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ABSTRACT The development of convolutional neural networks has promoted the progress of computer-
aided diagnostic systems. Details in medical image, such as the texture and tissue structure, are crucial
features for diagnosis. Therefore, large input images combined with deep convolution neural networks
are adopted to boost the performance in recent research of chest X-ray diagnosis. Meanwhile, due to the
variable sizes of thoracic diseases, many researchers have worked to introduce additional module to capture
multi-scale feature of images in CNN. However, these efforts hardly consider the computational costs of
large inputs and introduced additional modules. This paper aims to automatically diagnose diseases on
chest X-rays images quickly and effectively. We propose the multi-kernel depthwise convolution(MD-Conv)
which contains depthwise convolution kernels with different filter sizes in one depthwise convolution layer.
MD-Conv has high calculation efficiency and few parameters. Because its ability to learn multi-scale feature
based on the multi-size kernels, it is appropriate for medical images diagnosis tasks in which abnormalities
varied in sizes. In addition, larger depthwise convolution kernels are adopted in MD-Conv to obtain a larger
receptive field efficiently, which can ensure sufficient receptive field for high resolution inputs. MD-Conv
can be easily applied in modern lightweight networks to replace the normal depthwise convolution layer.
We conduct experiments on the Chest X-ray 14 Dataset, which is the largest available chest x-ray dataset,
and obtain competitive results. We also evaluate the MD-Conv on the new released dataset for pediatric
pneumonia diagnosis. We obtain a better performance of 98.3% AUC than original paper (96.8%) for
recognize pneumonia versus normal. Meanwhile we compare the FLOPs and Params of different models
to show their efficiency for chest X-rays recognition.

INDEX TERMS Chest x-ray recognition, lightweight networks, multi-kernels depthwise convolution.

I. INTRODUCTION
The development of convolutional neural networks(CNN)
has made a dramatic breakthrough in a series of computer
vision tasks, which has also promoted the computer-aided
diagnosis system. Medical images have grown exponentially
in hospital, and disease screening is a time consuming task
for radiologists. The computer-aided diagnosis system can
help to do preliminary screening and reduce the burden of
radiologists.

Chest X-ray is one of the most accessible radiology exam-
inations in the world. Research on chest X-ray includes
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thoracic disease identification and localization [34], lung
regional segmentation [19] and diseases report genera-
tion [35]. Among all these studies, the details in medical
images, such as textures and structure of lung tissue, are
crucial features for diagnosis. That is the reason that the Chest
X-ray 14 dataset keeps 1024 × 1024 bitmap images [34] to
preserve details, which exceeding the 512 × 512 images in
OpenI dataset [3]. Similarly, most global image-based CNN
methods adopt large images as inputs, 512 × 512 or even
1024× 1024 in [2], [18], [37]. And some local image-based
CNN methods use 224 × 224 inputs [7], because the 224 ×
224 inputs are large enough to take local details for local
images. On the other hand, the pathologies in chest X-ray
images are highly varied in their shapes and sizes.We conduct
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FIGURE 1. Statistics of the different sizes of eight common thoracic
pathologies in Chest X-ray 14 dataset.

statistical analysis on the sizes of eight common thoracic
pathologies based on the 984 boxes provided by Chest X-ray
14 dataset. As shown in FIGURE. 1, the size of eight com-
mon thoracic pathologies varies in a wide range, and even
different instances of one thoracic pathology, such as Infil-
trate, have different sizes. This requires learning multi-scale
convolutional features in CNN. Some recent work attempts
to solve this problem by fusing the information frommultiple
resolutions [39], [41].

Due to the enlarged input as mentioned above, a deeper
network is always adopted to ensure the network receptive
field is large enough. Many works choose ResNet-50 [13]
and DenseNet-121 [5] to extract CNN features [18], [22].
Although this improves the performance, the large inputs
combined with deep networks brings quite huge computa-
tional costs and parameters, increasing time for network train-
ing and optimization. For example, doubled input size will
lead to four times training time. And the multiple resolutions
feature fusion also cost computation time and store space.
Thus this is not conducive to future deployments on mobile
and embedded systems.

In this paper, we focus on increasing network receptive
field and efficiently learning multi-scale feature. We firstly
leverage the lightweight networks. There are many excel-
lent lightweight networks, such as MobileNet [10], Shuf-
fleNet [40], MobileNet-v2 [23], ShuffleNet-v2 [21] and
MobileNet-v3 [1]. These networks take the network struc-
tures of VGG [28] and ResNet [14] for reference, and
replace normal convolution with depthwise convolution to
reduce parameters and FLOPs while maintaining the accu-
racy. By fully considering the balance between computation
and accuracy during the design process, these networks have
achieved good performance on ImageNet dataset. In addition,
we propose the multi-kernel depthwise convolution(MD-
Conv), which can capture the multi-scale feature in one con-
volution layer without introducing extra layers or blocks.
Meanwhile the larger depthwise convolution kernels, 5 × 5
kernels, are adopted inMD-Conv to efficiently obtain a larger

receptive field. MD-Conv is appropriate for medical images
with abnormalities in various sizes.

We replace the normal depthwise convolution with the
proposed MD-Conv in popular lightweight networks, and
evaluate the modified model on two public datasets: the
Chest X-ray14, which is the largest available chest x-ray
dataset, and the Chest X-ray2017, which is a recently
released chest x-ray dataset for pediatric pneumonia diag-
nosis. We achieve state-of-the-art results on both datasets.
The modified MD-Conv can successfully identify the chest
X-rays quickly and effectively.

The contributions of this paper are as follows.
(1) Compared with modern methods adding complex net-

work and additional block to improve performance, we adopt
a lightweight network to quickly recognize chest X-rays
which requires small model parameters, and is suitable to
employ on embedded systems.

(2) The problem of multi-scale feature learning is studied.
Based on the various sizes of thorax diseases and enlarged
inputs, we propose MD-Conv, which is conducive to learn-
ing the multi-scale feature of different thorax diseases and
improving network performance.

(3) The modified MobileNet-v2 with MD-Conv achieves
competitive results on the Chest X-ray 2017 dataset and the
Chest X-ray 14 dataset.

II. RELATED WORK
A. DEEP LEARNING FOR CHEST X-RAY DIAGNOSIS
Wang et al. [34] release the largest chest X-ray dataset and uti-
lize different models to recognize and locate thorax diseases.
Since then, a series of studies have been explored based on the
large dataset, such as image classification, weakly supervised
localization, medical report generation for medical image.
In [34], four classic CNN models, AlexNet [16], GoogleNet
[31], VGG16 [28], ResNet-50 [13] are compared in the pro-
posed DCNN framework for disease localization. In [22],
CheXNet is proposed and demonstrate that DenseNet [5]
performs much better on chest x-ray images recognition. And
then cascade ConvNet [17], global local fusion method [7]
and multi-scale feature are proposed to improve recognition
performance, and all these works use ResNet and DenseNet
as the basic network for feature extraction. Among all these
works, ResNet50 and DenseNet121 are most widely used
models. Reference [17] also uses DenseNet161, and [38]
reduces the Conv-Block number within a DenseBlock to four
to get a light model.

In [15], authors try to utilize CNN to diagnose pediatric
pneumonia on chest X-ray images. Based on transfer learning
algorithm, it reaches a AUC of 96.8% for recognize pneumo-
nia from normal on chest X-rays dataset. It adopts efficient
Inception-v3 [32] as the basic network.

B. MULTI-SCALE METHODS IN COMPUTER VISION TASKS
Though CNN is robust to do recognition on images with
objects of different sizes, how to obtain a multi-scale feature
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FIGURE 2. The framework of Chest-Xray image recognition.

representation is an important issue in many computer vision
tasks.

Traditional approaches use image pyramids to get a more
accurate results, for example the multi-scale test in [13].
While most state-of-the-art methods utilize features from dif-
ferent layers to obtain inherent multi-scale in network. FPN
[33] uses upsample and latency to generate feature pyramid,
and SSD [36] reuses the multi-scale feature maps from dif-
ferent layers. FCN [20] is one of the earliest methods to fuse
the multi-scale representations in semantic segmentation.
Recently, HRNet [30] for human pose estimation performs
repeated multi-scale fusion to achieve state-of-the-art results.

Therefore, in the field of medical deep learning, many
multi-scale CNNs have also been proposed to learn multi-
scale feature for abnormalities. In [24], [39], additional
blocks are added to fuse the multi-scale feature from different
layers.

C. EFFICIENT NETWORK DESIGN
With the development of convolution neural networks,
researchers have become interested in efficient model design.
GoogleNet [31] is one of the earliest networks which is
designed for computational efficiency. And since depthwise
convolution is proposed [27], depthwise convolution is uti-
lized in modern lightweight network to replace the normal
convolution for its efficiency and effectiveness. There are five
popular lightweight networks, MobileNet [10], ShuffleNet
[40], MobileNet-v2 [23], ShuffleNet-v2 [21] and MobileNet-
v3 [1]. Among these five lightweight networks, MobileNet
modify VGG structure with depthwise convolution, while
others adopt ResNet-like structure. The lightweight network
CondenseNet [11] is created based on the extensive and
explicit feature reuses structure of DenseNet.

The recent work [29] which is named as HetConv is sim-
ilar to our work. However, their work focuses on efficient
convolution computation, and they design the heterogeneous
convolutional filter by 1 × 1 conv and 3 × 3 conv. While
our work focus on the multi-scale feature learning ability
and the large receptive field of the large convolution kernels.

Therefore, 3 × 3 depthwise conv and 5 × 5 depthwise conv
are adopted in our proposed MD-Conv, and 1 × 1 kernel
is not recommended in MD-Conv. The separated channels
of depthwise convolution is suitable for implementation of
multi-kernel depthwise convolution.

III. METHOD
We aim to build a CNN to quickly and efficiently recognize
chest X-ray images. Compared with the widely used net-
works, ResNet50 and DenseNet121, we adopt the lightweight
network MobileNet-v2. The framework of chest X-ray image
recognition is shown in FIGURE. 2. In order to learn the
muti-scale feature, we propose the MD-Conv to replace the
depthwise convolution in MobileNet-v2.

TheMD-Conv compared together with normal convolution
and depthwise convolution are illustrated in FIGURE. 3.
The MobileNet-v2 block with MD-Conv is shown in FIG-
URE. 3(e).

A. THE MULTI-KERNEL DEPTHWISE CONVOLUTION
For a standard convolution layer, it takes an input feature map
I ∈ RH×W×M , and outputs a feature map O ∈ RH×W×N ,
here we assume that the feature map spatial width(W) and
height(H) are constant, and M is the number of input chan-
nels, N is the number of output channels. For depthwise
convolution layer(DW), each of these filters only connects
to one input channel. Then an additional layer pointwise
convolution(PW) is added after DW to calculate a linear
combination of the output of DW. The feature map operations
of standard convolution layer and DW + PW are shown in
FIGURE. 3(a)(b) respectively. For a standard convolution
layer with kernel size of K × K , the computational cost and
parameters are computed as:

Cost_norm = K × K ×M × N × H ×W . (1)

Parms_norm = K × K ×M × N . (2)

For a depthwise convolution ofK×K paired with 1×1 point-
wise convolution, the computational costs and parameters are
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FIGURE 3. (a)(b)(c) show comparison of the different feature operations of normal convolution, depthwise convolution and MD-Conv. (d)(e) show
the MobileNet-v2 block with depthwise convolution and MD-Conv.

computed as:

Cost_DW =K×K×M×H×W+M × N×H×W . (3)

Parms_DW =K × K ×M +M × N . (4)

Because the output channel N is much larger than K 2,
the computational cost and parameters of DW + PW is 1

N
times the normal convolution.

We introduce the multi-kernel depthwise convolution(MD-
Conv), which contains both 3 × 3 DWConv and 5 × 5
DWConv in a multi-kernel depthwise convolution layer. The
feature map computation of MD-Conv + PW is shown in
FIGURE. 3(c). For each depthwise convolution kernel in the
MD-Conv layer, it corresponds to only one input channel,
thus we can easily implement the MD-Conv by channel split
operation. Here, we consider an alternative slicing of the input
feature I = [i3×3, i5×5], where i3×3 corresponding to input
feature for 3 × 3 DWConv and i5×5 for 5 × 5 DWConv.
As shown in FIGURE. 3(c), the yellow feature maps corre-
spond to i3×3, and the green feature maps correspond to i5×5.
Therefore, the output of DWConv is

OMD−Conv = [W3×3i3×3,W5×5i5×5]. (5)

And then the PW is followed to fuse the separable channels
of MD-Conv.

For the MD-Conv with an input feature map of
H ×W ×M and same size output feature map, the

computation cost and parameters are:

Cost_MD = (9× i3×3 + 25× i5×5)× H ×W . (6)

Parms_MD = 9× i3×3 + 25× i5×5. (7)

For the 3 × 3 DWConv with the same inputs and outputs,
the number of its parameters is 9× (i3×3 + i5×5)× H ×W .
MD-Conv only adds tiny amounts of parameters compared to
3× 3 DWConv.

1) THE EFFICIENT WAY TO IMPROVE RECEPTIVE FIELD
Receptive field plays an important role in CNN. For visual
tasks with low resolution inputs, the receptive field of stan-
dard 3× 3 filter is sufficient. While for medical images with
high resolution, increased receptive field is needed to retain
more details. The network receptive field is computed as:

RFn = RFn−1 + (kn − 1)× sn. (8)

where n represents the network layer, kn is the kernel size of
layer n, sn is the stride of layer n.

To increase the receptive field, a simple method is to
increase the depth of the network, such as densenet121. The
receiving area of the two stacked 3 × 3 convolutions is 5,
which is the same as the 5 × 5 convolutions, and has less
computation and parameters. In [32], two stacked 3× 3 con-
volution are used to replace 5× 5 convolution for efficiency.
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For lightweight networks, an efficient way to increase the
receptive field is to adopt a larger kernel depthwise convo-
lution. A 5 × 5 depthwise convolution has the same recep-
tive field as 5 × 5 convolution, and it requires much less
extra computational costs and parameters. Two stacked 3× 3
depthwise convolution is not adopted due to no channel cross
talk [40].

Additionally, two stacked 3 × 3 convolutions have
a computation cost of 18×M × N × H ×W , while the
5 × 5 depthwise convolution has a computation cost of
25×M × H ×W . The 5 × 5 depthwise convolution has
much smaller computation cost while maintaining the same
receptive field.

Therefore, the part of 5×5 depthwise convolution canmore
efficiently obtain a large receptive field in MD-Conv.

2) COMPARED WITH THE MULTI-SCALE FEATURE FUSION
METHOD
The image-level classification always requires coarse-scale
features with high semantic information and context, while
detection and segmentation need fine-scale features to
capture detailed appearance information. Therefore, in [39],
feature fusion at different resolutions is used. In [41], a multi-
resolution CNN is adopted to recognize nodules of differ-
ent sizes. These methods all require additional convolution
blocks and downsample or upsample to integrate information
from multiple scales.

The MD-Conv is proposed to replace the normal depth-
wise convolution. In one MD-Conv block as shown in
FIGURE. 3(e), the MD-Conv can extract the multi-scale fea-
ture based on the multi-scale depthwise convolution kernels,
and then the 1×1 convolution is followed to fuse information
of different scales. This introduces no addition convolution
layers or operations, and adds only slight parameters of 5×5
depthwise convolution. Moreover, the MD-Conv can be eas-
ily integrated into modern networks.

B. HOW AND WHERE TO USE MD-CONV
In this subsection, we will discuss how and where to use MD-
Conv, which is the ratio of different kernels(i3×3, i5×5) in one
MD-Conv layer, and where the MD-Conv should be used in
a network.

1) BEST i3×3/i5×5 VALUE
As mentioned above, the MD-Conv consists of 3 × 3 depth-
wise convolution and 5 × 5 depthwise convolution. The
parameters i3×3 and i5×5 control the number of different
types of kernels in one MD-Conv layer. To find the best
ratio of i3×3/i5×5, we do experiments on different ratios of
i3×3/i5×5 in MD-Conv. In these experiments, we replace
all the normal depthwise convolution layer in MobileNet-v2
with MD-Conv layer and perform the experiments on the
Chest-Xray 14 Dataset. The results are shown in FIGURE. 4.
According to it, we choose i3×3/i5×5 ratio of 1:1 to achieve
the best cost and accuracy trade-off.

FIGURE 4. Comparison results of different ratios of i3×3/i5×5. The left
one shows mean AUC score of 14 diseases, the right one shows the
computation cost.

TABLE 1. The network architecture of modified MobileNet-v2 with
MD-Conv. MD-Conv denotes whether MD-Conv is used in bottleneck, n
denotes the repeated times of bottleneck in stage, and s denotes stride
for the first layer of each stage.

2) WHERE TO USES MD-CONV
MD-Conv is proposed to efficiently obtain the multi-scale
feature and improve receptive field. We find that it is not
necessary to use MD-Conv in all layers. Placing MD-Conv in
right location can improve performance while saving FLOPs
and Params. We conduct experiments to explore which layer
the MD-Conv should be used. As shown in TABLE 4,
we achieve the best AUC score replacing all the normal depth-
wise convolution layer in layer2 with MD-Conv. The final
network architecture of modified MobileNet-v2 is shown in
TABLE 1.

IV. EXPERIMENT
A. CHEST X-RAY DATASETS
Chest X-ray is the most common and efficient technique
for screening and diagnosis of lung-related diseases, such as
pneumonia, cardiomegaly, lung node. Several chest X-rays
datasets have released for study. Early datasets, such as
[12], [26], contain only hundreds of chest X-ray images,
which are too few for deep learning. OpenI [3] is a publicly
available dataset collected by Indiana University, it contains
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3955 radiology reports and the corresponding 7,470 chest
X-ray images. The original image size is 512× 512.
Chest X-ray14 is the largest chest X-ray dataset provided

by Wang et al. [34]. It provides 112,120 frontal-view chest
X-ray images of 30,805 unique patients. Each image is anno-
tated with one or more labels of 14 common thorax diseases.
The chest X-ray image was originally extracted fromDICOM
file and resized to 1024 × 1024, which containing more
details. Based on the large amount of chest X-ray images
in Chest X-ray14, many deep learning methods can be per-
formed on it.

Recently, [15] releases a chest X-rays dataset for pneu-
monia classification. It contains 5,856 labeled chest X-ray
images from children, which also distinguish between bac-
terial and viral. The sizes of images are various. According
to statistics, about 90% images have the aspect ratio between
1.0 and 1.5, and 94.8% images have larger image size than
512× 512.
In this section, we first perform a series of comparative

experiments on the Chest X-ray14 Dataset. For convenience,
we perform most experiments from scratch without Ima-
geNet [4] pre-trained. Finally, we compare our methods with
others on both the Chest X-ray14 Dataset and the Chest
X-ray2017 Dataset, for both chest x-ray dataset, we follow
the official patient-wise split.

B. IMPLEMENTATION DETAILS
We use lightweight network architectures and modify the last
fully connected (fc) layer to 14 for the Chest X-ray14 dataset,
and 2 for the Chest X-ray2017 dataset. For the multi-label
classification problem of Chest X-ray14 dataset, a BCE Loss
is adopted.

We implement all experiments using PyTorch framework.
Adam optimizer is adopted with a initial value of 10e−5. And
cosine learning rate [11] is adopted. We train 100 epochs
with a batch size of 64 on 4 GPU. The weight decay is
set to 10e−5 and early stop is used. During the training
phase, we perform data augmentation by resizing the original
images to 512×512 and randomly cropping to 448×448(for
224×224 input, resize to 256×256), randomly rotating from
−10 to 10 degrees, and the probability of random horizontal
flips is 0.5. The network weights are initialized using MSRA
initialization [9].

C. CHEST X-RAY 14 DATASET
1) CLASSIFICATION PERFORMANCE UNDER INPUTS IN
DIFFERENT SCALES
We first run experiments to understand how kernel size
and input scale affect the performance of different thoracic
pathologies. As shown in FIGURE. 5, (a) For most results,
the larger input images improve the performance. As it
shows that the green ones has a higher AUC than red ones,
expect for Pneumonia and Consolidation which get similar
scores. (b) For Atelectasis, Mass, Nodule and Fibrosis, a huge
improvement is obtained by enlarged input, and the 3 × 3

FIGURE 5. Performance of model with different kernels size on different
input. 3 × 3 and 5 × 5 represent the depthwise convolution kernel size we
adopt in MobileNet-v2. 224 × 224, 448 × 448 represent the input image
shape for network.

TABLE 2. The AUC score for MD-Conv compared with other kernel sizes
on different input size.

kernel size performs the best. And for Mass, Nodule and
Fibrosis, on 224 × 224 input, 3 × 3 kernel performs much
better than 5× 5 kernel. This is because the pathologies with
small size, as shown in FIGURE. 1, are easier to recognize on
large image, and 3×3 is more suitable for feature extraction.
(c) For diseases like Cardiomegaly, Pneumothorax, Emphy-
sema and Pleural_Thickening, 5 × 5 kernel on 448 × 448
inputs achieve best AUC. As shown in FIGURE. 1, most
of Cardiomegaly and Pneumothorax have larger size than
200 × 200. Thus for these diseases, a larger kernel is more
suitable for feature extraction on 448× 448 inputs.

We can conclude that for the thoracic pathologies with
different sizes, we should try to extract the multi-scale feature
for better recognition. Therefore, MD-Conv is right for this
problem. We do experiments on the Chest X-ray14 dataset
with MobileNet-v2 and TABLE 2 shows the performance of
MD-Conv on different input size. MD-Conv performs best
on both 224 × 224 and 448 × 448 inputs. And 7 × 7 kernel
performs the worst which is too large for both input sizes, thus
7× 7 kernel is not adopted in MD-Conv.

2) PERFORMANCE OF FIVE LIGHTWEIGHT NETWORKS
Five lightweight networks MobileNet [10], ShuffleNet [40],
MobileNet-v2 [23], ShuffleNet-v2 [21] and MobileNet-v3
[1] have different performance on ImageNet dataset which
indicates that these networks will also perform the same
in chest X-ray images recognition task. In order to deter-
mine which network we use, we conduct experiments using
these networks on the chest x-ray14 dataset and the results
are shown in TABLE 3. According to the experimental
result, we choose MobileNet-v2 as the baseline. This is
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TABLE 3. Mean auc of five popular lightweight networks on Chest
X-ray14.

TABLE 4. Mean auc vs. FLOPs for modified MobileNet-v2 with MD-Conv
in different location.

because the depthwise convolution layer inMobileNet-v2 has
increased channels which are enough for each depthwise
convolution group with different kernel size in MD-Conv that
ShuffleNet-v1 dose not have. Meanwhile, MobileNet-v2 has
the best accuracy in chest X-rays recognition as shown in
TABLE 3.

3) ABLATION STUDY ON WHERE AND WHETHER TO USE
MD-CONV
To explore where and whether we should use MD-Conv
in MobileNet-v2, we conduct ablation experiments. In
MobileNet-v2, the stride of layer1, layer2, layer3 and
layer5 is 2, and using MD-Conv in these layers can make
receptive field increase in multiples. Therefore, we use
MD-Conv only in these layers, and the results are shown in
TABLE 4. We can find that using MD-Conv in all layers
achieve the low AUC score and its FLOPs are the largest.
Using MD-Conv in layer5 achieves the highest AUC and
the fewest FLOPs. Therefore, we use MD-Conv only in
layer5, as shown in TABLE 1. We guess MobileNet-v2 with
MD-Conv in layer5 can obtain a suitable receptive field for
input size of 448 × 448. Using MD-Conv in all layers is not
necessary.

TABLE 5. The mean auc score and FLOPs(M) with or without MD-Conv in
MobileNet-v2 and MobileNet-v3.

In order to explore the effect of MD-Conv, we also con-
duct additional ablation experiments using MobileNet-v3,
MD-Conv is used in all layers, the results are shown in
TABLE 5. As can be seen, MD-Conv improves the perfor-
mance of both networks.

4) CLASSIFICATION PERFORMANCE COMPARED WITH THE
STATE-OF-THE-ART APPROACH
We compare our results with Resnet50 [34], DenseNet +
LSTM [38], DenseNet121 [8] based on the official dataset
split. The results are shown in TABLE 6. As we can see,
our method performs better than [34] which only adopts
ResNet-50. While for [38] which introduces LSTM in net-
work, and [8] which adopts DenseNet121 and uses addi-
tional data PLCO Dataset [6]. Although our results are not
the best, we provide a baseline for latter research studying
lightweight networks in chest X-ray images recognition task
and the probability to identifying diseases in embedded and
mobile devices. Meanwhile, we only provide a basic network
for chest X-ray recognition, which can achieve competitive
results with less computation costs and parameters and can
be easily used in any other networks with depthwise convo-
lution.

The comparison of computational costs of ResNet50,
DenseNet121, and our modified MobileNet-v2 is shown
in TABLE 7. As the table shows, our modified model is
much lighter on FLOPs and Params. Thus we think there is
more space to make improvements based on our basic net-
work. And with such small computation cost and parameters,
we still outperform the results of [34].

D. CHEST X-RAY 2017 DATASET
To verify the generalization ability of our model, we also do
experiments on the ChestX-ray2017 Dataset released by [15].
We use MobileNet-v2 with MD-Conv to recognize pneu-
monia versus normal, bacterial versus viral pneumonia. The
results are shown in Table 8.

For Chest-Xray recognition of pneumonia versus normal,
we achieve an accuracy of 93.4%, outperforms [15] by 0.6%.
And the sensitivity outperforms [15] by 4.2%. Though the
specificity is 2.3% lower, we achieve an AUC of 98.3%,
while is higher than 96.8% in [15]. The AUC curve is
shown in FIGHRE 6. Besides, our modified MobileNet-v2
with MD-Conv is lighter than Inception-v3 adopted
in [15].
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TABLE 6. Comparison results of different methods. we list fourteen abnormalities and their AUCs, we also list the method adopted in every paper.

TABLE 7. The computation cost and parameters of some basic networks.

TABLE 8. Comparison results between ours and [15]. pne represents
pneumonia and bac represents bacterial.

FIGURE 6. The ROC curve of our method for detecting pneumonia versus
normal. The area under the ROC curve(AUC) is 98.3%.

E. QUALITATIVE ANALYSIS
We obtain the discriminative regions for each disease by
Grad-CAM to show the visual explanation of how CNN rec-
ognize Chest-Xray images. As shown in FIGURE 7, different

FIGURE 7. Examples of some network attention visualization on test
image in Chest X-ray14 dataset. The attention map is generated by
Grad-CAM [25], the red region represents the place where disease
appears probably. The blue boxes is the ground-truth bounding box
provided in the dataset.

diseases have different sizes. The Mass and Nodule are small
and have equal length and width, concluded in size distribu-
tion in FIGURE 1 and the visualization results in FIGURE 7,
the location heatmaps concentrate on an approximate circular
area. And for Pneumonia, the location heatmaps focus on
most chest region, and the area with most attention is in
the blue ground-truth box. For Cardiomegaly, the ground-
truth boxes include all the heart region, while the heatmaps
pay attention to the enlarged heart margin which can also
recognize Cardiomegaly effectively. Since that, themodel can
locate the disease region no matter the shapes and sizes of the
diseases.
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V. CONCLUSION
In this paper, we explore the various sizes of thoracic patholo-
gies and multi-scale feature learning for thoracic patholo-
gies recognition. We propose MD-Conv, which contains
both 3 × 3 depthwise convolution and 5 × 5 depthwise
convolution to quickly and efficiently recognize Chest X-
ray images. We conduct experiments on both the Chest X-
ray14Dataset and the Chest X-ray2017Dataset, and ourmod-
ified MobileNet-v2 with MD-Conv outperforms the basic
network adopted in other methods. The MobileNet-v3 with
MD-Conv is better, and have much less computational costs
and parameters. We believe that the results will be better
than the current version, and may even exceed other existing
methods with carefully adjusting hyperparameters in training
phase. And there will be more work can be done on efficient
model in the future.
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