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ABSTRACT In this paper, we investigate mobile edge computing (MEC) networks for intelligent informa-
tion services, where there are N users equipped with K antennas and one access point (AP). The users have
some computational tasks, and some of them can be decoupled by the AP, at the cost of a fee charged by the
AP. For the considered system, we firstly consider two important metrics of interest: latency and fee. Then,
we formulate a stochastic game to model the interaction between users and the AP. In this game, the AP sets
prices to maximize its profit, while users devise the offloading strategy to reduce both the latency and charge.
We further optimize the system by applying the array signal processing schemes on the users, in order to
reduce the transmission latency. Simulation results are finally presented to verify the effectiveness of the
stochastic game, and it is shown that the array signal processing scheme can help reduce the transmission
latency significantly.

INDEX TERMS Intelligent information services, mobile edge computing, intelligent algorithms.

I. INTRODUCTION
In recent years, the research of wireless communications
has made a great progress [1]–[3], where the transmis-
sion data rate and the reliability have been explosively
increasing [4], [5]. For example, the data rate in the
fifth-generation (5G) communication systems has increased
to about ten or hundred times, compared with the data rate in
the fourth-generation (4G) communication systems. To sup-
port the explosively increasing data rate, many new tech-
niques have been proposed. In particular, the technique of
multiple antennas has been proposed to speed up the data rate
by exploiting the spatial and temporal gains among anten-
nas [6]–[8]. As a virtual form of multiple antennas, relaying
technique is shown to be effective in improving the data rate
by providing transmission diversity gain [9]–[12]. Besides
the multiple antennas and relaying, cognitive technique has
attracted much attention from researchers [13]–[15], since
it can efficiently utilize the spectrum resources and help
improve the transmission data rate [16]–[18]. Recently,
the intelligent surface reflection technique has been proposed,
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which has extended the research of wireless communication
from the conventional engineering perspective to the perspec-
tive of material science [19]–[22].

As an extension and application of 5G communication
systems, the intelligent internet of things (IoT) has attracted
much attention from the researches, since it can be used in a
lot of fields and daily life, such as the intelligent transporta-
tion systems and intelligent video surveillance. Many new
technologies have been proposed to support the application
of the intelligent IoT. One big progress is the wireless caching
technique [23]–[25], where the files can be pre-stored at
the near-by nodes during the non-peak traffic. In this area,
an important research aspect is to devise which files should
be cached at the nodes, since in general the storage at the
nodes is limited [26], [27]. The conventional most popular
content (MPC) and largest content diversity (LCD) can be
applied, which can obtain the largest signal cooperation gain
and largest caching gain, respectively [28], [29]. Besides the
caching technique, some intelligent algorithms can be applied
into the intelligent information services. For example, the
Q-learning based intelligent algorithms [30]–[34] have been
proposed into the wireless transmission systems, in order to
guarantee the security for the application systems [35].
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An evolution of wireless cache is the mobile edge comput-
ing (MEC), which has been widely applied in the intelligent
information services in recent years. InMEC networks, nodes
can not only cache and communicate, they can also compute
or help compute the tasks from the near-by nodes. In this way,
the computational tasks can be computed very efficiently,
with limited latency and energy consumption. In MEC net-
works, an important research point is the offloading strategy,
which determines while file should be computed by which
node. In this areas, some existing works such as [36]–[38]
have studied the offloading strategy, and proposed some intel-
ligent algorithms, in order to reduce both the latency and
energy consumption.

In this paper, we investigate MEC networks for intelligent
information services, where there are N users equipped with
K antennas and one access point (AP). The users have some
computational tasks, and some of them can be decoupled
by the AP, at the cost of a fee charged by the AP. For the
considered system, we firstly consider two important metrics
of interest: latency and fee. Then, we formulate a stochastic
game to model the interaction between users and the AP.
In this game, the AP sets prices to maximize its profit, while
users devise the offloading strategy to reduce both the latency
and charge. We further optimize the system by applying the
array signal processing schemes on the users, in order to
reduce the transmission latency. Simulation results are finally
presented to verify the effectiveness of the stochastic game,
and it is shown that the array signal processing scheme can
help reduce the transmission latency significantly.

The organization of this paper is given as follows. After
the introduction in this section, we will discuss the system
model of MEC networks from the perspectives of both users
and the AP in Sec. II. Then, we introduce how to intelligently
optimize the system performance by using the intelligent
algorithms as well as the array signal processing in Sec. III.
Sec. IV will present the simulation results and conclusions
are finally made in Sec. V.

II. SYSTEM MODEL
Fig. 1 describes the system model of MEC network with
multiple users, where there exits one access point (AP) with
one MEC server. Each user has a task to be computed within
a slot. Due to the limited computational power, these users
may not complete the tasks within the prescribed time. Users
need to offload partial or full task to the nearly AP with
powerful computational capacity. The AP can assist users
to complete the offloaded tasks and charge some expenses
for users. We assume that there are N users and each user
equipped with K antennas has a task of length ln. There-
fore, the set of tasks for all users can be denoted as L =
{l1, l2, . . . , lN }. The AP with powerful computational capa-
bility can provide users with different computational capabil-
ity based on users’ requirement, reasonably, the AP will set a
higher price for more powerful computational capability. The
set of the computational capability by the AP can be denoted
as 4 = {ξ1, ξ2, . . . , ξM |ξ1 ≤ ξ2 ≤ . . . ,≤ ξM }, and the

FIGURE 1. System model of MEC network with multiple users.

corresponding price set is denoted asM = {µ1, µ2, . . . , µM |

µ1 ≤ µ2 ≤ . . . ,≤ µM }. The AP can evaluate proper price
parameters, meanwhile users can obtain the price that the AP
set by the information exchangemodel and they design proper
offloading strategy. It is worth noting that each user cannot
obtain the offloading decision of other users.

A. USER MODEL ANALYSIS
In this system, we focus on the charge which users should
pay to complete the computational tasks by the AP, and the
latency includes both the latency calculated locally and the
latency offloaded to the AP. We use the symbol θn to denote
the offloading decision for the user n, where θn satisfies the
constraint of θn ∈ [0, 1]. When θn = 0, it means that the
whole task will be calculated locally and the computational
capability of the user n is denoted by ζn. When θn = 1,
the whole task of user n will be calculated by the MEC
server. When 0 < θn < 1, a partial task with size θnln will be
offloaded to the AP and the residual task with size (1− θn)ln
will be calculated locally. By analyzing offloading decision,
we can obtain the local computing time of user n as

Tlocal,n =
(1− θn)ln

ζn
. (1)

Since user n need not pay the charge when whole task is
computed locally, the charge is equal to zero. When a part
of task is offloaded to the AP, user n will transmit it to the AP
by wireless link and then the AP computes it and returns the
result to the user. At the same time, the user will pay for the
associated charge to the AP. Therefore, the transmit latency
can be given by

t transoff ,n =
θnln
Rn

, (2)

where Rn is transmit rate of user n and it can be denoted by

Rn = Bn log2

(
1+

Pn|hn|2

σ 2

)
. (3)
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In Eq. (3), the symbolBn is bandwidth allocated by the system
to user n, and Pn is the transmit power of user n. Nota-
tion hn ∼ CN (0, εn) is the channel parameter of the wireless
link from user n to the AP, and σ 2 is the noise power of the
additive white gaussian noise (AWGN) at the AP [39]–[41],
where the noise effect on the receiver can be found in the
literature [42]–[44]. In addition, for user n, the time that the
offloaded task is executed by the AP is given by

tcompoff ,n =
θnln
ξm

, (4)

when the AP sets the price as µm. Since the computational
result is very small in general, the time that result is returned
is ignored in this system. From the above description, we can
write the latency to complete the offloaded task as

Toff ,n(θn) = t transoff ,n + t
comp
off ,n . (5)

In practice, task offloading and task computing locally can
be implemented in parallel for mobile devices. Therefore,
the total time for each user n to complete own task is the
maximum of the time of computing locally and the time of
offloading to the AP. Accordingly, for the user n, the total
time Ttotal can be given by

Ttotal,n(θn) = max{Tlocal,n,Toff ,n}. (6)

Duo to computational assist, the user n need pay for the
charge to the AP. We assume that the charge is proportional
to the size of the offloaded task, and hence the charge of user
n can be given by

3n(θn) = θnlnµm. (7)

For the n-th user, it can improve its communication and
computational performance by reducing the total latency and
the total charge. As wireless mobile communication tech-
nology has been developing continually, transmitting a large
data is no longer a limitation in wireless networks. So users
can reduce the total latency by offloading more tasks to the
AP with powerful computational capability. While, by the
equation (7), users have to pay more charge to the AP if
they offload more tasks to the AP. From above description,
the key to improve the user’s performance is designing a
proper offloading strategy θn.
For the users, there are two important metrics of interest

for the MEC-based wireless network, and we try to minimize
both the latency and charge to reduce each user’s cost. By the
description, we find that it is a multi-objective optimization
problem to improve users performance, which causes much
difficulty to solve in practice. In addition, users may face an
urgent task or tend to pay less in different scenarios. We use
a weighted factor and turn the multi-objective optimization
problem into a linearly weighted objective function by the
weighted factor λ. The linearly objective function can be
given by

8n(θn) = λTtotal,n + (1− λ)3total,n, (8)

where the weighted factor λ ∈ [0, 1], and the 8n is the
total cost that the n-th user completes the computational
task. The usage of weighted factor λ not only simplifies the
multi-objective optimization problem into a single-objective
optimization problem, but also enables Eq. (8) to apply to
more scenarios. In particle, when the value of λ becomes
lager, the latency becomes dominant in the optimization prob-
lem. Instead, when the value of λ becomes small, the users
need to compute task locally as much as possible to reduce
the total cost of users.

B. AP MODEL ANALYSIS
The AP with MEC server earns revenue by assisting users
to compute tasks. We assume that the AP’s profit can be
expressed as a function with the sum of offloaded tasks, and
we set the AP’s price µm to independent variable of profit
function. According, the AP’s profit can be formulated as

Utotal(θ , l, µm) =
N∑
n=1

θnlnµm − Ctotal(θ , l), (9)

where the vector θ = (θ1, θ2, . . . , θN ) and l = (l1, l2, . . . , lN )
are offloading decision list and task size list for all users,
respectively. Ctotal(θ , l) is the total cost that the AP computes
all offloaded tasks. From (9), we find that the AP’s profit is
related to the price and the total offloaded tasks, and hence
the AP pricing will directly affect the AP’s profit. If the price
is too low, the AP’s profit will decrease; while users tend
to compute task in local if the price is too high. Therefore,
a dynamic price scheme should be applied to adjust to a
variety of scenarios and make more profit for the AP.

III. PROBLEM OPTIMIZATION
In this section, we firstly analyze the objective functions
of users and the AP, from which we formulate the system
optimization into a stochastic game problem. The method
Win or Learning Fast Policy Hill Climbing (WoLF-PHC) is
proposed to solve the stochastic game problem. Moreover,
we apply some array signal processing schemes to further
enhance the system performance of MEC networks.

A. STOCHASTIC GAME FORMULATION
In this system, each user wants to minimize the total cost of
completing its computational task by designing the offloading
decision θn based on the computational capability and the
AP’s price. Meanwhile, the AP wants to increase its profit
by changing prices. Therefore, the system model can be
described as two optimization problem: the AP wants to
maximize its profit by selling the computational capability
to users, and the optimization problem can be expressed as

P1 : max
µm∈M

Utotal(θ , l, µm). (10)

The objective of each user is to minimize its own cost by
choosing the optimal offloading decision for a given priceµm
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FIGURE 2. Information passing in the WoLF-PHC algorithm.

by the AP, and the optimization problem can be expressed as

P2 : min
θn

8n(θn, µm)

s.t. 0 ≤ θn ≤ 1. (11)

Note that the problem P1 and the problem P2 are coupled
in a complicated way: the AP’s price strategies affect the
offloading decision of each user and each user’s offloading
decision θn also has an influence on the AP’s profit in turn.
Hence, P1 and P2 can be described as a stochastic game
problem.

A stochastic game problem can be described as a
multi-agent reinforcement learning problem with a known
reward matrix. However, it is very difficult to do ‘‘moving
target’’ in the multi-agent problem. In the multi-agent prob-
lem, the agents’ environment will be affected when each
player changes the offloading decision. Each player is not
able to control the other players or even know their next state,
i.e., each user can only obtain the price of the AP, but it cannot
obtain the offloading decision of other users.

To solve the multi-agent optimization problem, we apply
the Win or Learn Fast Policy Hill Climbing (WoLF-PHC),
which extends PHC with the ‘‘Win or Learn Fast’’ and Policy
Hill Climbing (PHC) is a reinforcement learning algorithm
that extends Q-learning to increase the selection probability
of the maximum expected action. As the name implies, each
agent has to determine whether it is currently wining or
losing, and each agent will choose a low learning rate when
it is wining currently, instead, it will learning quickly.

In the following, we will introduce the detail of
WoLF-PHC in multi-agent MEC networks. WoLF-PHC can
be applied to multi-agent stochastic game scenarios because
it combines the algorithm Q-learning and PHC. As shown
in Fig. 2, for each agent, there are mainly three parts in
WoLF-PHC: environment, Q-learning and PHC. Each agent
gets an action according to choosing selection probability of
the maximum expected action in PHC model. Then, each
agent obtains the reward value and next state by the selected
action in environment model. Finally, each agent updates the
Q-table by action, reward and next state in Q-learning model.
The detailed description of the WoLF-PHC is given by the
algorithm 1.

Algorithm 1 Win or Learn Fast Policy Hill-Climbing
Let α, δl > δw be learning rates. Initialize,

Q(s, a)← 0, π (s, a)← 1
|Ai|

, C(s)← 0.

for each agent i in all agents do
(a) From state s, select action a with probability πi(s, a)
with some exploration.
(b) Observing reward r and next state s′,

Update the Q-table by

Qi(s, a)← (1− α)Qi(s, a)+ α(r + γ max
a′∈Ai

Qi(s′, a′)).

(12)

Update estimate of average policy π
Ci(s)← Ci(s)+ 1

∀a′ ∈ Ai π (s, a′)← π (s, a′)

+
1

C(s) (πi(s, a
′)− π i(s, a′))).

(13)

Update πi(s, a) and constrain it to a legal probability
distribution,

πi(s, a)← πi(s, a)+


δ, If a=arg max

a′∈Ai
Q(s, a)

−δ

|Ai|−1
, Otherwise.

(14)

with

δ =


δw, If

∑
a∈Ai

π (s, a)Q(s, a) >
∑
a∈Ai

π (s, a)Q(s, a)

δl Otherwise.

(15)

end for

In this algorithm, theQ-values are stored and updated in the
same manner as the Q-learning, which can be described by
Eq. (12). Instead of using the action with the highest Q-value
as the response for a given state, a probabilistic policy π
is used which follows a selection probability function. The
selection probability function consists of one probability per
action. As the agent takes action, the selection probability
function is modified by Eq. (14), and Ai is the action set
of agent i. In WoLF-PHC, the learning rates δw and δl are
designed to change the algorithm’s learning rate δ, and the
rule for selecting the learning rate δ is given by Eq. (15). The
estimate of average policy π (s, a) is used to estimate whether
the agent i wins or not currently. Meanwhile, it is related to
the times C(s) that current state s is visited and updated by
Eq. (13). In addition, the WoLF-PHC is rational, since only
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the rate of the learning process is altered. This modification
provides additional time for the other players to adapt the
agent’s changes in the same environment.

B. ARRAY SIGNAL PROCESSING
In this system, all users have multiple antennas, and hence the
channel gain can be exploited by the array signal processing.
Users need to offload a partial task to the AP to reduce the
total cost of users by the wireless communication. Users are
able to choose different antenna selection schemes to improve
the channel gain from users to the AP. The K antennas are
equipped at each user, and a simple method to exploit the
multiple antennas is the random antenna selection (RAS)
scheme, which means that each user may choose only one
antenna randomly among K ones. Accordingly, the transmit
rate that the offloaded task is transmitted from user n to the
AP can be given by

Rn = Bn log2

(
1+

Pn|hn,k |2

σ 2

)
, (16)

where the hn,k ∼ CN (0, εk ) is the channel gain when user n
select the antenna k to communicate with the AP.

In addition, other antenna selection schemes are exploited
at users in this subsection. Generally, the selection combin-
ing (SC) method can improve the equivalent channel gain,
thereby increasing the transmit rate. SC can maximize the
transmit rate of wireless communication when some antennas
are used in MEC network. Using the SC selection antenna
scheme, the transmit rate for user n can be given by

Rn = Bn log2

1+
Pn max

1≤k≤K
|hn,k |2

σ 2

 . (17)

The maximum ratio transmission (MRT) is another antenna
selection scheme to improve the data transmit rate of the
users. MRT scheme means that multiple antennas are used to
assist users when users offload tasks to the AP. This method
can significantly improve the users’s transmit rate at the cost
of increasing RF chains. And the transmit rate is written
by

Rn = Bn log2

1+

Pn
K∑
k=1
|hn,k |2

σ 2

 . (18)

IV. SIMULATION RESULTS
In the simulations, we explore the proposedmulti-agent game
algorithmwith different antenna selection schemes. There are
3 users in this system and their computational capabilities are
set to 0.7× 109 cycle/sec, 0.6× 109 cycle/sec and 0.7× 109

cycle/sec, respectively. Moreover, each user is equipped with
two antennas, and the size of computed task ln is in the range
of [2, 3] Mega Bytes. Different pricing schemes are used and
there are three prices corresponding to three computational
capabilities. The three prices are set to 0.1, 0.2 and 0.5,

FIGURE 3. Convergence of the WoLF-PHC algorithm versus iteration for
all users, where the weighted factor is equal to 0.5.

FIGURE 4. Convergence of the WoLF-PHC algorithm versus iteration for
AP, where the weighted factor is equal to 0.5.

respectively, and the three computational capabilities are set
to 1×109 cycle/sec, 2×109 cycle/sec and 4×109 cycle/sec,
respectively. This means that users need to pay more charge
when they choose more powerful computational capability.
In not specified, we use the equal bandwidth with 20 Mhz for
each price. In algorithm WoLF-PHC, the α is equal to 0.8,
and the symbols δw and δl are set to 0.1 and 0.5, respectively.
In Fig. 3 and Fig. 4, the convergence of the algorithm is

shown. We present how the weighted cost of each user and
the AP’s profit vary with the number of iterations in the
WoLF-PHC algorithm, where we set the weighted factor λ
to 0.5. From Fig. 3, we can find that the overall trend of the
weighted cost is falling, while the profit of the AP is rising in
volatility as shown in Fig. 4. All lines are convergent when
iterating to more than 2500 times. From these results, we can
see that WoLF-PHC can be used to solve the multi-agent
game problem efficiently.

In Fig. 5, the weighted cost of each user is exploited with
respect to the weighted factor λ, which varies from 0 to 1.
Some other offloading schemes are used to compare with
the proposed WoLF-PHC. There, ‘‘All-Offloading (m= 1)’’,
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FIGURE 5. Comparison of the different task offloading decisions for each user versus the weighted factor λ.

FIGURE 6. Comparison of the different antenna selection schemes for each user versus the weighted factor λ.

‘‘All-Offloading (m = 2)’’ and ‘‘All-Offloading (m = 3)’’
mean that user 1, 2 and 3 offload the whole task to the AP
with θn = 1, where the AP prices are set to µ1, µ2 and µ3,
respectively. In addition, we consider the offloading scheme
where each user computes the whole locally, denoted by
‘‘All-Local’’. From these figures, we find that the offloading
decision ‘‘WoLF-PHC’’ has smaller weighted cost than other
offloading decisions when the weighted factor λ ∈ [0.2, 1].
On the contrary, the weighted cost of ‘‘WoLF-PHC’’ is almost
the same as ‘‘All-Local’’ when λ ∈ [0, 0.1] and n ∈ [1,N ].
The reason of this phenomenon is that the computed task is a
non-urgent task.Meanwhile, each user wants to pay the AP as
little as possible and tends to execute the whole task locally.
As λ increases, the latency will dominate in the weighted
cost of users, and accordingly, users prefer offloading task
to the AP to reduce latency. The value of 3n is larger than
Ttotal,n when the decision ‘‘All-Offloading (m = 3)’’ is used,
therefore line ‘‘All-Offloading (m = 3)’’ is a downward
trend with the increase of λ. In addition, the line ‘‘WoLF-
PHC’’ increases with the increase of λ when λ ∈ [0, 0.6].
This indicates that the latency dominates in the weighted
cost.

In practical scenarios, the task may be urgent, and it should
be completed within a prescribed time in MEC networks.
So we exploit whether the task of each user can be completed
within a time limit or not, and meanwhile, we observe the
influence of different time limits on users’ weighted cost

FIGURE 7. Impact of the time limit on the weighted cost for each user,
where λ is equal to 0.5.

and the AP’s profit. In order to exploit the problem globally,
we add the fourth pricing and computational capability for the
AP, which can be expressed as µ4 = 0.8 and ξ4 = 8 × 109,
respectively. The simulation results are shown in Fig. 7. From
the results, we can see that users’ weighted cost increases
when the time limit decreases. This phenomenon implies that
each user needs to increase θn, in order to complete his own
task within the time limit. Accordingly, users’ total cost and
the AP’s profit increase.
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FIGURE 8. Comparison of the two bandwidth allocation scheme for each
user versus the weighted factor λ.

FIGURE 9. Comparison of the two bandwidth allocation scheme for AP
versus the weighted factor λ.

In addition, the weighted cost is presented in Fig. 6 with
different antenna selection schemes versus the weighted fac-
tor λ. In Sec. III, RAS, SC and MRT are employed and
antenna selection schemes mainly effect the transmit latency.
There, we set the number of antennas to 2 and set theweighted
factor to 0.5. From Fig. 6, we can find that the MRT has the
smallest weighted cost, and the SC outperforms the RAS in
the total cost for all users when the weighted factor λ varies
in [0.3, 1.0]. On the contrary, the three antenna selection
schemes show the similar performance when λ ∈ [0.0, 0.2].
This is because that the charge 3n is dominant and the task
tends to be computed locally instead of by the AP. In Eq. (6),
the total time required to complete the task ln is the maximum
between the Tlocal,n and Toff ,n for each user, while antenna
selection schemes can only help reduce transmission latency.
Therefore, the antenna selection schemes cannot affect the
system performance when Tlocal,n > Toff ,n.
Finally, we exploit the impact of bandwidth for MEC

networks. We set different bandwidth schemes for different
prices of the AP. A simple bandwidth allocation scheme
is to allocate the bandwidth equally for different prices,

where, the bandwidth corresponding to prices [µ1, µ2, µ3]
is [20, 20, 20] MHz. Another scheme is to allocate the band-
width based on the different prices, where, the bandwidth
corresponding to prices [µ1, µ2, µ3] is [10, 20, 30] MHz.
For simplicity, we denote these two schemes by ‘‘E-WoLF-
PHC’’ and ‘‘P-WoLF-PHC’’, respectively. From Fig. 8 and 9,
we find that the scheme ‘‘P-WoLF-PHC’’ has a better perfor-
mance when the tasks are urgent. This is because that users
need more powerful computational capability and the AP sets
higher prices for users when the weighted factor λ increases.
Meanwhile, users tend to offload the whole task to the AP
when the weighted factor λ is equal to 0.8 in Fig. 9. Hence,
the AP’s profit will not increase when the value of λ varies
from 0.8 to 1.0.

V. CONCLUSION
In this paper, we investigated MEC networks for intelligent
information services, where there are N users equipped with
K antennas and one AP. The users had some computational
tasks, and some of them could be decoupled by the AP,
at the cost of a fee charged by the AP. For the considered
system, we firstly considered two important metrics of inter-
est: latency and fee. Then, we formulated a stochastic game
to model the interaction between users and the AP. In this
game, the AP set prices to maximize its profit, while users
devised the offloading strategy to reduce both the latency
and charge. We further optimized the system by applying
the array signal processing schemes on the users, in order
to reduce the transmission latency. Simulation results were
finally presented to verify the effectiveness of the stochastic
game, and it was shown that the array signal processing
scheme could help reduce the transmission latency signifi-
cantly. In further works, we will apply the considered MEC
networks into the application of IoT based systems such as
the works in [45]–[47]. Moreover, we will consider to use
some other intelligent algorithms [48]–[54] to the considered
system, in order to further enhance the system performance
by reducing the latency and energy consumption.
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