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ABSTRACT Chronic obstructive pulmonary disease (COPD) is associated with morphologic abnormal-
ities of airways with various patterns and severities. However, the way of effectively representing these
abnormalities is lacking and whether these abnormalities enable to distinguish COPD from healthy controls
is unknown. We propose to use deep convolutional neural network (CNN) to assess 3D lung airway tree
from the perspective of computer vision, thereby constructing models of identifying COPD. After extracting
airway trees from CT images, snapshots of their 3D visualizations are obtained from ventral, dorsal and
isometric views. Using snapshots of each view, one deep CNN model is constructed and further optimized
by Bayesian optimization algorithm to indentify COPD. The majority voting of three views presents the
final prediction. Finally, the class-discriminative localization maps have been drawn to visually explain the
CNNs’ decisions. The models trained with single view (ventral, dorsal and isometric) of colorful snapshots
present the similar accuracy (ACC) (86.8%, 87.5% and 86.7%) and the model after voting achieves the ACC
of 88.2%. The ACC of the final voting model using gray and binary snapshots achieves 88.6% and 86.4%,
respectively. Our specially designed CNNs outperform the typical off-the-shelf CNNs and the pre-trained
CNNs with fine tuning. The class-discriminative regions of COPD are mainly located at central airways;
however, regions in HC are scattering and located at peripheral airways. It is feasible to identify COPD
using snapshots of 3D lung airway tree extracted from CT images via deep CNN. The CNNs can represent
the abnormalities of airway tree in COPD and make accurate CT-based diagnosis of COPD.

INDEX TERMS Chronic obstructive pulmonary disease (COPD), deep learning, convolutional neural
networks, computed tomography (CT), airway, image classification.

I. INTRODUCTION
Chronic obstructive pulmonary disease (COPD) is a common
respiratory disease with a trend of growing prevalence glob-
ally [1]. The estimated global prevalence of COPD in 2015 is
about 174 million [2]. Currently, COPD has been the third
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leading cause of death (3 million every year) and a major
cause of disability [3]. Extensive researches are urgently
demanded to improveCOPDoutcomes through early identifi-
cation and exploration of biomarkers for phenotype diagnosis
and personalized therapy [4], [5].

COPD is characterized by persistent and incompletely
reversible airflow limitation and gas trapping caused by
multiple pathological alternations including emphysematous
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lung tissue destruction, gross airway disease and functional
small airway disease [3]. FEV1 (forced expiratory volume
in 1 second), measured using spirometry, has been the stan-
dard and dominated indictor in the diagnosis and therapies
of COPD due to the straightforward and inexpensive char-
acteristics [6]. However, FEV1 does not allow for differen-
tiation between subtypes and is weakly correlated with the
exacerbations and mortality of COPD. In 2017, the GOLD
report has clearly stated that to FEV1 should not be used for
assessing the degree of reversibility of airflow limitation or
making therapeutic decisions [7].

Low dose and high resolution computer tomography (CT)
and subsequently quantitative analysis in COPD have
emerged as a new approach to visualize and quantitatively
measure regional airflow limitation, gas trapping, emphy-
sema, and airway remodeling [8]– [12]. Nambu et al. [13]
found CT measures have significant correlations with COPD
physiological indices, where CT measures include of % low
attenuation areas (%LAA), square root of the wall area at
an internal airway perimeter of 10 mm (Pi10), and airway
wall thickness, luminal diameter and airway wall area per-
cent (WA%) in the segmental, subsegmental and subsub-
segmental bronchi. Emphysema in COPD can be divided
into centrilobular, panlobular, and paraseptal types according
to its appearance [14]. Using expiration and inspiration CT
scans and a voxel-wise image analysis technique, the Para-
metric Response Map (PRM) of functional small airways
disease (fSAD) and emphysema have been found be able
to differentiate between specific COPD phenotypes accu-
rately [5].

Airway trees can be automatically segmented from CT
images via advanced imaging processingmethods [15]. How-
ever, no consensus on the most appropriate methods for quan-
tifying the airways has been achieved though many measures
have been proposed. The abnormalities in COPD airway
can be thicker wall thickness, smaller airway intraluminal
area (Ai) of third- to sixth-generation bronchi [16], more
branch variation [17], smaller child-to-parent diameter ratios,
larger length-to-diameter ratios, and smaller fractal dimen-
sions [18]. They can also be Pi10 [13], tracheal section [19],
CT total airway count [20], and tracheal shape [21].

Visual assessment of CT image-based airways of COPD
can provide complementary information to quantitative mea-
surements [6]. Kim et al. [22] have demonstrated that visual
assessment by radiologists can lead to the reproducible, phys-
iologically substantial knowledge on airways of COPD. The
Fleischner society has also recommended using visual assess-
ment of CT airway to define the subtypes of COPD [14].
However, visual assessment has been reported to be of the
relatively low interreader agreement, highly subjective and
poorly reproducible, though the use of standard images as
references ameliorates the situation [22].

Deep learning, deep convolutional neural network (CNN)
in particular, as a kind of computer vision method, has been
developed to understand the objects or images. Deep CNN
can learn representative features from the data with multiple

levels of abstraction and thus the design, extraction and
selection of handcrafted features are unnecessary [23]. Via
easy practicability and excellent performance, deep CNN has
made great breakthroughs in processing both natural and
medical images [24]–[29].

Studies on CT imaging analysis of COPD by deep learn-
ing or machine learning are not many. Using four canoni-
cal CT slices at predefined anatomic landmarks as inputs,
González et al. [30] trained deep CNN models with an accu-
racy (ACC) of 0.773 for the detection of COPD in the
COPDGene testing cohort (n = 1000). Meanwhile, the
trained CNN model can also accurately stage COPD within
one stage (74.95% for COPDGene and 74.6% for ECLIPSE).
The prediction ACC of acute respiratory disease events
reaches 0.604 and 0.606 in the COPDGene testing cohort (n
= 1000) and the ECLIPSE cohort (n = 1062), respectively.
Cheplygina et al. [31] utilized instance-transfer leaning to
classify COPD from different centers, scanners, or subject
distributions. The only study using airway tree to classify
COPD is done by Petersen et al. [32], where geometric tree
kernels have been employed to extract the features of airways,
support vector machine (SVM) is used further and the highest
ACC of 64.9% is achieved for 1966 individuals including
893 COPD. To the best of our knowledge, our work is the first
to use deep CNN and CT based airway trees for identification
of COPD.

In this paper, we propose to use deep CNN to automatically
assess 3D lung airway tree from the perspective of computer
vision and construct models of identifying COPD. It is noted
that, beside the abnormalities of lung airway tree, COPD
will also lead to other abnormalities of lung parenchyma,
blood vessel, even extra-pulmonary organs (e.g., osteoporo-
sis). We investigate the feasibility of identifying COPD by
deep CNN models which only use the abnormalities of lung
airway tree with the aim to emphasize both the importance
of abnormalities and effectiveness of specifically designed
deep CNN models. If one aims to build up one model for
accurately identify COPD from CT images, comprehensive
features related to lung airway tree, lung parenchyma, blood
vessel, even extra-pulmonary organs should be considered.

The main contributions of this study are threefold. First,
inspired by the face recognition method [33], the 2D snap-
shots of 3D lung airway tree, rather than 3D airways them-
selves or original CT slices, are employed. To utilize 3D
airways directly is unfeasible due to the limited number
of training samples in the current study and also has the
higher computational complexity. The role of the abnor-
malities of airway tree for COPD identification cannot be
clarified while using the original CT slices because these
slices include all chest components (e.g., the chest wall,
bone, lung parenchyma, heart, pulmonary vessels, airway
tree, pulmonary interstitium, etc.). Second, Bayesian opti-
mization algorithm (BOA) is utilized to obtain the effective
convolution network structure and hyper-parameters [34].
The specially designed and BOA optimized CNN models
achieve the highest identification accuracy of 88.6% and
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FIGURE 1. The study design and the main experimental procedures.

outperform the typical off-the-shelf CNN models, the CNN
model using the original CT slices [30], and other state-of-
the-art models using transfer learning [31] and geometric
tree kernels [32]. Third, Gradient-weighted Class Activation
Mapping (Grad-CAM) is used to highlight the important
regions in the snapshots for predicting healthy control (HC)
and COPD airways [35]. The class-discriminative regions are
found to be located at the central airways in COPD, but to
be scattering and with many edges of peripheral airways in
HC. This study has demonstrated that the CNNs can represent
the abnormalities of airway tree in COPD and make accurate
CT-based diagnosis of COPD.

II. MATERIALS AND METHODS
A. PARTICIPANTS AND DATASET
Totally 280 participants (190 COPD patients, 90 healthy con-
trols (HC)) are enlisted from subjects who underwent CT scan
in Central Hospital Affiliated to Shenyang Medical College
during the period of 2016-2018. COPD is diagnosed by clini-
cians in respiratory department according to the spirometry
measurements of pulmonary function tests. If the subjects
fulfill the Global Initiative for Chronic Obstructive Lung
Disease (GOLD) criteria, i.e., FEV1/FVC is less than 0.7
(FEV1 is the postbronchodilator forced expiratory volume
in 1 second and FVC is the forced vital capacity).

The characteristics of the participants and CT image acqui-
sition parameters are given in Table 1. By the Chi-square
test, there is no significant difference for the gender between
COPD (male/female: 110/80) and HC (male/female: 54/36)
(p = 0.738). According to the two-sample t-test, there is no
significant difference for the age (years) between SD and HC
groups (mean± S.D.: 76.6± 9.2 vs. 68.7± 9.3, p = 0.999).

As listed in Table 1, the tube voltage is set as 120 kV
and the slice thickness is 1.5 mm for all the acquisitions of
CT images. Two CT scanners (Philips iCT 256 / Neusoft
NeuViz 128) are utilized. The pixel size, the X-ray tube cur-
rent, and the exposure vary across the subjects. The study has
been approved by the Medical Ethics Committee of Central
Hospital Affiliated to Shenyang Medical College and is in
accordance with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards. All participants
signed a written informed consent in accordance with the
Declaration of Helsinki (2000).

B. OVERVIEW OF STUDY PROCEDURES
As shown in Figure 1, there are two main steps in our
study. In the first step, the CT images are input into the
medical imaging process software of Mimics (Materialise
Corp, Belgium) and the airway tree is extracted using the tool
‘‘Deep airway segmentation’’ (Pulmonary Module) embed-
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TABLE 1. Characteristics of the participants and CT image acquisition parameters.

ded in Mimics [36]. No any further user interaction is used.
Colorful snapshots of 3D visualization of surface rendering
of the extracted airway trees are obtained from ventral, dor-
sal and isometric views. The size of all snapshots is set as
224× 224 by a fix-sized box.
In the second step, the multi-view CNN models are

built to classify the participants into COPD and HC. Three
schemes are proposed and implemented for the classification.
In Scheme I. Colorful snapshots, three deep CNN models
are constructed using colorful snapshots from ventral, dorsal
and isometric views. According different views, three mod-
els are named as CNN-CV, CNN-CD and CNN-CI, where
‘‘C’’ indicates the colorful snapshots. Majority voting is used
to fuse the predictions of three models and yield the final
classification.
Scheme II. Gray snapshots is designed to examine whether

the rendering pseudo-color of airway tree influences the per-
formance of identification of COPD. Through the gray-level
transformation, we change the input snapshots into gray ones.
Similarly three models of CNN-GV, CNN-GD and CNN-GI
are constructed, where ‘‘G’’ means the gray snapshots.

Scheme III. Binary snapshots is to study if the gray contrast
has effect on the classification performance. Actually the gray
contrast distributions of airway tree characterize the smooth-
ness of airway tree. The gray levels will be small at the smooth
places of surface of airway and the drastic changes of gray
distribution will appear if the surface of airway is irregular.
Binarization of gray snapshots yields binary ones which are
employed to build three models of CNN-BV, CNN-BD and
CNN-BI. Herein, ‘‘B’’ represents the binary snapshots.

C. CNN MODEL DESIGN AND PARAMETERS FOR
OPTIMIZATION
We have designed CNN models by the widely used strategy
of ‘‘stage-wise building-block’’ [37]. As shown in Figure 2,
the CNN model consists of several ‘‘RANGE’’s, each

RANGE has some convolutional layers, and each convolu-
tional layer is followed by a batch normalization layer and
a leaky rectified linear activation layer (Leaky ReLU). One
MaxPooling layer follows each RANGE. After the finalMax-
Pooling layer, one AvgPooling, two fully connected layers, a
dropout layer and Softmax layer are linked successively.

Bayesian optimization algorithm (BOA) is employed to
find the effective convolution network structure and hyper-
parameters [34]. As give in Table 2, the encoder depth, net-
work depth and filter size are optimized within the ranges
of [1, 3], [1, 4] and [2, 5], respectively. The encoder depth
is defined as the number of RANGEs and network depth is
the number of convolutional layers in a RANGE. The filter
size indicates the height and width of the kernel and it can be
2 × 2, 3 × 3, 4 × 4, or 5 × 5. Meanwhile, the leaky factor,
the dropout factor, the initial learning rate, the momentum
and regularization factor are optimized by BOA within the
range of values listed in Table 2. The leaky factor is a constant
of the leaky-ReLU activation function and the dropout factor
is the probability of drop neuron nodes. Correspondingly,
the momentum is defined as the contribution of the gradient
step from the previous iteration to the current iteration of
training and regularization factor is the factor for the L2 reg-
ularizer. The number of filters in RANGE1 and RANGE2 is
determined as 64 and 128 according to experiences.

BOA is a sequential model-based approach to find a global
maximizer of an unknown objective function

x∗ = arg maxxεX f (x) (1)

where f (x) is the classification accuracy of deep CNN system
(the objective function) and x indicates a set of tunable param-
eters in a bounded domain. The Gaussian process prior with
added Gaussian noise in the observations is selected as the
Gaussian process model of f (x). During the implementation
of BOA, there are two repeated steps after evaluating yi =
f (xi): (1) Update f (x) to get a posterior distribution function
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FIGURE 2. The architectures of the proposed CNN models.

Q (f |xi, yi for i = 1, . . . , t); (2) Find the new point x that
maximizes the acquisition function a (x). Here, the expected
improvement (EI) is used as a (x) and defined as

EI (x,Q) = EQ[max(0,µQ(xbest)−f (x))] (2)

here xbest is the location of the lowest posterior mean
and µQ (xbest) is the lowest value of the posterior mean.
For detailed information on definitions of parameter and
implementation of BOA, one can refer to the publi-
cations [34], [38]. In current study, BOA is realized
using the function embedded in Deep learning Toolbox in
Matlab 2018a.

D. CNN TRAINING AND CROSS-VALIDATION
EXPERIMENTS
The performance of CNN models is evaluated by using a
stratified ten-fold cross-validation. Specifically, snapshots of
each single view are divided into the training, validation and
testing datasets with the ratio of 8:1:1. In each fold of cross-
validation, the testing and validation datasets are completely
different. The method of focal loss is used to tackle the class
imbalance problem, where the weighting factor α is set as
0.32 (90/280) and the focusing parameter γ is set as 2.0 [39].
The snapshots in the training and validation datasets have

been augmented through the random rotation, reflection,
scale, shear and translation with a defined range, where the
reflection, scale, shear and translation have been done in both
horizontal and vertical directions. In summary, the number of
training and validation data is increased to 10 times.

To alleviate the overfitting, several ways such as the data
augmentation, dropout, L2 regularization and early stop-
ping have been adopted. The early stopping is triggered
if the accuracy of the validation dataset does not increase
within 5 iterations.

The measures of accuracy (ACC), confusion matrix,
receiver operating characteristic (ROC) curve, area under
ROC curve (AUC) are calculated to evaluate the classification
performance. Finally, a parameter named the ratio of fulfill
area (RFA) of airway tree is defined in order to investigate
whether the volume or surface area of airway tree has a great
influence on the identification of COPD. It is calculated as
the proportion of the airway tree area in one snapshot. The
two-sample t-test is employed to examine whether there is a
significant difference for RFA between COPD and HC.

E. COMPARATIVE CNN MODELS AND EXPERIMENTS
To compare the classification performance of our specifically
designed and BOA optimized CNNs with that of other avail-
able CNNs, three typical off-the-shelf CNN models includ-
ing AlexNet [40], VGG-16 [41] and Inception-V1 [42] are
employed using the gray snapshots of dorsal view. Inception-
V1 module consists of three convolutional layers (1 × 1
convolutions, 3×3 convolutions and 5×5 convolutions) and
one MaxPooling layer, where 1× 1 convolutions are used to
compute reductions before the expensive 3 × 3 and 5 × 5
convolutions.

We have also tried the way of using the pre-trained CNN
with fine tuning. For the pre-trained AlexNet and VGG-16
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TABLE 2. Some optimized parameters via BOA.

with fine tuning, we replaced the final three layers of the
pre-trained CNNs by three new layers of a fully connected
layer, a softmax layer and a classification output layer. Using
the snapshots of 3D lung airway tree and the correspond-
ing labels, the new layers are trained. To accelerate the
learning of the new fully connected layer, its learning rate
factors of weight and bias are set as 50. Similarly, for the
pre-trained GoogLeNet with fine tuning, the final three layers
are replaced and trained by our new dataset. Since the depth
of GoogLeNet is larger than that of AlexNet and VGG-16,
the weights in all the remaining 110 layers of GoogLeNet are
frozen (i.e., the learning rate is set as zero) while training the
new fully connected layer. BOA is also be utilized for the fine
tuning of pre-trained CNNs. Three optimized parameters are
Dropout factor, Initial learning rate and Momentum.

Moreover, we have implemented a 3D CNN model
for comparison. In this specifically designed CNN model,
the input is the matrix of 64 × 64 × 64 and there
are 6 convolutional layers (C1-C6), 3 dilation convolutional
layers (DC1-DC3), 1 global average pooling layer (GAP),
and 2 fully connected layers (FC1-FC2). A batch normaliza-
tion layer follows each convolutional layer and the activation
function is ReLU.Dropout is used between FC1 and FC2with
a dropout factor of 0.7.

The experiments were implemented in Matlab 2018a
(Deep Learning Toolbox) under a Windows 7 operating sys-
tem on a workstation with CPU Intel Xenon E5-2650 v4
@ 2.20 GHz, GPU NVIDIA Quadro P4000 and 64G RAM.
Recently, Deep Learning Toolbox has been one alternative
framework for designing, optimizing and implementing deep
CNNs. It has the great features of the training flexibility,
data preprocessing, training acceleration, and visualization.
One also can easily exchange models between this tool-
box and other frameworks including TensorFlow, PyTorch,
TensorFlow-Keras and Caffe.

F. CLASS-DISCRIMINATIVE LOCALIZATION MAP
With the aim of visually explaining the decisions made
by deep CNN model, Gradient-weighted Class Activation
Mapping (Grad-CAM) is used to highlight the important
regions in the snapshots for predicting HC and COPD air-
ways [35]. The class-discriminative localization (CDL) map

is calculated by Grad-CAM

LcGrad−CAM = ReLU
(∑K

k=1
αckA

k
)

(3)

here Ak is the kth feature map in the last convolutional layer,
K is the number of filters or feature maps (K = 128 in current
study) and αck represents the importance of Ak for a target
class c (i.e., COPD or HC). αck is defined as

αck =
1
Z

∑I

i=1

∑J

j=1

∂yc

∂Akij
(4)

here yc is the output (before the softmax) of deep CNN for
one snapshot from class c, i and j indicate the dimensions of
Ak and Z = I × J . In our deep CNN models, I = 100 and
J = 100. Finally, LcGrad−CAM with the dimension of I × J is
interpolated into the one with the same dimension as the input
snapshot, i.e., 224× 224.

III. EXPERIMENTAL RESULTS
A. NETWORK ARCHITECTURE AND PARAMETER
OPTIMIZATION
After BOA, the final optimized architecture of the proposed
CNN model is shown in Figure 2. The number of kernel
(or feature maps) is 64 and 128 in RANGE1 and RANGE2,
respectively. The kernel size is 3× 3 and the batch size is 16.
The encoder depth is 2 and the network depth is 4. The leaky
factor, the dropout factor, the initial learning rate, the momen-
tum parameters and regularization factor are determined as
0.1355, 0.6114, 0.0007, 0.8659 and 0.0081, respectively.

Since BOA is very time-consuming, it has only been imple-
mented once using snapshots of all three views. For the
CNNs with different snapshots and views, the architecture
and parameters given as above are fixed.

B. CLASSIFICATION BY COLORFUL SNAPSHOT
The accuracy and loss of the training and validation processes
in CNN-CD model (colorful snapshots, the dorsal view) are
shown in Figure 3(a) as an example. It can be seen that the
training loss of decreases continuously and reaches about
0.2 after 2200 iterations. Meanwhile, the training accuracy
increases gradually and reaches above 0.98 after 2200 iter-
ations. With the iteration, the accuracy of validation dataset
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FIGURE 3. The accuracy and loss of the training and validation datasets. (a) The input images are the colorful snapshots; (b) The input
images are the gray snapshots; (c) The input images are the binary snapshots.

TABLE 3. The comparison of the classification accuracy between different
input snapshots.

can increase to above 90% and the loss of validation dataset
can drop to the range of 0.2-0.3. No big difference between
the training and validation datasets is observed for both the
accuracy and loss. Therefore, the overfitting has been allevi-
ated within an acceptable range.

Using the ventral, isometric and dorsal view of color-
ful snapshots as inputs, the accuracy of CNN-CV, CNN-CI
and CNN-CD achieves 86.8%, 86.7% and 87.5% (Table 3).
CNN-CDoutperformsCNN-CV andCNN-CI, indicating that
snapshots from the dorsal view might present more differ-
ences of airway tree appearances between COPD and HC.
After majority voting, the accuracy slightly rises to 88.2%.

The ROC and AUC of CNN-CV, CNN-CI and CNN-CD
are given in Figure 4(a). As the accuracy, AUC of CNN-CD is
the highest one, reaching 0.925. For CNN-CV and CNN-CI,
it is 0.925 and 0.919. The confusion matrix of the final voting
classifier is given in Figure 5(a).It is found that the sensitivity

is as high as 0.963 (183/190). However, the false discovery
rate is also as high as 0.289, i.e., 26 HCs among 90 are
wrongly predicted as COPD.

For the colorful snapshot, three input channels (Red, Green
and Blue) are utilized. Each folder of training will take
about 41 minutes.

C. CLASSIFICATION BY GRAY SNAPSHOTS
For Scheme II. Gray snapshots, the accuracy and loss of
the training and validation processes of CNN-GD model
(the dorsal view) are shown in Figure 3(b). Compared with
Figure 3(a), the training loss of CNN-GD can reach lower
value of 0.1 after 2200 iterations. The accuracy of CNN-GV,
CNN-GI and CNN-GD is 86.8%, 86.4% and 87.9% (Table 3).
It is noted that, while using gray snapshot, the ACC of
the final voting model increases to 88.6%, indicating that
the color rendering adds confusing information for COPD
identification. The AUC of CNN-GV, CNN-GI and CNN-GD
is 0.906, 0.913 and 0.916 (Figure 4(b)), slightly smaller
that of colorful snapshot. According to the confusion matrix
(Figure 5(b)), there are 27 false positives (HC is wrongly
predicted as COPD) and 5 false negative (COPD is wrongly
predicted as HC). Moreover, compared with Scheme I Color-
ful snapshots, the training time using gray snapshots is shorter
(one folder, about 25 minutes) for there is only one input
channel.

D. CLASSIFICATION BY BINARY SNAPSHOTS
In Scheme III. Binary snapshots, the ACC of CNN-BV,
CNN-BI and CNN-BD is 86.4%, 83.2% and 87.1% (Table 3),
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FIGURE 4. The receiver operating characteristic curve (ROC) of three experiments. (a) The input images are the colorful snapshots;
(b) The input images are the gray snapshots; (c) The input images are the binary snapshots.

FIGURE 5. The confusion matrix of the three schemes. (a) Scheme I. Colorful snapshot; (b) Scheme II. Gray snapshots;
(c) Scheme III. Binary snapshots.

smaller than that of the corresponding models with colorful
and gray snapshots. After majority voting, the ACC reaches
to 86.4%. It is suggested that abnormal appearances of airway
tree in COPD are the major determinant of the identification
and the gray contrast distributions characterizing the smooth-
ness of airway tree have certain but limited contributions.

Similarly, the AUC of CNN-BV, CNN-BI and CNN-BD
is 0.896, 0.893 and 0.894 (Figure 4(c)), smaller than that
of models driven by colorful and gray snapshots. There are
32 false positives and 6 false negatives (Figure 5(c)).

No significant difference is observed among the accuracy
of models using the colorful, gray and binary snapshots.
However, a significant AUC is observed for these models
(p < 0.05, the colorful snapshots > the gray snapshots >
the binary snapshots). The accuracy of model using dorsal
view of snapshot is significantly higher than that of ventral
view (p < 0.05), but no significant difference is observed in
the other two comparisons: dorsal vs. isometric; ventral vs.
isometric.

E. RATIO OF FULFILL AREA (RFA)
There is no significant difference of RFA between COPD
and HC for any view (the ventral, dorsal or isometric view)
(Figure 6). The p value is 0.058, 0.153 and 0.515. These

FIGURE 6. The comparison of the ratio of fulfill area of airway tree in
COPD and HC by the two-sample t-test.

results indicate that the classification of COPD is independent
on RFA. The appearances of airway tree take crucial role for
distinguish COPD fromHC, rather than the volume or surface
area of airway tree.

F. CLASSIFICATION BY OTHER COMPARATIVE CNNs
Using the gray snapshots of airway tree from dorsal
view, AlexNet, VGG-16 and Inception-V1 achieve an ACC
of 77.9%, 74.6% and 76.79%, respectively, lower than
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FIGURE 7. Some examples of classification in form of snapshot from
dorsal view.

our proposed CNN-GD (87.9%). Our specially designed
and BOA optimized CNN models outperform the typical
off-the-shelf CNNmodels.Moreover, our current models also
outperform or show comparable performance with the CNN
model using the original CT slices (ACC of 77.3%) [30]
and other state-of-the-art models using transfer learning
(AUC of 0.79-0.90) [31] and geometric tree kernels (ACC
of 68.2%) [32].

While adopting dorsal view of gray snapshots, the final
accuracy is 83.93% and 85.71% for pre-trained AlexNet
and VGG-16, respectively. The accuracy of pre-trained
GoogLeNet is 78.57% for the dorsal view of gray snap-
shots. The possible reasons lie in the current small dataset
and the significant difference between snapshots of airway
tree and natural images used in the pre-trained CNNs. The
designed 3D CNN model has an accuracy of 78.6% for the
classification of COPD and HC using the 3D airway trees
extracted from CT images. Due to the small dataset, we have
augmented the data by 16 times. For the deeper CNNs,
no convergence can be obtained.

G. CLASSIFICATION INTERPRETATION AND GRAD-CAM
In form of snapshot of airway tree from dorsal view, some
examples of classification are shown in Figure 7. It seems
that the correctly predicted COPD subjects (the first row)
have thicker trachea and main bronchi and less number of
terminal bronchi, compared with HC (the second row). It is
noted that CNN models may identify and utilize the pattern
of abnormalities of airway tree in COPD in the agnostic way.
For the false positives and negatives, it is very difficult to
identify and represent the appearance differences even from
perspective of computer vision.

Figure 8 presents the overlap of airways and the class-
discriminative localization maps for HC and COPD groups.
Different views of snapshots correspond to different pat-
terns of CDL maps for both groups. Moreover, CDL maps
in COPD show more class-discriminative regions and these
regions are mainly located at the central airways including

FIGURE 8. The overlap of airways and the class-discriminative
localization (CDL) maps for HC and COPD groups.

trachea, main bronchi and segmental bronchi. Comparatively,
the class-discriminative regions in HC group are scattering
and include some edges of peripheral airways. In general,
the highlighted class-discriminative regions are the edges or
textons with low abstract level because the last convolutional
layer in our CNN still has the demission of 100× 100.

IV. DISCUSSIONS
In the present study, deep CNN models have been success-
fully built to identify COPD using multi-view snapshots
of 3D lung airway tree extracted from CT images. It is indi-
cated that, first, the airway tree in COPD extracted from CT
images presents distinct and abnormal morphological appear-
ances from that of HCs. Second, these abnormalities can be
represented efficiently by deep CNN from 2D multi-view
snapshots of 3D airway tree, rather than the 3D airway tree,
and therefore the classification accuracy between COPD and
HC can reach anACCof 88.6%. Third, abnormal appearances
of airway tree in COPD are the major determinant of the
identification and the local smoothness has certain but limited
contributions.

A. PATHOPHYSIOLOGICAL RATIONALE OF AIRWAY
ABNORMALITIES IN COPD
Rationale of using CT quantitatively measure airway mor-
phology in COPD root in both aspects of airway innate
anatomy and remodeling [43]. McDonough et al. [44] found
that small conducting airways (<2.0 mm) in COPD become
narrow and disappear before the onset of emphysema. Pre-
vious reports have asserted that these abnormalities in small
airways will be reflected in large- and intermediate-sized
airways [45]–[47]. A reduced tracheal section, total air-
way count on CT and airway branch variation have been
proposed as the independent and innate risk factor of
COPD [17], [19], [20], [43]. Our study has provided further
evidence to the above rationale.
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B. CNNs EFFICIENTLY REPRESENT AIRWAY
ABNORMALITIES IN COPD
Morphologic abnormality of large and small airways in
COPD presents various different patterns and severities.
To efficiently represent these abnormalities of the complex
3D structure of airways is a tough task. The difficulty orig-
inates from three aspects. First, abnormalities of airways
in COPD are multiple dimensions. It is unclear that what
and how many measurements would be representative of the
entire airways tree [48]. Second, abnormalities of COPD air-
ways vary with anatomy locations. To find the right locations
to measure airways has been noted and the spatially matched
method has been proposed [49], [50]. Third, quantitativemea-
surements of COPD airway are not standardized. Different
CT scanners and acquisition protocols of hospitals further
increase the uncertainties and difficulties [8], [11], [51].

Our deep CNN method avoids the above three difficulties
and results have shown that it can efficiently represent airway
abnormalities in COPD. By the way of computer or machine
vision, our deep CNNs lean a kind of effective, highly abstract
and agnostic representation of COPD airway abnormalities
from the data, instead of extracting ‘‘explicit’’ or ‘‘semantic’’
handcraft features [23]. González et al. [30] have shown the
power of deep CNN in detection of COPD in the COPDGene
testing cohort (ACC of 0.773). However, they directly used
four canonical CT slices at predefined anatomic landmarks
and 16 filters enhanced different structures in chest including
the lungs, the chest wall, or the bone structures. No previous
study has been done by using deep CNN and CT based airway
trees for identification of COPD.

C. MULTI-VIEW SNAPSHOTS VS. SINGLE-VIEW SNAPSHOT
Inspired by the face recognition, we utilized multi-view (ven-
tral, dorsal and isometric) 2D snapshots of 3D airway trees,
instead of 3D airways themselves. Multi-view deep leaning
has beenwidely used in face recognition andmedical imaging
analysis [52]–[54]. Recently, Keceli have utilized the pre-
trained deep CNNs to extract features from five 2D views
of 3D volume for the action recognition [55]. The com-
mon ways to transfer 3D to 2D include the combination of
axial, coronal and sagittal images, several axial slices, several
canonical CT slices [30], [56], [57]. Given our dataset is
relatively small, only includes 280 subjects, we adopted 2D
snapshots of 3D airway trees from ventral, dorsal and iso-
metric views. From Figure 8, one can see that different view
corresponds to different class-discriminative localizationmap
for COPD, indicating that the airway information extracted
from snapshots of different views is complementary.

Our fusion strategy of three views is a kind of late
or decision-level fusion, which is simpler than the early
or data-level fusion and intermediate or feature-level
fusion [58]. CNNs with multi-stream architectures (inter-
mediate fusion) have been explored for multi-scale image
analysis and multi-view (or 2.5D) classification [25], [54].
The method of fusion in the current study is the majority

voting and other fusion methods may include average or even
meta-learners (e.g., ELM) [59]. Our results have shown that
the fusion can increase the identification accuracy certainly
but slightly.

D. COLORFUL, GRAY AND BINARY SNAPSHOTS OF
AIRWAY TREE
Colorful snapshots of airway are actually pseudo-color.
Pseudo-color generated in the visualization rendering, as the
name suggests, does not only contain any useful information,
but also adds confusing information for COPD identification.
Lesions of various severities have observed in the bronchi
of patients with moderate and severe COPD and considered
to be related with airway remodeling [60]. We suppose that
these lesions make the inner surface of airway irregular and
the smoothness is reduced compared with that of HC. The
gray contrast distributions on the airway tree surface char-
acterize the scales of smoothness. More importantly, lesions
in bronchi and bronchioles will make both their lumen area
and counts of CT total airway smaller [20], [61]. Therefore,
the abnormal appearances of COPD airway will be mainly
characterized by the irregular contours and being with fewer
branches in binary snapshots. That explains why even CNN
models using binary snapshots achieve rather high ACC.
The reduced smoothness of COPD airway, presented as the
alternations of gray contrast distributions in gray snapshot,
only has limited contribution to COPD identification.

E. SPECIALLY DESIGNED CNNs VS. TYPICAL
OFF-THE-SHELF CNNs
There are several ways to obtain effective CNN models
for medical imaging analysis: the specially designed CNNs,
the typical off-the-shelf CNNs trained from scratch [53], [62].
We have tried these strategies in the current studies. It is found
that the specially designed CNNs outperform the typical off-
the-shelf CNNs trained from scratch. The reasons might be
two fold. First, we adopted an effective method of BOA
to find the optimized architectures and super-parameters.
Second, the off-the-shelf CNNs are usually developed for
natural images and trained with millions of images. However,
our study only includes 280 subjects, which makes the data
insufficient to train CNNs from scratch.

F. LIMITATIONS AND FUTURE WORK
Our study has limitations. First, the sample size is relatively
small and all subjects are from one center. Hence, it is
unknown for the generalizability of our developed models
across centers and populations. The independent test dataset
and experiments are urgently required as done by González
et al. [30]. In the next step, we will enroll more patients from
different centers and update the dataset. Second, our CNN
models utilize multi-view 2D snapshots, belonging to the 2D
CNN or 2.5D CNN. Fully 3D CNNs are also available, but
it is unfeasible because of the limited number of images and
computational devices, at least at high resolutions [53]. More
advanced methodological strategies of utilizing CNN can be
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adopted to precisely distinguish COPD from HC using CT
images [63]. Third, we only include COPD and HC in the
study. However, a real diagnosis model should be able to
distinguish COPD from other airway diseases (e.g., asthma)
and differentiate the severity of COPD (e.g., Global Initiative
for Chronic Obstructive Lung Disease (GOLD) stage 2–4).
Fourth, we only utilize the information of airway, but the
lung parenchyma, patterns of LAA, air trapping, pulmonary
blood vessels and medical record (e.g., demographic infor-
mation, biomarkers, and some known medical diseases) are
not included in the deep CNN model [4], [64]. Inclusion
of the above information will likely improve the prediction
performance. The influence of airway tree segmentation algo-
rithm on the identification performance is also not clear [36].
In summary, these limitations are potentially solved and will
be addressed in the future investigation.

V. CONCLUSION
It is feasible to identify COPD using snapshots of 3D lung
airway tree extracted from CT images via deep CNN. The
capability of identification mainly comes from the abnormal
appearances of airway tree in COPD and the deep CNN
with the ability of representing these abnormalities well.
Fusion of multi-view CNN models by majority voting leads
to better identification performance than CNN models from
single view. Abnormal appearances of airway tree in COPD
characterized by the irregular contours and being with fewer
branches in binary snapshots are the major determinant of the
identification and the local smoothness has certain but limited
contributions. These methods and findings may help detect
early COPD, reduce the rate ofmisdiagnosis andmissed diag-
nosis, elucidate underlying disease pathogenesis, and leading
to proper management of COPD.
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