation. Thus, when we consider these sim-
plifications, we establish a verification plan for the secure
monitor shown in Fig. 11.

FIGURE 11. Verification plan for the secure monitor.

3) VERIFICATION OF APIS
(a) channel_recv(des, size) must 1) check that the destination
buffer is in a user space, and must not 2) modify any memory
location outside the destination buffer. We write its functional
specification as

Inductivechannel_recv_spec_functional :=
|forall a d n d′,
channel_recvadn = (a, d′)
→ PM_USRLO < (addrd) ≤ PM_USRHI
→ PM_USRLO < (addrd)+ n ≤ PM_USRHI
→ 0 < n < lend
→ (addrd) < (addrd)+ n
→ channel_recv_spec_functionala(dn)a(d′).
where a is the Abs type, d and d ′ are the BufInfo type,
and n is the integer type. The conditions PM_USRLO <

(addrd) <= PM_USRHI and PM_USRLO < (addrd) +
n <= PM_USRHI ensure that the received message is writ-
ten to a memory region within the user space. The condition
0 < n < lend ensures that the message is not written to
the destination buffer. The condition (addrd) < (addrd)+ n
ensures that an integer overflow is not exploited to violate
secure communication.

(b) channel_send(scr, size) must 1) check that the desti-
nation buffer is in a nonsecure shared memory space, and
must not 2) modify any memory location outside the shared
memory. Formally, we write its functional specification as
follows:

Inductivechannel_send_spec_functional :=
|forall a s n s’,
channel_sendasn = (a′, s′)
→ (addrs) = PM_NSSHMLO
→ PM_NSSHMLO < (addrs)+ n ≤ PM_NSSHMHI
→ 0 < n < lens
→ channel_send_spec_functional a (sn) a′(s′).

33878 VOLUME 8, 2020

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

The conditions (addrs) =PM_NSSHMLO and
PM_NSSHMLO< (addrs) + n≤PM_NSSHMHI ensure that
the message that will be sent is written to a memory region
within the shared memory buffer. The condition 0 <n < lens
ensures that the message is not written out to the shared
memory buffer.

(c) The TEE_sched ensures execution environment
scheduling and that the machine context correctly
saves/restores.

As shown in Fig. 11, we separate the TEE_sched into
two layers. At the low layer, we use an equivalence relation-
ship EqRelation(m:mem)(a:abs) :Prop (section IV) to ensure
that the concrete memory m.CtxtPool and the abstract state
a.ctxt contains the same values. Thus, the high layer code of
TEE_sched can directly manipulate the abstract state a.ctxt
without considering its underlying concrete implementation.
After we abstract the concrete memory and TEE_switchctxt
operations, we formalize TEE_sched on top of the functional
specification of TEE_switchctxt . The functional formaliza-
tion of TEE_sched is shown as follows:
FunctionTEE_sched_functional

(a : Abs)(rs : Regs) :(Abs ∗ Regs) :=
letcurid := cidain
ifzeqcurid0 then
(a{ctxt : ZMap.setcuridrs(ctxta)}
cid : 1},ZMap.get1(ctxta))
else
(a{ctxt : ZMap.setcidrs(ctxta)}
{cid : 0,ZMap.get0(ctxta)).
Note that this abstraction function directly manipulates the

abstract state of machine context via the Coq ZMap.get/set
operators instead of accessing the concrete memory via the
m.store/load operators. By this decomposition, we achieve
the following objective: at the high layer, the execution
contexts and return code pointers in concrete memory are
abstracted away andmodelled as mathematical structures that
can be accessed only by an abstract environment scheduling
operation. At the low layer, we only need to ensure that the
machine context switching saves registers into and loads new
values from proper memory places.

B. VERIFYING NONINTERFERENCE PROPERTY OF THE
SCHEDULER
We consider that each world ID is a distinct domain. The
noninterference property is proven by showing that every
step of execution preserves an equal relation-: the domain-
visible portions of two states are equal. For simplicity, we use
‘‘equal states’’ to represent ‘‘the domain-visible portions of
two states are equal’’.

1) DOMAIN-VISIBLE FUNCTION
We now define the abstract machine level domain-visible
function used in our verification. For the given world ID d,
the state visibility of s is defined as follows:

• Registers—All machine registers are visible if s is
active.

• Active—The machine register is visible regardless of
whether wid (s) is equal to d .

• Register Context—The saved register context of d is
visible.

Since machine registers are shared by different worlds,
to verify noninterference property of the scheduler, the fol-
lowing problem need to be addressed.
Consider any world ID d . For any abstract machine level

state s, we state that s is ‘‘active’’ if wid (s) = d and ‘‘inac-
tive’’ otherwise. If two worlds are isolated, then registers
should be visible to d only in active states. What happens
if we attempt to prove that an equal relation is preserved
when starting from two inactive equal states? Since states are
inactive, the registers are invisible, and the registers may have
different values in the two states. The two inactive ‘‘equal
states’’ may execute different instructions, and the resulting
active states may not be equal. Thus, the noninterference
property will not be preserved in this situation.
The fundamental issue is that when an active world

switches to an inactive world, we cannot ensure that the active
world’s saved register context is not modified.
To address this problem, we divide the proof task into three

separate lemmas:

• Noninterference. If two active equal states take a step to
two inactive states, then these inactive states are equal.

• Integrity. If an inactive state takes a step to another
inactive state, then these states are equal.

• Noninterference Restore.If two inactive equal states
take a step to two active states, then these active states
are equal.

These lemmas are chained together, as pictured in Fig. 12.
The dashed lines indicate that the states are equal. Thus, the
noninterference lemma establishes the equal relation of the
initial inactive states after world switching; the integrity
lemma establishes the equal relation of the inactive states
immediately preceding a world switching back to the active
world; and the noninterference restore lemma establishes the
equal relation of the active states after switching back to the
active world.

In the actual proof process, we discover that the world
context switch does not save r0-r7 machine registers. After
a context switch from one world i to another world j, these
registers may contain values that are private to i. We solve
this insecurity by clearing all unsaved machine registers to
zero before a context switch jump.

C. CODE SIZE AND PROOF EFFORT
Table 1 shows a breakdown of the number of lines of
code, excluding comments and whitespace, in Coq. C
lines are clight codes generated by the clightgen parser.
Assembly lines are ARM assembly instructions written in
our ARM model. Specification lines include all machine-
checked code: our ARM machine model, API or functional

VOLUME 8, 2020 33879

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

FIGURE 12. Applying the three lemmas to prove the noninterference
property of the world scheduler.

TABLE 1. Approximate LOC of proof effort.

specification of the securemonitor, and noninterference prop-
erties. Proof lines are proof related codes, such as pre- and
postcondition, loop invariants, lemmas and assertions.

We spent a total of approximately 7 person months imple-
menting and specifying the TEE. We first implemented and
specified a simplified version of TEE. This work mainly
included implementation of the TEE scheduler, specification
of the TrustZone-based ARMmachine model, functional cor-
rectness proofs of the scheduler and refinement proofs. Build-
ing this first version took approximately 5 person months,
including a steep learning curve for the developers who were
unfamiliar with the ARM TrustZone platform and the Verifi-
able C tool.

We then extended the implementation and specification
with the secure channel; this totalled 2 person months of
extra work, including 1.5 person months for the functional
correctness proofs of the secure channel, refinement proofs
and the noninterference proofs.

Thanks to our modular verification framework, we can
easily compose the scheduler’s functional specifications and
the secure channel’s functional specifications together, even
if they were developed at different stages and using different
languages.

VI. EVALUATION
This section presents a performance evaluation of the
TrustZone-based TEE and an analysis of its security.

A. PERFORMANCE
The software stack that we evaluated consists of the verified
secure monitor and the Trust-E [17] (a trusted kernel and

several TAs) developed by our team. For brevity, we call the
software stack as VTEE for short. We evaluate two sources
of performance overhead for TAs when compared to standard
Linux applications and the OPTEE [18] applications: (i) the
overhead due to executing cross-environment switching, and
(ii) the overhead due to executing the secure channel send and
receive primitives.

1) METHODOLOGY
To evaluate the performance of the VTEE, we run multiple
experiments on the ARM HiKey 960 hardware platform.

We use our two TAs: SeStorage and SePayment. The SeS-
torage is to store a personal clinical history on the mobile
platform and to give patients secure access to this informa-
tion during patient visits. Our SeStorage application involves
three actors: the hospital, the patients, and the SeStorage
TA. The hospital encrypts the clinical history records and
access control policies to the SeStorage TA. When a patient
asks for a record, the request is encrypted to the TA. The
TA decrypts it, checks whether the provider’s permissions
meet the access control policy, and returns the relevant infor-
mation if the policy is met. The SePayment enables con-
venient mobile payment. Our SePayment scenario involves
three actors: a bank, which issues credit card information,
the SePayment TA, which keeps track of the credit card
details, and the shopping website. To perform a transaction,
the shopping website issues an encrypted challenge to the TA
that includes the transaction amount. If the user authorizes
the transaction, the TA answers the challenge; otherwise, it
aborts. Next, the TA communicates with the banks to record
the transactions.

The use case prototypes allow us to measure the VTEE
performance with realistic applications. In total, we eval-
uate 8 methods: four for SeStorage and four for SePay-
ment. We run each test on the VTEE, the OPTEE and on a
standard Linux and then compute the difference. We have
conducted each test 200 times and report the average value
here.

2) PERFORMANCE OF TA CODE EXECUTION
Fig. 13 plots the evaluation results of our use case prototypes
showing the execution time of all TA methods on the VTEE,
OPTEE and on Linux. The results show that Linux slightly
outperforms the OPTEE and the OPTEE slightly outperforms
the VTEE. The results are in line with our expectations since
we infer that, in Linux, the application for evaluation has no
overhead of the cross-environment switching and the secure
communication. In OPTEE, the application for evaluation
has no overhead of the secure communication but needs
an additional overhead of the cross-environment switching.
However, in VTEE, the TA needs both overheads. Because
these overheads are fixed, the longer the execution time of
TA methods, the closer the performance of different systems
will be. Thus, as shown in Fig. 13, the performance of Linux,
OPTEE and VTEE are similar except M2 and M6.

33880 VOLUME 8, 2020

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

FIGURE 13. Execution time of TA methods from our use case prototypes.
These methods from M1 to M8 are SeStorage-QueryRecords,
SeStorage-InitQuery, SeStorage-SetRecords, SeStorage-Encrypt,
SePayment-Pay, SePayment-InitPay, SePayment-SetCard, and
SePayment-Encrypt, respectively.

3) PERFORMANCE OF THE VTEE PRIMITIVES
To further evaluate the concrete overhead of our VTEE primi-
tives, we ran some additional experiments. We first evaluated
the switch time between the REE and the TEE, which is
performed by running an empty service in the VTEE and
OPTEE, respectively. The result shows that the switch time
cost is approximately 0.63 ms in VTEE and 0.71 ms in
OPTEE. The switch time is very small and can be well
accepted.

We then measure the performance overhead of the secure
channel communication in VTEE. Because the encryption
and decryption durations depend on their parameter size,
we further investigate the factors responsible for such vari-
ation. Fig. 14 plots our evaluation results of send and receive
primitives as we vary the size of the data to be encrypted
and decrypted, respectively. Encrypting 1KB takes 13.6 ms
and decrypting the same amount of data takes 123.4 ms. The
send/receive time can be well accepted because the size of
the security-sensitive communication data is usually less than
1 KB in embedded platform.

B. SECURITY ANALYSIS
The attack surface of our TrustZone-based TEE is the secure
monitor interface exposed to the REE. We designed a rel-
atively narrow interface, which limits the exposure of code
vulnerabilities. Moreover, all of the security-sensitive infor-
mation is encrypted by the secure channel after it leaves
the TEE. Thus, even a powerful adversary who controls the
hardware and system software in the REE cannot obtain
useful information. Our functional correctness proof ensures

FIGURE 14. Performance of the secure channel send and receive
primitives varying the size of encrypted and decrypted data, respectively.

that the TEE is immune to common software attacks such as
integer overflow, buffer overflow and code logic errors. Our
noninterference proof ensures that the TEE secrets do not leak
to and that TEE cannot be influenced by REE.

The TrustZone-based TEE can only provide limited protec-
tion against physical attacks: an attacker with the capability of
tampering with the hardware can disable the TrustZone pro-
tections and attack the TEE, for example, the covert channel
attack that is based on time or energy consumption. However,
this kind of attacks require a high degree of sophistication.

VII. RELATED WORK
To solve information security problems, building a trusted-
hardware-based TEE has become a research hotspot in col-
leges and enterprises. On the x86 platform, [19] built a
TEE based on a trusted platform module (TPM) and trusted
kernel. The TPM is used for a trusted boot of the trusted
kernel, which provides a runtime protection for security
applications. Since this kind of trusted kernel must provide
functions such as a network protocol stack and file system,
the size of the trusted computing base (TCB) becomes very
complicated and guaranteeing security is difficult. To reduce
the complexity of the TCB, Intel SGX [20] was developed.
SGX provides a TEE for security-critical applications by
extending the x86 instruction set to isolate applications from
complex system software, such as Linux, Windows, and
hypervisors. Reference [21] formalized the information flow
property for a single trusted application that runs in the
SGX secure container. However, all verification work is at
the machine code level with high verification complexity.
On the ARM platform, TrustZone provides similar hardware
protection. Reference [22] builds a software system based
on TrustZone that can execute Linux applications in a TEE;
however, the system has a large TCB and does not use any
encryption/decryption scheme to ensure the private data.
Reference [23] builds a TEE for mobile applications based on
the ARM TrustZone and provides secure protocols to ensure
confidentiality and integrity of sensitive data. In their design
framework, each trusted application can independently com-
municate with the outside world. If we use formal methods
to verify security properties of trusted applications, we need

VOLUME 8, 2020 33881

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

to separately verify each application, which significantly
increases the amount of verification work.

The most important security property for isolated domains
is information flow security. Information flow verification
involves tracking the flow of confidential information in the
programme and checking whether the confidential informa-
tion directly or indirectly flows to the data objects that are
visible to the adversary [24]–[26]. [27]–[29] propose a type
system to mark the variables that hold private information
and check whether the programme has covert channels that
cause information leakage. References [30], [31] provides
a language-based information flow verification strategy that
requires a specific language and introduces many annotation
variables that increase the burden on software developers.
In addition, this approach uses complex system software (e.g.,
OS, hypervisor) as part of the TCB. In comparison, the design
of this article excludes complex system software, and the
TCB only includes trusted hardware and TEE software. Ref-
erence [32] proves the isolation property of a simple separa-
tion kernel that runs on physical-separated machines. Instead
of using standard information flow analysis techniques (e.g.,
noninterference), they prove a property by stating that the
machine execution is trace-equivalent to execution over an
idealized model. Their methodology is fairly different from
ours, as we verify the correctness and security properties of
a secure channel and then separate it from a secure monitor
and prove noninterference.

An important work in the area of formal foundational
software systems is the certified CertiKOS kernel [33], [34].
There are some similarities between the noninterference
proof of CertiKOS and that of our secure monitor, as both
noninterference properties are defined following the unwind-
ing condition theory using a similar observation function
or domain-visible function. Moreover, both security proofs
are conducted over an abstract specification and then prop-
agated down to a concrete C or assembly implementation.
Our work, however, has three important differences from the
CertiKOS work. First, the assembly model of CertiKOS is
mainly built for the x86 architecture, whereas our assembly
model is built for the TrustZone-based ARM architecture.
Second, the CertiKOS extends CompCert [35] for low-level
reasoning and uses less abstract low-level specifications to
simulate the realistic calculations and memory operations of
a programme. However, this kind of low-level specification
cannot handle complicated pointer data structures well. For
security and verification purposes, CertiKOS uses bounded
arrays instead of traditional pointer-linked lists in their code
implementations. In contrast, our API specification uses sep-
aration logic to specify efficient embedded programmes in
which there exist considerable pointer data structures and rel-
evant operations. Third, to solve the incompatibility between
refinement relations and propagate high-level security prop-
erties down to a concrete implementation correctly, CertiKOS
uses a relatively complex predicate to build their simulation
relations between the high-level and low-level specifications.
Our API specifications are more abstract than their low-level

specifications, which allows us to achieve the following two
objectives: the abstract state in the functional specification
is very similar to the abstract state in the API specification,
such that we can establish a simple equivalent relationship
instead of a complex predicate relationship, which reduce
the bi-simulation proof efforts (Corollary 1, section IV), and
the equivalent relationship contains all the domain-visible
state that can be used to solve the incompatibility between
refinement relations.

The Serval [36] aims for correctness and security verifica-
tion of a system software, which shares a similar goal to ours:
provide an end-to-end security guarantee for critical modules
of an embedded system. However, the overall approaches are
quite different. Serval uses Rosette [37] and relies on SMT
solving, which allows for more automation. Our approach
uses Coq, which can express richer properties that Serval
cannot. For noninterference, Serval tends to prove Nickel’s
[38] specification instead of our noninterference specifica-
tion. However, it is hard to compare the two noninterference
specifications since they are written in different logics and
verification tools. Another difference is in the treatment of
unbounded loops. Serval must retrofit system implementation
and require loops to be bounded for automated verifica-
tion. Contrast this to our approach, where we directly ver-
ify correctness of programmes with unbounded loops (e.g.,
the memory copy and compare functions used in the secure
channel) using Coq.

VIII. CONCLUSION
We presented a methodology for designing a TrustZone-
based TEE, which enables verification of a TEE’s functional
correctness and security properties. A TEE multi-level archi-
tecture and a narrow communication interface are designed
to reduce the difficulty of verification. We also presented
a modular verification framework for verifying the end-to-
end security of C and ARM assembly programs. The cor-
rectness of an environment scheduler is verified for different
abstraction levels. A flexible domain-visible function is used
to specify the security property, prove noninterference via
unwinding, and soundly propagate the security guarantee
across bi-simulation. Our evaluation shows that our VTEE
achieves high security confidence with an acceptable perfor-
mance cost.

ACKNOWLEDGMENT
The authors would like to thank article reviewers for their
many valuable comments. The authors would also like to
thank AJE for its linguistic assistance during the preparation
of this manuscript.

REFERENCES
[1] ARMTechnical White Paper. ARM Security Technology-Building a Secure

System Using TrustZone Technology. Accessed: Apr. 1, 2009. [Online].
Available: http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-
009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf

[2] D. Rosenberg. QSEE TrustZone Kernel Integer Overflow Vulnerability.
Accessed: Jul. 1, 2014. [Online]. Available: https://www.blackhat.
com/docs/us-14/materials/us-14-Rosenberg-Reflections-On-Trusting-
TrustZone-WP.pdf

33882 VOLUME 8, 2020

H. Sun, H. Lei: Design and Verification Methodology for a TrustZone TEE

[3] J. Hruska. HTC Caught Storing Fingerprint Data in Unencrypted
Plain Text. Accessed: Aug. 10, 2015. [Online]. Available: https://www.
extremetech.com/mobile/211985-htc-caught-storing-fingerprint-data-in-
unencrypted-plain-text

[4] J. Jürjens, ‘‘Secrecy-preserving refinement,’’ in FME 2001: Formal Meth-
ods for Increasing Software Productivity, J. N. Oliveira and P. Zave, Eds.
Berlin, Germany: Springer, 2001, pp. 135–152.

[5] C. Morgan, ‘‘The shadow knows: Refinement and security in sequential
programs,’’ Sci. Comput. Program., vol. 74, no. 8, pp. 629–653, Jun. 2009,
doi: 10.1016/j.scico.2007.09.003.

[6] The Coq Proof Assistant Reference Manual Introduction and Con-
tents. Accessed: Jul. 23, 2018. [Online]. Available: https://coq.inria.
fr/distrib/current/refman/

[7] G. Klein, M. Norrish, T. Sewell, H. Tuch, S. Winwood, K. Elphinstone,
G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
and R. Kolanski, ‘‘SeL4: Formal verification of an OS kernel,’’ in Proc.
ACM SIGOPS 22nd Symp. Oper. Syst. Princ. (SOSP), Big Sky, MT, USA,
2009, pp. 207–220.

[8] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski,
and G. Heiser, ‘‘Comprehensive formal verification of an OS microker-
nel,’’ ACM Trans. Comput. Syst., vol. 32, no. 1, pp. 1–70, Feb. 2014,
doi: 10.1145/2560537.

[9] J. A. Goguen and J. Meseguer, ‘‘Security policies and security models,’’ in
Proc. IEEE Symp. Secur. Privacy, Oakland, CA, USA, Apr. 1982, p. 11.

[10] J. A. Goguen and J. Meseguer, ‘‘Unwinding and inference control,’’ in
Proc. IEEE Symp. Secur. Privacy, Oakland, CA, USA, Apr./May 1984,
p. 75.

[11] J. C. Reynolds, ‘‘Separation logic: A logic for shared mutable data struc-
tures,’’ in Proc. 17th Annu. IEEE Symp. Logic Comput. Sci., Copenhagen,
Denmark, Jul. 2002, pp. 55–74.

[12] S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen, ‘‘Compositional
verification for component-based systems and application,’’ in Automated
Technology for Verification and Analysis, S. Cha, J.-Y. Choi, M. Kim,
I. Lee, and M. Viswanathan, Eds. Berlin, Germany: Springer, 2008,
pp. 64–79.

[13] S. Bensalem, M. Bozga, A. Legay, T.-H. Nguyen, J. Sifakis, and R. Yan,
‘‘Component-based verification using incremental design and invariants,’’
Softw. Syst. Model., vol. 15, no. 2, pp. 427–451, May 2016, doi: 10.1007/
s10270-014-0410-8.

[14] D. J. Walker, ‘‘Bisimulation and divergence,’’ Inf. Comput., vol. 85, no. 2,
pp. 202–241, Apr. 1990, doi: 10.1016/0890-5401(90)90048-M.

[15] Q. Cao, L. Beringer, S. Gruetter, J. Dodds, and A. W. Appel, ‘‘VST-Floyd:
A separation logic tool to verify correctness of C programs,’’ J. Automat.
Reasoning, vol. 61, nos. 1–4, pp. 367–422, Jun. 2018, doi: 10.1007/s10817-
018-9457-5.

[16] A. W. Appel, Program Logics for Certified Compilers. New York, NY,
USA: Cambridge Univ. Press, 2014.

[17] X. Yang, P. Shi, B. Tian, B. Zeng, and W. Xiao, ‘‘Trust-E: A trusted
embedded operating system based on the ARM trustzone,’’ in Proc. IEEE
11th Int. Conf. Ubiquitous Intell. Comput., IEEE 11th Int. Conf. Auton.
Trusted Comput., IEEE 14th Int. Conf. Scalable Comput. Commun., Assoc.
Workshops, Bali, Indonesia, Dec. 2014, pp. 495–501.

[18] Jforissier. The Secure Side Implementation of OP-TEE Project.
Accessed: Jan. 11, 2020. [Online]. Available: https://github.com/OP-TEE/
optee_os

[19] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, ‘‘Terra:
A virtual machine-based platform for trusted computing,’’ ACM SIGOPS
Oper. Syst. Rev., vol. 37, no. 5, p. 193, Dec. 2003, doi: 10.1145/1165389.
945464.

[20] F. McKeen, ‘‘Intel software guard extensions (Intel SGX) support for
dynamic memory management inside an enclave,’’ in Proc. Hardw. Archit.
Support Secur. Privacy, Seoul, South Korea, Jun. 2016, Art. no. 10.

[21] R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani, ‘‘Moat: Verifying
confidentiality of enclave programs,’’ in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur., Denver, CO, USA, Oct. 2015, pp. 1169–1184.

[22] L. Guan, ‘‘TrustShadow: Secure execution of unmodified applications
with ARM TrustZone,’’ in Proc. 15th Annu. Int. Conf. Mobile Syst. Appl.
Services, New York, NY, USA, Jun./Jun. 2017, pp. 488–501.

[23] N. Santos, H. Raj, S. Saroiu, and A. Wolman, ‘‘Using ARM Trust-
Zone to build a trusted language runtime for mobile applications,’’ ACM
SIGARCH Comput. Archit. News, vol. 42, no. 1, pp. 67–80, Feb. 2014,
doi: 10.1145/2644865.2541949.

[24] J. McLean, ‘‘Proving noninterference and functional correctness using
traces,’’ J. Comput. Secur., vol. 1, no. 1, pp. 37–57, Jan. 1992.

[25] A. C. Myers and B. Liskov, ‘‘A decentralized model for information flow
control,’’ ACM SIGOPS Oper. Syst. Rev., vol. 31, no. 5, pp. 129–142,
Dec. 1997, doi: 10.1145/269005.266669.

[26] A. Nanevski, A. Banerjee, and D. Garg, ‘‘Verification of information flow
and access control policies with dependent types,’’ in Proc. IEEE Symp.
Secur. Privacy, Berkeley, CA, USA, May 2011, pp. 165–179.

[27] A. Sabelfeld and A. C. Myers, ‘‘A model for delimited information
release,’’ in Software Security—Theories and Systems, K. Futatsugi,
F. Mizoguchi, and N. Yonezaki, Eds. Berlin, Germany: Springer, 2004,
pp. 174–191.

[28] G. Barthe and L. P. Nieto, ‘‘Secure information flow for a concurrent
language with scheduling,’’ J. Comput. Secur., vol. 15, no. 6, pp. 647–689,
Sep. 2007.

[29] D. Volpano, C. Irvine, and G. Smith, ‘‘A sound type system for secure flow
analysis,’’ J. Comput. Secur., vol. 4, nos. 2–3, pp. 167–187, Jan. 1996.

[30] D. E. Denning and P. J. Denning, ‘‘Certification of programs for secure
information flow,’’ Commun. ACM, vol. 20, no. 7, pp. 504–513, Jul. 1977,
doi: 10.1145/359636.359712.

[31] A. Sabelfeld and A. C. Myers, ‘‘Language-based information-flow secu-
rity,’’ IEEE J. Sel. Areas Commun., vol. 21, no. 1, pp. 5–19, Jan. 2003,
doi: 10.1109/JSAC.2002.806121.

[32] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz, ‘‘Formal
verification of information flow security for a simple arm-based separation
kernel,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Berlin,
Germany, Nov. 2013, pp. 223–234.

[33] R. Gu, ‘‘Deep specifications and certified abstraction layers,’’ in Proc.
42nd Annu. ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang., Mum-
bai, India, Jan. 2015, pp. 595–608.

[34] D. Costanzo, Z. Shao, and R. Gu, ‘‘End-to-end verification of information-
flow security for C and assembly programs,’’ in Proc. 37th ACM SIG-
PLANConf. Program. Lang. Design Implement., Santa Barbara, CA, USA,
Jun. 2016, pp. 648–664.

[35] X. Leroy, ‘‘Formal verification of a realistic compiler,’’ Commun. ACM,
vol. 52, no. 7, pp. 107–115, Jul. 2009, doi: 10.1145/1538788.1538814.

[36] L. Nelson, J. Bornholt, R. Gu, A. Baumann, E. Torlak, and X. Wang,
‘‘Scaling symbolic evaluation for automated verification of systems code
with Serval,’’ in Proc. 27th ACM Symp. Oper. Syst. Princ., Huntsville, ON,
Canada, Oct. 2019, pp. 225–242.

[37] J. Bornholt and E. Torlak, ‘‘Finding code that explodes under symbolic
evaluation,’’ Proc. ACM Program. Lang., vol. 2, Oct. 2018, Art. no. 149,
doi: 10.1145/3276519.

[38] H. Sigurbjarnarson, L. Nelson, B. Castro-Karney, J. Bornholt, E. Torlak,
and X. Wang, ‘‘Nickel: A framework for design and verification of infor-
mation flow control systems,’’ in Proc. 13th USENIX Symp. Oper. Syst.
Design Implement., Carlsbad, CA, USA, Oct. 2018, pp. 287–306.

HAIYONG SUN received the bachelor’s degree
in software engineering from Hangzhou Dianzi
University. He is currently pursuing the Ph.D.
degree with the School of Information and Soft-
ware Engineering, University of Electronic Sci-
ence and Technology of China. His research is
focused on the specification and verification of an
embedded operating system kernel.

HANG LEI received the Ph.D. degree in computer
science from the University of Electronic Science
and Technology of China, China, in 1997. After
graduation, he conducted research in the fields of
real-time embedded operating systems, operating
system security, and program verification, as a
Professor with the Department of Computer Sci-
ence, University of Electronic Science and Tech-
nology of China, where he is currently a Professor
(a Doctoral Supervisor) with the School of Infor-

mation and Software Engineering. His research interests include big data
analytics, machine learning, and program verification.

VOLUME 8, 2020 33883

http://dx.doi.org/10.1016/j.scico.2007.09.003
http://dx.doi.org/10.1145/2560537
http://dx.doi.org/10.1007/s10270-014-0410-8
http://dx.doi.org/10.1007/s10270-014-0410-8
http://dx.doi.org/10.1016/0890-5401(90)90048-M
http://dx.doi.org/10.1007/s10817-018-9457-5
http://dx.doi.org/10.1007/s10817-018-9457-5
http://dx.doi.org/10.1145/1165389.945464
http://dx.doi.org/10.1145/1165389.945464
http://dx.doi.org/10.1145/2644865.2541949
http://dx.doi.org/10.1145/269005.266669
http://dx.doi.org/10.1145/359636.359712
http://dx.doi.org/10.1109/JSAC.2002.806121
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/3276519

	INTRODUCTION
	THREAT MODEL
	DESIGN AND VERIFICATION METHODOLOGY

	TEE DESIGN BASED ON TRUSTZONE
	TEE MULTI-LEVEL ARCHITECTURE
	SECURE CHANNEL
	IMPACT OF DIFFERENT TEE DESIGN ON FORMAL VERIFICATION TASKS

	VERIFICATION CHALLENGES
	VERIFICATION OF THE SCHEDULER
	MANIPULATION OF RETURN CODE POINTERS
	SPECIFYING THE SCHEDULER

	END-TO-END SECURITY VERIFICATION
	NONDETERMINISTIC SECURE PROGRAMME
	INCOMPATIBILITY BETWEEN REFINEMENT RELATIONS AND DOMAIN-VISIBLE FUNCTIONS

	MODULAR VERIFICATION FRAMEWORK
	BASIC MODEL
	END-TO-END SECURITY
	ABSTRACT MACHINE M SECURITY
	REAL MACHINE m SECURITY

	IMPLEMENTATION
	C CODE VERIFICATION
	ASSEMBLY CODE VERIFICATION
	PROGRAMME ABSTRACTION

	SECURITY VERIFICATION OF SECURE MONITOR
	CORRECTNESS OF SECURE MONITOR'S API
	ABSTRACT STATE
	VERIFICATION PLAN
	VERIFICATION OF APIS

	VERIFYING NONINTERFERENCE PROPERTY OF THE SCHEDULER
	DOMAIN-VISIBLE FUNCTION

	CODE SIZE AND PROOF EFFORT

	EVALUATION
	PERFORMANCE
	METHODOLOGY
	PERFORMANCE OF TA CODE EXECUTION
	PERFORMANCE OF THE VTEE PRIMITIVES

	SECURITY ANALYSIS

	RELATED WORK
	CONCLUSION
	REFERENCES
	Biographies
	HAIYONG SUN
	HANG LEI

