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ABSTRACT In the past decade, Deep Neural Networks (DNNs) have achieved breakthrough collaborations
in developing smart intelligent systems within the field of computer vision, natural language processing,
autonomous systems, etc. Recent research has revealed that stability of such smart systems is at greater
risk when they come across to adversarial perturbations. Although, these perturbations may not be per-
ceivable in nature when seen from naked eye, yet, they are capable enough to fool state-of-the-art DNN
classifiers. Till now, much of the previous work related to fool such classifiers focuses on generating
adversaries that directly change pixel values of an image in spatial-domain. In this paper, we propose a novel
transform-domain imperceptible attack methodology ‘‘TDIAM’’ to generate adversaries based on image
steganography-approach using a ‘‘single carefully selected targeted watermark’’. We use three different
frequency-domain approaches, i.e., Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT)
and Fast Fourier Transform (FFT) to craft perturbations in selective frequency component which makes
it robust and it requires less computational time as it is a non-gradient approach. We present our case
study on MNIST handwritten digits dataset. Our results demonstrate that the generated perturbation vector
successfully fool simple Convolutional Neural Network (CNN), LeNet-5 and AlexNet architectures by
increasing probability of adversarial examples for the targeted class (to which the targeted watermark
belongs) in both ‘‘black-box’’ and ‘‘white-box’’ adversarial attacks. The results have shown that among
these three perturbation approaches, DWT based perturbation shown promising results by effectively fooling
DNNs while ensuring the high imperceptibility as well.

INDEX TERMS Steganography, targeted attacks, DNN classifiers, perturbations, adversarial examples,
imperceptibility, white-box-attacks, black-box-attacks.

I. INTRODUCTION
The ability to discern a visual imagery and understand the
real world data is critical and arguably the most compli-
cated cognitive capability. Humans solve such tasks through
their receptive and productive skills and can easily exploit
the available contextual information using their prior knowl-
edge. Deep Neural Networks (DNNs) is a gist of simi-
lar notion, which has readily been applied to the domains
including but not limited to computer vision tasks [1] (such
as optical character recognition [2], template matching [3],
etc.), natural language processing [4], speech processing
[5], and reinforcement learning [6]. Today, smart artifi-
cial intelligence based systems incorporating state-of-the-art
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deep learning techniques have influenced the scientific com-
munity to discover and formulate solutions to more com-
plex problems. These techniques, thereby, learning important
sub-spaces within the data, have earned to contribute towards
the development of physical systems, such as, autonomous
vehicles [7], UAVs [8], robots [9], security and surveillance
systems [10], medical sciences [11], and many others.

Despite a rapid progress in the field of computational
intelligence, vulnerabilities of such smart systems is a major
area of concern within the scientific community [12]–[14].
For instance, a careful chosen small perturbation implanted
in the system’s input can cause an opposite behavior at the
output or may impede its functionality [15]. A similar dis-
ruption can happen in DNNs (victim model), such that, it can
cause misclassification, if a small and cautious perturbation
embedded in the host image changes the network’s output
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TABLE 1. Comparison of transform-domain perturbation methods with gradient-based perturbation method.

label. Whereas, prior to perturbation, the classifier has shown
greater accuracy on classifying awrong prediction. Although,
this small added perturbation vector can go unnoticed to
human visual system, yet, it has the capability to fool any
network. For example, an attacker can train a classifier and
use it to generate an adversarial version of the image to fool
another model.

Meanwhile, the researchers have made great progress in
understanding the space of adversarial examples, Su et al.
in [16] are first to show that DNNs can even be fooled by
changing a careful selection of single pixel in an image.
Since then, the adversarial attacks have become a serious
concern that can target digital domain [13], [15], [17] (adver-
sarial perturbations are directly applied to digital images,
e.g., by modifying images corresponding to a scene), and
more recently in the physical domain [18]–[20] applications
(objects of interest are modified, e.g., by putting stickers
on a stop sign). Along similar lines, our work contributes
towards injecting targeted attacks in a victim model, where
a small perturbation vector [17] forces that network to output
a meticulous class.

In this paper, a novel approach to generate the desired
adversarial examples is presented. Unlike previous meth-
ods that craft adversaries in digital domain, our proposed
approach embeds a secret image inside the host image in
transform-domain. The computation of perturbation vec-
tor and embedding in the host image is done using fre-
quency domain methods, that are, Discrete Cosine Transform
(DCT) [21], variants of Discrete Wavelet Transform (DWT)
[22], and Fast Fourier Transform (FFT) [23]. Careful selec-
tion of targeted watermark enables our approach to keep
the perturbation imperceptible while still requiring less com-
putational power. Our main motivation behind this work
focuses on ‘‘image steganography-approach’’ for generat-
ing adversarial attacks in a targeted manner. Unlike pre-
vious approaches, such as, FGSM that computes gradients
to craft image-specific perturbations, the proposed work
reduces the computational complexity and time by crafting
adversaries in the transform domain which does not involve
any gradient descent computation. The proposed ‘‘TDIAM’’
approach does not require any gradient computation and is
imperceptible as well as capable enough to fool DNNs. The
other motivational contribution is the selection of watermark
image, which in our work is chosen based on the highest

individual class probability score instead of randomly select-
ing it. Below are the major contributions of this paper:
• We propose an algorithm for careful selection of
secret-image (we call it as targeted watermark) on
the basis of higher-probability-score that would gener-
ate strong perturbations instead of selecting a random
watermark.

• We use transform-domain methods (DWT, DCT, and
FFT) to craft perturbation in frequency-domain unlike
other methods that manipulate pixel values directly in
the spatial-domain such as FGSM. The comparison of
our transform-domain perturbation methods and FGSM
is tabulated in Table 1.

• Unlike other methods that craft perturbation at train-
ing time [24] and generate adversaries using a small
training data, the proposed technique does not involve
any training process or gradient estimation; hence,
it requires less time and less computations as compared
to gradient-based perturbation methods.

• Our method ‘‘TDIAM’’ uses only one carefully selected
targeted watermark to craft perturbation in the selec-
tive frequency-component of the host image instead of
adding perturbation in all pixels of the image which
makes it more robust and efficient.

• We empirically demonstrate the effectiveness of our
proposed perturbation for both black-box-attack and
white-box-attacks on an employed CNN architecture (as
shown in Fig. 2) and compare the results with the state-
of-the-art AlexNet [1] and LeNet-5 [25] architectures.

The rest of the paper is organized as follows. Section II
outlines the related work in context of digital and physical
adversarial examples. Section III explains our methodology
for (1) selection of a targeted watermark (2) generation of
adversarial examples and (3) analysis of generated adversar-
ial examples in terms of deep network. Section IV reports the
experimental results, whereas, Section V concludes the paper
with a discussion.

II. RELATED WORK
In the past, different methods have been proposed under the
adversarial knowledge of white-box setting, where the threat
model knows every thing about the victim model, includ-
ing the network architecture, and training dataset [12], [13],
[17], [26]. Contrary to white-box setting, some methods can
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directly be deployed in the black-box setting, where the threat
model does not have access to the victim model. Rather,
it only has information to the input labels and corresponding
scores of the victimmodel [26]. Thesemethods do not require
gradient information, as discussed in [16], [27], [28].

Given that, DNNs are vulnerable to adversarial attacks,
the difficulty of attack yet varies according to the adversar-
ial goals, defined as, targeted attack and untargeted attack.
The goal of targeted attack is to force the victim model to
incorrectly misclassify all the inputs to a specific targeted
class. Whereas, the goal of untargeted attack is to force
the victim model to incorrectly classify the input into an
arbitrary class [26]. Despite the plethora of published knowl-
edge in black-box and white-box attacks, our work is based
on analyzing the effect of embedding a targeted watermark
into host images, such that, how well the perturbed images
(adversarial examples) differentiate from original images
under the scenario of transform domain. For this purpose,
famous approaches to craft such perturbations include iter-
ative methods, gradient based approaches and optimization
based approaches, yet, they all are restricted to digital or
physical domain applications. Hence, we survey the related
work both in the digital and physical domains.

A. DIGITAL ADVERSARIAL EXAMPLES
In a digital scenario, Szegedy et al. in [29] claimed a major
breakthrough in adversarial attacks in which he claims DNNs
to be susceptible to small perturbations. These perturbations
when added to the input of start-of-the-art DNNs results in
the misclassification of previously classified images. Similar
to [17], Moosavi et al. in [30] computed adversarial per-
turbations using iterative linearization of classifier that can
fool state-of-the-art DNNs. In the first iteration, a minimal
perturbation embedded in input image exploits the network
linearity at decision boundary. Hence, addition of these small
perturbations in successive iterations are sufficient to keep
dragging the output class label towards decision boundary
until the goal of misclassification is achieved.

Thementioned approaches in [30] generate perturbation on
a specific image, and hence, it can not be treated as a gener-
alized perturbation crafted model that can easily fool DNNs
on multiple images. Moosavi et al. in [31] has accomplished
the task of generating universal adversarial perturbation,
such that, state-of-the-art DNNs become highly vulnerable
to misclassify natural images with a higher probability, thus
making the perturbation doubly-universal (image-agnostic,
network-agnostic). The authors have used optimization based
approach to generate perturbations by restricting l2-norm and
l∞-norm. This results in a good transferable property to fool
multiple networks.

Junde Wu et al. in [26] generated transferable adversar-
ial examples that are also universal, transferable, and can
target different networks. Here, the attacks learn a univer-
sal mapping relation between inputs and adversarial exam-
ples without solving the optimization problem for each
input. Dong et al. in [32] use momentum method to craft

perturbations. While computing gradients, they integrate the
velocity vector iteratively, such that, the update direction is
stabilized and local maxima is avoided.

B. PHYSICAL ADVERSARIAL EXAMPLES
Given that, the recent work has examined adversarial exam-
ples in digital domain, physical perturbations can also exploit
the vulnerability of DNNs. For example, Goodfellow et al.
in [13] uses Fast Gradient Sign Method (FGSM) that com-
putes the perturbation by exploiting linear behaviour of DNN
models. FGSM calculates gradients using a single large step,
while, Kurakin et al. in [18] showed that printed adversarial
examples can be misclassified when viewed through a smart
phone camera. The gradients are estimated using multiple
small steps in an iterative way. The algorithm runs these
iterations until the fool rate is maximized.

Sharif et al. in [19] attacked the facial authentication sys-
tem. The physical perturbation in the form of eyeglass frames
that, when printed and worn, has fooled state-of-art face
recognition systems. Their work demonstrated successful
physical attacks in relatively stable physical conditions with a
slight variation in pose, distance/angle from the camera, and
lighting conditions. This contributes to a realistic and prac-
tical threat to the physical systems that are already deployed
in stable environments. However, environmental conditions
can vary widely in general and can contribute to reducing the
effectiveness of perturbations.

III. TDIAM: TRANSFORM-DOMAIN IMPERCEPTIBLE
ATTACK METHODOLOGY
In this section, we propose an attack, named ‘‘TDIAM’’, with
an aim of addressing the following three key questions:

1) How to select the targeted watermark?
2) How to generate adversarial examples?
3) How to evaluate the impact of adversarial examples?

The detailed workflow of our proposed methodology
TDIAM comprising of three main steps are illustrated
in Fig. 1. We describe the methodology of each individual
step in detail below.

A. HOW TO SELECT THE TARGETED WATERMARK?
Before proceeding to generate adversarial examples for
targeted attacks using steganography-approach, we need a
watermark image at first. We could select a random water-
mark image to perform steganography, but in this paper,
we are discussing adversarial attacks in a targeted context.
The aim of targeted attacks is to change the class probabilities
of the original images in such a way that the probability
increases for the class to which the watermark image belongs.
Therefore, we need an appropriate watermark image that
effectively targets each host image and cause the network to
output the particular class. For this purpose, we train a simple
CNN architecture and extract the predicted probabilities from
the last Fully Connected (FC) layer of the network. The
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FIGURE 1. Detailed illustration of our proposed methodology ‘‘TDIAM’’.

FIGURE 2. CNN architecture.

network architecture that we incorporate for the mentioned
purpose is shown in Fig. 2.
After getting predicted probability scores (Pr) from

CNN classifier, we sum up the probabilities of all images
against each class (Sum{classj}), where j represents the class
index (0-9). From sum-of-all-class probabilities (All{classj}),
we select the top class that has the highest sum-of-probability
score (max(All{classj})). After that, we select the targeted
watermark from the selected top class (Top_Class) on the
basis of highest-probability-score. The complete method for
selecting targeted watermark is described in Algorithm 1.
Now, we have targeted watermark for generating adver-

sarial examples using three different steganography-based
approaches. In the next section, we describe in detail the
methodology for embedding selected watermark in original
images.

B. HOW TO GENERATE ADVERSARIAL EXAMPLES?
This section describes how we generate adversarial exam-
ples using different methods. For this purpose, we use
steganography-based approach in which the confidential data
is embedded into some cover media with the intent that the
difference between the original image and the image with
confidential data embedded in remains non-distinguishable
(imperceptible) by human eye. The resultant image is called
stego-image (or adversarial example) while the data hided in
the original image is termed as adversaries or perturbation
vector. To generate stego-images, we have used different
transform-domain methods, as we are manipulating the orig-
inal image (known as host image in terms of steganography)
in frequency-domain instead of spatial-domain. The reason
behind manipulating the data in frequency-domain is that any
changes applied on an image in spatial-domain is performed
directly on pixel values which is easy but the imperceptibility
is low and we want comparatively high imperceptibility.

For transform-domain methods, we transform spatial-
domain image pixels into frequency-domain coefficients
using three different transformations i.e., DWT, DCT, and
FFT. After transforming the image into frequency-domain
using one of the above methods, we embed the coef-
ficients of targeted watermark into the coefficients of
host image followed by re-transformation to spatial-domain
using inverse transformation. Although, above mentioned
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Algorithm 1Method for Selection of Targeted Watermark
Require: Probability Scores Pr

1: Load the probability scores Pr obtained from training

CNN architecture shown in Fig. 2

2: Getting (rows, cols)← size (Pr )

3: for j ∈ {1, . . . , cols} do

4: Sum{classj} ← 0

5: Count{classj} ← 0

6: for k ∈ {1, . . . , rows} do

7: prob← Pr (k, j)

8: Sum{classj} ← Sum{classj} + prob

9: Count{classj} ← Count{classj} + 1

10: end for

11: All{classj} ← Sum{classj}

12: end for

13: Select high probability class as Top_class(CT )

i.e., max(All{classj})

14: Select high probability image from Top_class as

Targeted_watermark i.e., max(image{Top_class})

15: return Targeted_watermark(TW )

transform-domain methods are slower than spatial-domain
methods, yet they are more secure, efficient, and tolerant
towards noise [33].

1) DISCRETE COSINE TRANSFORM (DCT)
We use DCT to generate stego-images. Following are the
steps of embedding procedure using DCT approach:

(i) Apply 2-dimensional discrete cosine transform on both
host image (I) and targeted watermark (TW) separately.
The two-dimensional DCT of an M-by-N image matrix
pixels f(x,y) are defined as follows.

F(u, v) = αpαq
M−1∑
x=0

N−1∑
y=0

f (x, y)

× cos
(
π (2x + 1)p

2M

)
cos

(
π(2y+ 1)q

2N

)
(1)

The values F(u, v) are called the DCT coefficients of
image pixels f (x, y), whereas, the basis functions are,

αp =

{
1/
√
M x = 0

√
2/M 1 ≤ x ≤ M − 1

αq =

{
1/
√
N y = 0

√
2/N 1 ≤ y ≤ N − 1

(ii) Divide both, the transformed host image and targeted
watermark into four equal blocks, i.e., upper_left (B1),
upper_right (B2), bottom_left (B3), and bottom_right
(B4) blocks depending upon the size of host image. The
upper_left block contains the maximum energy of an
image and we can reconstruct almost the same image by
just applying inverse transform on that particular block.
The bottom_right block contains minimum energy of
an image and it mostly contains edges information of
an image. Let an image ’img’ has r number of rows
and c number of columns. Hence, the blocks can be
represented by:

B1 = img(1 : r/2, 1 : c/2) (2)

B2 = img(1 : r/2, c/2+ 1 : c) (3)

B3 = img(r/2+ 1 : r, 1 : c/2) (4)

B4 = img(r/2+ 1 : r, c/2+ 1 : c) (5)

(iii) The purpose of dividing the transformed host image and
targeted watermark into blocks is to embed the targeted
watermark in the particular block of host image, thus,
providing a minimum perceptibility. Hence, we embed
the bottom_right block of secret image (TWB4) into
the bottom_right block of the host image (IB4), while
keeping the other blocks same. In this way, the embed-
ded targeted watermark is not perceivable in the host
image when we apply inverse discrete cosine transform,
as explained in Section IV-B.2.We define the blocks for
resultant stego-image as:

Stego_B1 = IB1 (6)

Stego_B2 = IB2 (7)

Stego_B3 = IB3 (8)

Stego_B4 = (1− factor) ∗ IB4

+ factor ∗ TWB4 (9)

where factor defines the ratio by which components of
both host image and targeted image are fused together.
A factor of ’0’ means no information of targeted water-
mark embeds into the host image and factor of ’1’means
that all information of targeted watermark embeds into
the host image. Therefore, higher the value of the
factor is, the lower the imperceptibility of embedded
information.

(iv) The final stego-image is then produced by combining
the resultant blocks (Stego_B1, Stego_B2, Stego_B3,
Stego_B4) into a single matrix and then applying the
inverse DCT transformation. The Fig. 3 shows the
detailed illustration of discrete cosine transform (DCT)
based steganography-approach.

2) FAST FOURIER TRANSFORM (FFT)
The second transform-domain method that we used for the
generation of stego-images or adversarial examples is FFT.
The method has previously been used for steganography
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FIGURE 3. DCT based steganography-approach for generation of
stego-images (adversarial examples).

purposes [34]–[36] and to generate watermark in the images
[37], [38]. In our work, we use it to create adversarial attack
on DNNs in order to estimate the strength of network against
the embedded perturbation. Following are the steps of embed-
ding procedure using FFT approach.

(i) Apply 2-dimensional FFT on both host image
(I) and targeted watermark (TW) respectively. The
two-dimensional FFT of an M-by-N image matrix pix-
els f(x,y) are defined as follows:

F(u, v) =
1
MN

M−1∑
x=0

N−1∑
y=0

f (x, y) e−j2π (
xu
M +

yv
N ) (10)

(ii) For image steganography purpose, it is well known that
the phase of Fourier transform is more important and
has more impact as compared to its magnitude [36],
[39]. Therefore, we embed the phase component of
targeted watermark (TW_Phase) into the phase compo-
nent of host image (I_Phase), while the magnitude of
host image (I_Magnitude) remains the same. The resul-
tant phase and magnitude components of stego-image
becomes

Stego_Phase = (1− factor) ∗ I_Phase

+ factor ∗ TW_Phase (11)

while,

Stego_Magnitude = I_Magnitude (12)

Detailed illustration of fast fourier transform (FFT) based
steganography-approach is shown in Fig. 4.

3) DISCRETE WAVELET TRANSFORM (DWT)
The third method that we use to generate stego-images is
DWT. The 2-dimensional DWT decomposes an image into
four frequency sub bands, i.e., LL (low-low), LH (low-
high), HL (high-low), and HH (high-high). In literature,
many authors have used DWT for steganography purpose.
Chen at el in [40] used Haar-wavelets for steganography
purpose and embed the secret message in three sub-bands
i.e., LH (horizontal-component), HL (vertical-component),

FIGURE 4. FFT based steganography-approach for generation of
stego-images (adversarial examples).

HH sub-bands (diagonal-component) while keeping the LL
(approximation-component) sub-band unchanged. Meenpal
et al in [41] used DWT along with SVD (singular value
decomposition) for robust watermarking. They embed the
watermark image only in LL sub-band after performing SVD
on that particular sub-band. Sharma et al in [42] used 3-level
Haar-wavelets based watermarking technique for copyright
protection. The image is decomposed into 3-levels and alpha
blending technique is applied to embed the watermark image
into the LL sub-band for robustness.

In this work, we are using different families of
wavelets (DWT) at different decomposition levels (1 and
3) for extensive generation of stego-images. Thewavelet fam-
ilies that we use are: Haar and Daubechies. The detailed com-
parison of these two wavelet families is illustrated in Table 2
[43], [44].

Following are the step of embedding procedure usingDWT
approach.

(i) We generate stego-images by sequential selection
of wavelet families (Haar and Daubechies). Apply
2-dimensional selected wavelet transform on both host
image (I) and targeted watermark (TW) separately. The
two-dimensional DWT of an M-by-N image matrix
pixels f(x,y) are defined as follows:

Wφ(j0,m, n) =
1
√
MN

M−1∑
x=0

N−1∑
y=0

× f (x, y) φj0,m,n(x, y) (13)

Wψ
i(j,m, n) =

1
√
MN

M−1∑
x=0

N−1∑
y=0

× f (x, y) φj0,m,n(x, y) (14)

where,

i = {H ,V ,D}

here, the Wφ(j0,m, n) coefficients gives approximation
of f (x, y) at scale j0, while Wψ (j,m, n) coefficients
represents horizontal, vertical, and diagonal details
of f (x, y).
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TABLE 2. Detailed comparison of wavelet families used in this work for generation of adversarial examples.

(ii) Decompose the host image (I) and targeted water-
mark (TW) for particular type of wavelet family at
particular level-of-decomposition.

(iii) After decomposing the image into four sub-bands,
i.e., LL(n, k), LH(n, k), HL(n, k), and HH(n, k) for
wavelet family ‘k’ and at particular level ‘n’, we embed
the targeted watermark into host image using two
different approaches. In the first approach, HH(n,k)
sub-band of targeted watermark (TW_HH) is embed-
ded into the HH(n,k) sub-band of host image (I_HH).
By doing this, we manipulate only the diagonal com-
ponent of host image and leaving the other components
unchanged. Hence, the resultant sub-bands (Stego_LL,
Stego_LH, Stego_HL, Stego_HH) for the generation of
stego-image are

Stego_LL(n, k) = I_LL(n, k) (15)
Stego_LH (n, k) = I_LH (n, k) (16)
Stego_HL(n, k) = I_HL(n, k) (17)
Stego_HH (n, k) = (1− factor) ∗ I_HH (n, k)

+factor ∗ TW_HH (n, k) (18)

In the second approach, we embed the three sub-bands
of targeted watermark, i.e., LH(n,k) sub-band, HL(n,k)
sub-band, and HH(n,k) sub-band into the corresponding
sub-bands of host image. Hence, the resultant sub-bands
(Stego_LL, Stego_LH, Stego_HL, Stego_HH) for the
generation of stego-image becomes

Stego_LL(n, k) = I_LL(n, k) (19)
Stego_LH (n, k) = (1− factor) ∗ I_LH (n, k)

+factor ∗ TW_LH (n, k) (20)
Stego_HL(n, k) = (1− factor) ∗ I_HL(n, k)

+factor ∗ TW_HL(n, k) (21)
Stego_HH (n, k) = (1− factor) ∗ I_HH (n, k)

+factor ∗ TW_HH (n, k) (22)

where,

n = {1, 3} and

k = {haar, db2}

FIGURE 5. DWT based steganography-approach for generation of
stego-images (adversarial examples).

The detailed illustration of DWT based steganography-
approach is shown in Fig. 5.

C. HOW TO EVALUATE THE IMPACT OF
ADVERSARIAL EXAMPLES?
As mentioned earlier, the perturbations are computed using
transform-domain steganography-approaches by a careful
selection of watermark. These perturbations are then crafted
into host images, thereby, producing a set of perturbed images
(adversarial examples). In this paper, we shall fool state-of-
the-art DNNs. The purpose of producing adversarial exam-
ples is to check whether, the perturbation caused in host
images by a careful selection of watermark are strong enough
to increase the probabilities of stego-images. The proba-
bilities of stego-images (perturbed images) for a particular
class (to which the targeted watermark belongs) are further
compared to the probabilities of the host images. For this
purpose, we will compute the class-probabilities of perturbed
images using the pre-trained DNN classifiers i.e., CNN (as
shown in Fig. 2), LeNet-5 and AlexNet. The class-probability
scores for perturbed images (SPr ) are compared with the
class-probability-scores obtained for the host images (Pr ).
After that, we count the number of samples (stego_count)
for which the probability of targeted class increases after
perturbation such that SPr (k,CT )>= Pr (k,CT ), where, k is
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Algorithm2Method for Analyzing the Impact of Adversarial

Examples on DNN Classifiers
Require: Class-probability-scores Pr , stego_images,

targeted_class CT

1: Load the probability scores Pr

2: Get new class-probability-scores SPr for perturbed sam-

ples (stego-images) using pre-trained DNN model

3: (stego_count, stego_sum)← 0

4: (org_count, org_sum)← 0

5: for k ∈ {1, . . . , length(Pr )} do

6: prob_org← Pr (k,CT )

7: prob_stego← SPr (k,CT )

8: if prob_stego>= prob_org then

9: stego_count ← stego_count + 1

10: stego_new_prob← prob_stego− prob_org

11: stego_sum← stego_sum+ stego_new_prob

12: else

13: org_count ← org_count + 1

14: org_new_prob← prob_org− prob_stego

15: org_sum← org_sum+ org_new_prob

16: end if

17: end for

18: return org_sum, org_count, stego_sum, stego_count

FIGURE 6. Samples from MNIST dataset. The source label of the
sub-figures in column 0 to 9 is 0 to 9 respectively.

the number of perturbed images and CT is the targeted class
(Class-1).

The detail method for analyzing the impact of perturbation
caused in adversarial examples is described in Algorithm 2.

IV. EXPERIMENTS AND RESULTS
To demonstrate the effectiveness of proposed frameworks,
we evaluate our methodology on MNIST database of hand-
written digits [45]. The dataset has 10 classes for 0-9 digits.
The samples for each class are shown in Fig. 6.

FIGURE 7. Selected targeted watermark (TW).

A. SELECTION OF TARGETED WATERMARK (TW)
For selection of targeted watermark, we employ a CNN archi-
tecture with two convolution layers (Conv2D) followed by
max-pool and two fully-connected (FC) layers. The last FC
layer uses Softmax activation for classification purpose. It is
important to mention that number of training images in each
class(0-9) of MNIST dataset are not of equal amount. There-
fore, in order to avoid the class-imbalance problem, training
samples of each class are reduced to the minimum number
of training samples of a particular class. Thus, we randomly
select equal amount of training images from each class. With
this topology, we train the CNN architecture over 12 epochs
with a batch_size of 128. We achieve the final accuracy
of 99.24 % on MNIST test dataset. The model architecture
is described in Fig. 2.

Likewise, we follow the same approach for MNIST test
dataset. We randomly select 892 test images from each class,
as this is the minimal number that corresponds to amount
of test images from Class 5. With this topology, we test our
trained MNIST model on a balanced test data comprising
of 892 images in each class. Now, we will select the targeted
watermark from test set of MNIST on the basis of class-
probability-scores. We compute the probability score for all
test images against every class. Furthermore, for each class,
we sum the probability score of all images and we choose that
class which has the maximum probability score. The class
probability scores are shown in Table 3. From Table 3, we see
that Class-1 has the highest probability score as compared to
the other classes. Hence, we select Class-1 as our targeted
top-class (CT ).

After selecting the targeted top-class, i.e., Class-1 on the
basis of probability scores, we will now select the targeted
watermark (TW) by simply choosing that image fromClass-1
which has the highest individual probability score. In this
way, the highest probability image from Class-1 is selected,
as shown in Fig. 7. We will use this image as a targeted
watermark for generating perturbation in host images.

B. EFFECT OF PERTURBATION ON ADVERSARIAL
EXAMPLES
1) EVALUATION METRIC
We will evaluate the performances of DWT, DCT, and FFT
based image steganography on MNIST digits dataset using
two evaluation metrics, namely, Mean Square Error (MSE)
and Structural Similarity Index Measurement (SSIM) [46].
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TABLE 3. Probability-scores of each class in MNIST test dataset.

We are using MSE which is also known as reconstruction
error variance to estimate the imperceptibility rate. It is a
metric used to evaluate the difference between a host image
and a stego-image and can be defined as follows:

MSE =
1

M ∗ N

M−1∑
x=1

N−1∑
y=1

[I (x, y)− S(x, y)]2 (23)

where I (x, y) is the host image of size M-by-N and S(x, y)
is the stego-image of same size as host image. We shall use
the normalized version ofMSE, i.e., NMSE, in order to obtain
normalized MSE values between the range of 0-1.

The other metric that we are using for measuring the
imperceptibility rate of adversarial examples is SSIM. The
metric actually measures the perceptual difference between
a reference image and a processed image. In other terms,
it measures the perceived similarity between two images and
can be defined as follows:

SSIM(I , S) =
(2µIµS + c1)+ (2σIS + c2)

(µ2
I + µ

2
S + c1)(σ

2
I + σ

2
S + c2)

(24)

where µ represents the mean, σ represents the variance, c1
and c2 are the variables.
In order to analyze the effects of above mentioned

transform-domain perturbations caused in MNIST digits at
class-level, we average out the NMSE values and SSIM val-
ues of all images lying under one class. By doing this, we get
single NMSE value and SSIM value for each individual class.

2) ANALYSIS OF ADVERSARIAL EXAMPLES GENERATED
USING DISCRETE COSINE TRANSFORM (DCT)
In order to check the imperceptibility of adversarial examples
generated with DCT based steganography-approach using
targeted watermark (TW), we take images from MNIST

TABLE 4. Effect of targeted watermark (TW) on MNIST digits dataset (at
class-level) in terms of NMSE and SSIM using DCT approach.

FIGURE 8. Samples of generated adversarial examples using (a) DCT
approach and (b) FFT approach. The source label of the sub-figures in
column 0 to 9 is 0 to 9 respectively. The samples in the first row is the
original images from MNIST dataset while the samples in the second,
third and fourth rows are the adversarial examples generated at factor
0.3, 0.6, and 0.9 respectively.

TABLE 5. Effect of targeted watermark (TW) on MNIST digits dataset (at
class-level) in terms of NMSE and SSIM using FFT approach.

dataset as reference images and the adversarial examples gen-
erated above as processed images. We compare the processed
image with the corresponding reference image and compute
NMSE and SSIM against each class. We perform this step for
all the classes of MNIST digits (0-9). The evaluation results
are illustrated in Table 4.

From the results, we can see that by increasing the
embedding rate by a factor of 0.6, the maximum NMSE
increases by 0.22%, indicating that slight perturbation is
added. The imperceptibility is further ensured from the values
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TABLE 6. Effect of targeted watermark on a host-images in terms of NMSE using DWT (Haar) approach.

obtained through SSIM metric. As we increase the embed-
ding rate from 0.3 to 0.9, the perceptual similarity between
reference image and the processed image drops down to
10%. Therefore, increasing the embedding rate from fac-
tor of 0.3 to 0.9 does not show enormous change when
applying DCT, as we are only embedding high frequency
components of targeted watermark in the host image. The
sample of adversarial examples generated using DCT based
steganography-approach at factors 0.3, 0.6, and 0.9 are shown
in Fig. 8(a).

3) ANALYSIS OF ADVERSARIAL EXAMPLES GENERATED
USING FAST FOURIER TRANSFORM (FFT)
While embedding targeted watermark (TW) using FFT based
steganography-approach, the perturbation caused in the host
image effects its imperceptibility a lot as compared to DCT
based steganography-approach. This is due to the fact that in
DCT based steganography-approach, we are only targeting
high-frequency components of the host-images for adding
perturbation while keeping the low-frequency components
unchanged. The low-frequency components contain approxi-
mation details of an image. Whereas, in FFT approach, there
is a presence of phase and magnitude components instead of
simple high and low frequency components.

The results obtained from FFT based steganography-
approach for all MNIST classes (0-9) using targeted water-
mark ‘TW’ are illustrated in Table 5. The results reveal that,
by increasing the embedding rate from 0.3 to 0.9, the maxi-
mum error recorded in terms of NMSE is 19.16%. Contrarily,
SSIM values incur a notable change even at a lowest embed-
ding factor of 0.3. Here, the perceptual similarity between
reference image and process image drops down to 40% while
it achieves 10% similarity at the embedding rate of 0.9.

TABLE 7. Effect of targeted watermark on a host-images in terms of SSIM
using DWT (Haar) approach.

Hence, the perceptual difference between the two compared
images decreases by 30%, as we increase the embedding rate
from the factor of 0.3 to 0.9.

In this particular scenario, SSIM is a better evaluation
metric as compared to MSE for performing perceptual com-
parison between two images. From Table 5, we can clearly
see that SSIM value decreases a lot due to the fact that we
are embedding phase of targeted watermark (TW) in the host
image (I) instead of its magnitude, and the phase-component
has more impact as compared to the magnitude-component.
Hence, SSIM metric gives a better idea about how much
perceptibility affects when a targeted watermark is embedded
using FFT based steganography-approach.
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TABLE 8. Effect of targeted watermark on a host-images in terms of NMSE using DWT (Daubechies) approach.

The sample of adversarial examples generated using FFT
based steganography-approach at factors 0.3, 0.6, and 0.9 are
shown in Fig. 8(b).

4) ANALYSIS OF ADVERSARIAL EXAMPLES GENERATED
USING DISCRETE WAVELET TRANSFORM (DWT)
The results in terms of NMSE and SSIM metric obtained
for DWT based steganography-approach using targeted
watermark (TW) for all classes of MNIST dataset (0-9)
are tabulated in Table 6, Table 7, Table 8, and Table 9.
We extensively generate adversarial examples (stego-images)
using DWT approach; (a) at different embedding factors,
i.e., 0.3 and 0.9, (b) using different DWT sub-bands for
embedding, i.e., HH (only diagonal sub-band) and VHD (hor-
izontal, vertical, and diagonal sub-bands), (c) using different
wavelets family, i.e., Haar (variant ‘haar’) and Daubechies
(variant ’db2’), and (d) at different decomposition-levels,
i.e., Level-1 and Level-3. Now, we will discuss in detail the
effect of each scenario in terms of imperceptibility.
At Different Factors: From Table 6 (NMSE values for haar-

wavelet) and Table 8 (NMSE values for daubechies-wavelet),
it can be incurred that, regardless of level-of-decomposition
or wavelet family used, the maximum NMSE difference is
5.37% when the embedding factor is increased from 0.3 to
0.9. On the other hand, in Table 7 (SSIM values for haar-
wavelet) and Table 9 (SSIM values for daubechies-wavelet),
SSIM value slightly decreases indicating that a small percep-
tual change is occurred in the processed image. This can also
be verified from Fig. 9, as the perceptual difference between
the second and the third row of each Fig. (9(a)−9(h)) is
minimum.
At Different Sub-Bands: We are using different DWT

sub-bands, i.e., HH (only diagonal sub-band) and VHD

TABLE 9. Effect of targeted watermark on a host-images in terms of SSIM
using DWT (Daubechies) approach.

(horizontal, vertical, and diagonal sub-bands) of targeted
watermark for the purpose of embedding in host image (I).
Compared to HH sub-band, imperceptibility is affected more
when perturbation is caused in VHD sub-band. This is due to
the fact that, in case of embedding HH sub-band of targeted
watermark (TW) in host image (I), there is only one band
that is affected while in case of VHD, the three sub-bands,
i.e., horizontal, vertical, and diagonal components of targeted
watermark are embedded in the host image (I). Themaximum
NMSE difference between HH sub-band and VHD sub-band
is 5.63% (Table 6 and Table 8). The SSIM values (Table 7
and Table 9) also decreases a bit, as we can see the perceptual
difference between respective second rows (HH sub-band at
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FIGURE 9. Samples of generated adversarial examples; (a) Haar-L1-HH and (b) Haar-L1-VHD (c) Haar-L3-HH (d) Haar-L3-VHD (e) Db-L1-HH (f) Db-L1-VHD
(g) Db-L3-HH (h) Db-L3-VHD. The source label of the sub-figures in column 0 to 9 is 0 to 9 respectively. The samples in the first row of each subfigure is
the original images from MNIST dataset while the samples in the second and third row of subfigures are the adversarial examples generated at factor
0.3 and 0.9 respectively.

factor 0.3 and VHD sub-band at factor 0.3) and respective
third row (HH sub-band at factor 0.9 and VHD sub-band at
factor 0.9) of Fig. 9(a) and Fig. 9(b).
For Different Wavelet-Families: We are using two dif-

ferent wavelet families, i.e., Haar (variant ‘haar’) and
Daubechies (variant ’db2’) for the generation of adversar-
ial examples. Compared to haar, imperceptibility effects
more to daubechies, as the maximum NMSE difference is
found out to be 14.72% (Table 6 and Table 8). In case
of haar, the minimum value for SSIM is recorded as
0.6, depicting a 60% perceptual similarity between ref-
erence and process image (Table 7), while 40% similar-
ity is recorded in case of daubechies (Table 9). This can
also be seen from respective second and third rows of
Fig. 9(d) and Fig. 9(h).
At Different Level-of-Decomposition: By increasing the

decomposition level from Level-1 (L1) to Level-3 (L3),
NMSE value (Table 6 and Table 8) significantly increases
irrespective of the wavelet type (Haar or Daubechies). The
reason can be stated that any perturbation caused in the
sub-bands of Level-3 effects the LL sub-band (approxi-
mation details) of the previous level (i.e., Level-2) and
hence, imperceptibility decreases as we increase the level-
of-decomposition. Likewise NMSE, SSIM values (Table 7
and Table 9) highlight a significant change, as we move
to higher levels of decomposition. As tabulated in Table 6
and Table 8, the maximum NMSE difference recorded is
24.44%, while SSIM value (Table 9) decreases up to the
value of 0.3 when perturbation is caused at Level-3. This
shows that perceptual similarity between reference image
and process image is 30%, whereas, at Level 1, both
images are 100% similar. We can clearly notice this per-
ceptual difference from respective second and third rows of
Fig. 9(e) and Fig. 9(g).
From an over all comparison of the three steganography-

approaches, we can clearly see that FFT performs worst of
all while DCT performs well as compared to the other two
approaches in terms of imperceptibility. For an extensive
experimentation purpose, we will use both worst and best
case adversarial examples to test whether the defined CNN
architecture (Fig. 2), LeNet-5 and AlexNet are fool proof
towards these adversarial examples or not.

C. IMPACT OF ADVERSARIAL EXAMPLES ON
DEEP NETWORK
In order to check the validity and performance of our pro-
posed method, we have performed two different types of
adversarial attacks, classified as: (1) black-box attack, and
(2) white-box attack. Using these attacks, we can check
whether our crafted perturbation is strong enough to affect
the definedCNN (Fig. 2), LeNet-5 andAlexNet architectures.
Furthermore, we can also verify whether the probabilities of
perturbed samples raise for the targeted class or not.

1) BLACK-BOX-ATTACK MODEL
In black-box attack model, it is assumed that attacker has no
access to the training samples and has no knowledge of the
underlying architecture of DNN classifier. Hence, in this par-
ticular scenario, we will evaluate perturbed samples using a
pre-trained model and predict the class probabilities. We will
then compare these probabilities with the probabilities of
original samples that are not perturbed and count those num-
ber of samples for which the probability of the targeted-class
(Class-1) increases.

The results for black-box-attack model are tabulated
in Table 10. From the results, we can see that, in case of
FFT (at 0.3, 0.6, and 0.9) and some variants of DWT (at
level-3), i.e., Haar-L3-HH, Haar-L3-VHD, Db-L3-HH, and
Db-L3-VHD, probabilities are increased for more than 80%
of samples. It is further noted that for these approaches, the
perturbation does not remain imperceptible due to higher
number of edges or information embedded in the host image.
Although, our aim is to target maximum number of samples
by increasing their probability for the targeted class but not at
a low imperceptibility. The imperceptibility is high for DCT
approach but it only targets 50% of the samples. The results
depict that the best imperceptible perturbation with higher
number of targeted samples is obtained for Haar-L1-VHD (at
embedding rate of 0.9) which targets around 77.55% of the
samples.

2) WHITE-BOX-ATTACK MODEL
In white-box attack model, it is assumed that the attacker
has access to the training samples and has knowledge of
underlying architecture of DNN classifier. Therefore, in this
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TABLE 10. Effect of targeted watermark (TW) in Black-box setting on adversarial examples generating through different approaches.

TABLE 11. Effect of targeted watermark (TW) in White-box setting on adversarial examples generating through different approaches.

particular scenario, we perturb the test samples for evaluation
as well as the training samples.We pass the perturbed training
samples to the architectures (CNN, LeNet-5 and AlexNet)
and re-train the model by unfreezing the first (CONV layer)
and the last layer (FC layer). After getting the probabilities
for the test samples, we compare it with the probabilities of
original samples and counts those number of the samples for
which probability of targeted class increases.

The results for white-box-attack model are shown
in Table 11. From the results, we can see that probability of
the targeted class increases for the samples of FFT approach
and for some variants of DWT approach (at level-3) but the
perturbation does not remain imperceptible in these partic-
ular cases. The results obtained for the variants of DWT,

i.e., Haar-L1-VHD and Db-L1-HH (at embedding rate 0.3,
0.6, and 0.9) shows that probability of the targeted-class
(Class-1) increases for more than 70% of the samples, while
ensuring the imperceptiblility of perturbation as well.

V. CONCLUSION
In this paper, we demonstrated that using only a single
image, an adversarial example can be generated which has
the ability to successfully fool state-of-the art neural network
classifiers. We proposed the methodology for selecting a
‘‘single targeted watermark’’ (secret image) instead of ran-
domly selecting it from available samples. We also explained
the procedure of generating and embedding the perturba-
tion vector in host images in the transform-domain contrary
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of embedding the perturbation vector in spatial-domain at
pixel level. We have also shown the effectiveness of crafting
adversaries in transform-domain which does not require any
kind of training and are imperceptible as well as capable
enough to fool DNNs. We successfully showed the attack of
our generated adversarial examples for two different types
of adversarial attacks, i.e., white-box-attack and black-box-
attack in targeted context.

The overall purpose of this paper is to understand the
impact of ‘‘single carefully selected targeted watermark’’ on
generated adversarial examples and the effect of generated
perturbation vector on the deep neural network. The experi-
mental results of Section IV-C shows a successful impact of
our adversarial attacks on defined CNN architecture (Fig. 2),
LeNet-5 and AlexNet. The overall results shows that DCT
based perturbation fools deep networks lesser as compared to
DWT and FFT based perturbations. The FFT and DWT (at
decomposition level-3) fools deep network the most. Hence,
we can conclude that FFT is a good option to craft pertur-
bations in applications where imperceptibility is not a con-
straint while DCT is most suitable for the applications where
imperceptibility matters the most. Furthermore, the overall
effect of white-box-attack is more stronger as compared to
black-box-attack, as large number of test samples are affected
by it. Our study shows that, if deep neural networks are
vulnerable towards such simple, yet powerful attacks, then
security measures should be one step further to protect smart
intelligent systems.
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