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ABSTRACT Many face attribute manipulation methods can only provide global attribute manipulation
according to the attribute labels. In this paper, we propose a self-attention-masking semantic decomposition
method which is able to learn an attribute attention mask for each attribute. User can adjust the strength
and color of each attribute smoothly and more freely. We decouple the attention of different attributes and
overcome the disadvantage of overlap between different attribute attention masks by an attention weighting
module. Thanks to the attribute attention masks, our method allows manipulate facial attribute without
generator after only once generation. Moreover, we can perform facial semantic segmentation without
pixel level semantic labels. Experiments show that our method simultaneously improves the freedom of
attribute manipulation and the authenticity of synthetic face. The mean intersection over union of semantic
segmentation is over 65% for hair and skin. Our code is available at github.com/flyfeatherok/SAMSD.

INDEX TERMS Generative adversarial networks, semantic decomposition, semantic segmentation, facial
attribute manipulation.

I. INTRODUCTION
Face attribute manipulation is an interesting but challenging
task with many real-world vision applications. It has expe-
rienced significant improvements following the introduction
of generative adversarial networks (GAN) [1] and enabling
lots of functions such as facial expressions changing, eye-
glasses adding, and styles (e.g. hair color, beautification/
de-beautification) transfer.

As mentioned in [2], facial attribute manipulation task
can be roughly categorized into two types: semantic-level
manipulation [3]–[6] and geometry-level manipulation [7],
[8]. Early approaches such as StarGAN [3] and AttGAN [9]
provide a kind of basic generator architecture and training

The associate editor coordinating the review of this manuscript and
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strategy for semantic-level manipulation. However, they can
only provide global attribute manipulation according to the
attribute label and cannot be customized freely (e.g., you
cannot adjust the hair color to green because there is no such
attribute label). On the contrary, geometry-level manipulation
methods have a higher degree of user freedom. User can
guide the system to fix the image when the result is not as
expected. But most of their training relies on expensive pixel
level semantic labels.

It is highly desirable to adjust both strength and color of
each face attribute smoothly at the same time. There are few
solutions can do it. SCDFM [10] provides a solution since
it divides a high-level attribute edit into multiple seman-
tic components, where each works on one semantic region
of a human face. It is the first attempt to learn semantic
components from high-level attributes. However, SCDFM is

36154 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0118-7482
https://orcid.org/0000-0003-3710-6856
https://orcid.org/0000-0003-4407-934X
https://orcid.org/0000-0002-7585-601X
https://orcid.org/0000-0001-6611-2046
https://orcid.org/0000-0002-7737-4225


X. Xia et al.: Self-Attention-Masking Semantic Decomposition and Segmentation for Facial Attribute Manipulation

FIGURE 1. Our generator outputs single attention mask for each attribute (1st and 3th row), no matter whether the attribute is changed or not. Then we
can adjust the color of attribute area arbitrarily (2nd and 4th row) without generator.

difficult to do multi-attribute training and need a pertained
VGG network as the encoder.

In this paper, we propose a GAN based self-attention-
masking semantic decomposition method which, unlike
SCDFM, can generate an attribute attention mask (AAM)
for each attribute and is fused into a general attention
mask (GAM) for all attributes by an attention weighting
module (AWM). Hence our method can manipulate the color
and strength of single attribute more freely such as hair color,
eyeglasses color, and gender swap strength.Meanwhile it will
not interfere with the effect of other attribute manipulations.
Moreover, the attention mask of single attribute gives us the
opportunity to segment facial region automatically, without
the supervision by semantic segmentation labels. Our method
allows adjusting color and strength of different attributes, but
what’s more, allows to manipulate them freely even without
generator after only once generation.

Figure 1 demonstrates some attribute manipulation exam-
ples by our method. The generator outputs a single attention
mask for each attribute, shown in the first row, no matter
whether the attribute is changed or not. Thenwe can adjust the
color of attribute area arbitrarily only by the AAM, as shown
in the second row. Please note that the AAM allows us to
adjust not only the color of the attribute without generator,
but also the strength of the attribute without generator, which
will be described in a later section.

To summarize, our contributions are as follows:
1. We propose a self-attention-masking framework for face

attribute manipulation, which is able to learn an attribute
attention mask for each attribute semantic.

2. Our method can edit the color and strength of single
attribute more freely, it benefits from the attention masks of
semantic decomposition among different attribute. It is able
to edit quickly without generator.

3. Our method can perform simple semantic segmentation
of some facial areas automatically such as hair and skin,
without semantic segmentation labels or any location labels.
It is the first attempt for facial semantic segmentation only by
image-level attribute labels to the best of our knowledge.

II. RELATED WORK
A. GAN BASED FACIAL ATTRIBUTE MANIPULATION
Several methods utilize GAN to build general face attribute
manipulation frameworks since the success of GAN for
image-to-image (I2I) translation [11]. For unpaired I2I trans-
lation tasks, CycleGAN [12] and its variants provide amethod
for evaluating image semantic consistency only by the images
themselves. This makes it easier for face attribute manipula-
tion without attribute disentangling in a deep space. Typical
approaches such as StarGAN [3] and AttGAN [9] confirmed
that only a pair of generator and discriminator is required for
the face attribute manipulation, which can achieve remark-
able translation effect. However, attribute label alone is not
enough for accurate face attribute manipulation. There is still
a lot of room for improvement.

Residual learning [6], [13] enables the network to learn the
changing parts of the imagewhile retaining other areas, which
inspired the study of attention guidance. Then many scholars
have noticed that the accuracy and freedom of attribute edit
depend on the generator’s attention guided by input informa-
tion. With a similar training strategy and network structure
to the reference [13], GANimation [14] proposes to use the
attention mask to get the key areas for efficient attribute
manipulation automatically, without affecting irrelevant areas
and it worked out wonderfully. STGAN [15] proposes to
use attribute vectors to guide the generator’s attention. The
generator in STGAN only reconstructs the image when the
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attribute vector is zero, then the generator can learn to dis-
tinguish between key areas and backgrounds. On the other
hand, the strategy of supervision learning by semantic seg-
mentation labels provides the capability of precise geometry-
level manipulation. The attribute manipulation becomes very
efficient since the generator can pay attention to the edited
area directly through the semantic mask, such as SC-FEGAN
[8] and MaskGAN [2]. However, their training is complex
and the semantic annotation is expensive.

B. ATTRIBUTE SEMANTIC DECOMPOSITION
Although GANimation provides an attention mask for key
attribute areas, it cannot be decomposed among attributes.
Meanwhile, deep feature interpolation (or called latent space
interpolation) [6], [16] was employed for face attribute
manipulation. By shifting deep features of the query image
with the attribute vectors in latent space, the semantic facial
attributes can be updated accordingly. ELEGANT [6] even
decouples the attribute in the latent space, but has to manipu-
late the attribute by target images. Based on this, Facelet [17]
and SCDFM [10] provide two deep feature interpolation solu-
tions without adversarial leaning and paired data. Facelets
propose a Facelet-Bank framework that models face effects
with respective middle-level convolutional layers. SCDFM
divides a high-level attribute edit into multiple semantic
components, where each works on one semantic region of
a human face and users can make more fine adjustments.
It allows adjusting edit strength of different components
and manipulating edit effect on each component. It is the
first attempt to learn semantic components from high-level
attributes. However, SCDFM is difficult to do multi-attribute
training since it has no control over the number of decompo-
sitions and its correspondence to attribute. Both Facelet and
SCDFM need a pertained VGG network for training. This
may restrict the scope of application.

C. WEAKLY SUPERVISED SEMANTIC SEGMENTATION
The attention mask of single attribute gives us the opportu-
nity to segment facial region only by the image-level labels.
Meanwhile most semantic segmentation methods rely on the
pixel-level annotations, which require extremely expensive
labeling efforts.

After FCN [18] and U-net [19] created the basic seman-
tic segmentation network architecture under supervised
learning, researchers have also strived to leverage weakly
supervision instead such as multiple instance learning [20],
EM algorithm [21] and constrained CNN [22], or semi-
supervision by additionally using a few pixel-wise segmen-
tation labels [23], [24]. Similar to this paper, some weakly
supervised methods [25], [26] used attention masks and clas-
sification tags. They achieved an excellent level of seman-
tic segmentation. However, the semantics of human face
attribute labels overlap with each other on the face (e.g.,
‘‘gender’’ and ‘‘age’’ almost share a same facial area), so it is
difficult to obtain accurate attention mask simply by applying
classification loss in the I2I translation task.

III. SELF-ATTENTION-MASKING SEMANTIC
DECOMPOSITION
Give an origin image Io ∈ Rh×w×3 and the corresponding
attribute label so ∈ R1×c, where h × w is the size of Io,
and c is the category number of attribute label. We expect
our model to generate a group of attribute attention masks
M ∈ Rh×w×c that can be used to control the strength of each
attribute change, and freely synthesize an image It with target
attributes st byM and a color mask Ic ∈ Rh×w×3.

A. OVERALL FRAMEWORK
For the same reasons mentioned in [14], we define the differ-
ence attribute vector vs as the difference between target and
source attribute labels that should be put into the generator,

vs = st − so, (1)

where st is the target attribute label, and so is the source
attribute label. Only the attributes to be changed should be
considered, to prevent faulty manipulation.

In GANimation, the attention mask changes with the
attribute labels if attention mask and color mask share the
same generator (e.g., the attention mask upon the hair area
is zeroed if the hair attributes are unchanged). However, for
our purpose, the scope and intensity of attention must be
decoupled in generator in order to stabilize the semantic seg-
mentation results. Hence as shown in figure 2, color mask Ic
and AATsM are generated by a color mask generator Gc and
an attention maskGa generator respectively. Our generatorG
consists of these two parts.

As shown in figure 2, the color mask generatorGc consists
of several strided convolutional layers to down-sample the
input, six adaptive residual blocks [27], and several convolu-
tional layers for up-sampling. We equip the adaptive blocks
with AdaIN [28] layers:

AdaIN(ω, γ, β) = γ
(
ω − µ(ω)
σ (ω)

)
+ β, (2)

where ω is the activation produced by the previous convo-
lutional layer, µ and σ are channel-wise mean and standard
deviation, γ and β are parameters generated by a 4-layer
multilayer perceptron (MLP) from the attribute vector vs.

The attention mask generator Ga follows a basic U-net
structure: several strided convolutional layers for down-
sampling, several convolutional layers for up-sampling, and
several skip connections between them. Two generators share
the same down-sampling path for parameter saving.

Note that Ga has nothing to do with vs, and then the
attention of different attributes on a face will remain stable.
However, Ga cannot automatically generate masks that cor-
respond to attributes one to one without any guiding. Hence
an attention weighting module (AWM) is proposed to guide
AAMs generation and the synthesis of the GAM Im, which
will be introduced in the next section.

Finally, It is synthesized by Io, Ic, and Im,

It = Im · Ic + (1− Im) · Io, (3)
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FIGURE 2. Overall framework of our model. Color mask Ic and AATs M are generated by a color mask generator Gc and an attention mask Ga generator
respectively. Then AWM guide the synthesis of GAM Im, and finally synthesize It .

where Im = AWM (Ga(Io)) ∈ {0, . . . , 1}h×w and Ic =
Gc(Io|vs) ∈ Rh×w×3. In this way, the generator can focus
exclusively on the pixels defining the facial attribute changes,
leading to more realistic synthetic images. Meanwhile it
retains the attention mask for each attribute, no matter
whether the attribute has changed or not.

Similar to StarGAN, a discriminator D containing an
attribute classifier is used to distinguish the true image Io and
the fake image It . Meanwhile the attribute classifier outputs
the attributes estimation ŝ and ensures that It has the specified
attributes st . The specific parameters of our network structure
are detailed in the appendix.

GANimation reports that attention masks can easily satu-
rate to 1 without ‘‘total variation regularization’’. We found
that this problem could be solved easily by adding the self-
attention module [29] in the discriminator. This may be
because the self-attention module in the discriminator is more
efficient in passing the key information on the attribute region
to the generator.

B. ATTENTION WEIGHTING MODULE
The synthesis of Im and the generation of AAMs have two
difficulties:
1. Generate masks of each attribute and decouple them.
2. Synthesize Im without affecting the overlap region of

AAMs.
For the former difficulty, we use the absolute value of vs as

the attribute strength indicator to update AAMs,

M = |vs| ·M, (4)

According to (1), the corresponding value of the changed
attribute in vs ∈ [-1, 0) ∪ (0, 1], and the value of the
unchanged attribute in vs is 0. Therefore, |vs| determines
which masks are activated and the strength of activation.
This forces Ga to learn to decompose the attention of dif-
ferent attributes to different masks. For example, the AAM

FIGURE 3. The basic process of AWM.

corresponding to the hair color attribute must only pay atten-
tion to the hair area, because only this AAM is activated when
only the hair color attribute changes, as shown in figure 3.
However, the mask value will also decrease for small vs,
lowering the strength of manipulation. This problem will be
mitigated next by the attention weighting module.

The values in Im must between 0 and 1, hence Im can’t
be simply summed by AAMs. One plausible option is to
take the maximum value on each pixel location in all AAMs.
However, the maximization operation cannot effectively cal-
culate the gradient in back propagation. Therefore, we use an
attention weighting module for resolving the later difficulty:

Im(m, n) =

c∑
i=1

[
|vs|iMi(m, n)

]α
c∑
i=1

[
|vs|iMi(m, n)

]
+ ε

, (5)
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where |vs|i is the ith value of |vs|,Mi(m, n) is the value of the
ith AAM on the pixel location (m, n), α ∈ [1, 2] is a scalar
that controls attention weight, ε is a small constant value for
prevent the division by 0.

The reason that α ∈ [1, 2] is as follows: On the one
hand, the values of Im must be between 0 and 1. Note that
each |vs|iMi(m, n) ∈ [0, 1], hence each

[
|vs|iMi(m, n)

]α
≤

|vs|iMi(m, n) only if α ≥ 1. This guarantees the values of
Im must be between 0 and 1. On the other hand, in extreme
cases, there are only some small values in the ith AAM and
0 for the rest, then Im(m, n) =

[
|vs|iMi(m, n)

]α−1. Now α

must smaller than 2, otherwise it will cause the value of
Im to be smaller, i.e., the attention will be weaker. On the
contrary, even weak attention areas can be enhanced to ensure
the attention strength if α < 2. By this attention weighting
module, the overlapping areas of different AAMs can be
properly fused together, while non-overlapping areas are less
affected if α is not too large. A large α exaggerates the atten-
tion difference among AAMs and makes the weak weaker.
We found that α = 1.6 and ε = 0.01 is appropriate in our
experiments.

To summarize, AWM acts as an attribute switch, forcing
the specified attention channel to generate the corresponding
attribute attention mask. Meanwhile, the GAM outputted
from AWM still contains the full attention of all the changed
attributes. Other than that, the conduction of attention in the
generator follows the same path as GANimation, that’s why
our framework works.

C. LOSS FUNCTIONS
1) CYCLE CONSISTENCY LOSS
The cycle consistency loss guarantees that translated images
preserve the content of the input images. In this paper, it is
defined as

Lcyc = EIo,so ‖Io − G (G(Io, vs),−vs)‖1 , (6)

where || · ||1 means L1 norm, G is the generator that contains
Gc andGa.G(Io, vs) could be written according to (3) in more
detail as

G(Io, vs) = AWM (Ga(Io)) · Gc(Io, vs)

+ [1− AWM (Ga(Io))] · Io, (7)

2) ATTRIBUTE CLASSIFICATION LOSS
This objective has two terms: a loss of real images used to
optimize D, and a loss of fake images used to optimize G.
The former is defined as

LDcls = EIo,so
[
− logDcls(so|Io)

]
, (8)

where Dcls(so|Io) represents a probability distribution over
attribute labels computed byD.D learns how to classify facial
attributes through this loss.

On the other hand, G tries to generate images that can be
classified as the target attributes st . Hence the loss is defined
as

LGcls = EIt ,st
[
− logDcls (st |G(Io, vs))

]
, (9)

3) ADVERSARIAL LOSS
We adopt theWasserstein GAN adversarial loss with gradient
penalty [30], [31] as the adversarial loss to solve the problem
of mode collapse. It is defined as

LDadv = EIo [Dadv(Io)]− EIt [Dadv(It )]

−λgpEÎ

[(∥∥∥∇ÎDadv(Î )∥∥∥2 − 1
)2]

, (10)

LGadv = EIo,so [Dadv(G(Io, vs))] , (11)

where Î is sampled uniformly along a straight line between a
pair of real and generated images.G generates a fake image It ,
while Dadv tries to distinguish between real and fake images
by this loss. λgp is a hyper-parameter, we use λgp = 10 for all
experiments.

4) FULL OBJECTIVE
The objective to optimize D and G are

LD = −LDadv + λclsL
D
cls, (12)

LG = −LGadv + λclsL
G
cls + λcycLcyc, (13)

where λcls and λcyc are hyper-parameters. We use λcls = 10
and λcyc = 10 in all of our experiments.

IV. EXPERIMENTS
According to the characteristics of our method, the experi-
ment is divided into the following three aspects:

1. Face attribute manipulation with generator
This section performs standard I2I translation tasks.
2. Face attribute manipulation without generator
Since our method can generate the AAM corresponding

to each face attribute, we can further adjust the strength of
the attribute transformation and the color of the attribute
area by AAM without generator. Therefore, this part of the
experiments will demonstrate the flexibility and effectiveness
of our method.

3. Facial semantic segmentation
AAMs and prior knowledge can be used to further rough

semantic segmentation of the face area. This section will
show the results and performance evaluation of the facial
semantic segmentation.

A. IMPLEMENTATION DETAILS
1) BASELINE MODELS
We choose state-of-the-art StarGAN, GANimation and
STGAN as our baselines. The performances of some existing
literature on I2I translation for two domains like DIAT [32]
and CycleGAN or on facial attribute transfer like IcGAN [33]
and [13] have been discussed in detail in [3] and [9]. StarGAN
and AttGAN surpass them with significant margins. There-
fore, we ignore them to save space.

In StarGAN, the attribute labels are combined with image
by depth-wise concatenation, and the cycle consistent loss is
used to preserve domain-unrelated contents. The generator of
GANimation provides an attention mask for better preserve
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domain-unrelated contents. StarGAN and GANimation both
use almost the same loss function. STGAN follows a basic
U-net structure with selective transfer units and attribute
vector. STGAN reduces the error of image reconstruction but
almost doubles the number of parameters and the training
time.

2) DATASETS
CelebA. [34] The CelebA dataset contains 202,599 face
images of celebrities with 40 binary attributes. We use the
5-point landmarks to align all face images, then crop and
resize them into 128×128 and 256×256. Just like StarGAN,
we randomly select 2,000 images as test set and use remaining
images for training data. We use the following attributes:
gender (male/female), skin color (pale/not pale), hair color
(black, blond, brown, gray), eyeglasses (with/without), smil-
ing (with/without), and age (young/old).

CelebAMask-HQ. [2] CelebA-HQ [35] is a high-quality
facial image dataset that consist of 30000 images picked from
CelebA dataset. These images are processed with quality
improvement to the size of 1024 × 1024. Based on CelebA-
HQ, CelebAMask-HQ has 30000 semantic segmentation
labels with the size of 512 × 512. Each label in the dataset
has 19 classes such as ‘‘hair’’, ‘‘skin’’, ‘‘nose’’, ‘‘eyes’’,
‘‘eyebrows’’, ‘‘ears’’, ‘‘mouth’’, ‘‘lip’’, ‘‘hat’’, ‘‘eyeglass’’,
‘‘earring’’, ‘‘necklace’’, ‘‘neck’’, and ‘‘cloth’’.

3) TRAINING DETAILS
Our model is trained using Adam [36] with β1 = 0.5 and
β2 = 0.999. The batch size is set to 16 for CelebA dataset.
We flip the images horizontally with a probability of 0.5 for
data augmentation. We perform one generator update after
five discriminator updates and train our model with an ini-
tial learning rate of 0.0001 for the first 10 epochs and lin-
early decay the learning rate to 0 over the next 10 epochs
(10000 iteration for one epoch). We use only one AAM for
the four hair color attributes since their corresponding areas
are the same. Therefore, the four hair color attribute vectors of
|vs| after entering AWM are merged into one by summing and
clipping. Training takes about 17 hours on a single NVIDIA
RTX 2080Ti GPU.

B. FACIAL ATTRIBUTE MANIPULATION WITH GENERATOR
An ablation study of semantic decomposition is carried out.
We trained a network withoutGa and everything else remains
the same. Just like GANimation, it output only one color
mask and only one attention mask by a single generator
without semantic decomposition. We train both networks
with the same parameters, and observe the difference between
their attention masks by using the same interpolation. Some
ablation study results are shown in Fig. 4. We can observe
that although it is difficult to tell the difference between
generated images for the same interpolation by eye, their
attention masks are different. Attention becomes more sta-
ble in our method. For example, with semantic decomposi-
tion, the attention in the red box changes only in strength

TABLE 1. User study results of performances evaluation (%).

as the interpolation changes (greater interpolation, stronger
attention). On the contrary, without semantic decomposition,
the attentions in the green box are unstable. The region of
attention changes with the interpolation (e.g., there is no
attention in the chin area when interpolation is 0.5). The
ablation study has shown that our method contributes to the
attention stability.

Secondly, we compare our method with StarGAN, GANi-
mation, and STGAN. We retrain all of them for the fair com-
parison. In the paper of GANimation, GANimation trained
by action units (AUs). We do not use AUs for fairness. The
qualitative results are shown in Fig. 5. It can be observed
from Fig. 5 that some of the results of StarGAN show certain
level of blur and artifact. And StarGAN cannot accurately
reconstruct the details and colors of background. GANima-
tion, STGAN, and our method have much better results.
The results of STGAN look real but the background is still
inevitably affected. By contrast, the background of GANima-
tion and our method remains intact. However, some results of
GANimation may lose details like StarGAN (e.g., the mole
on the old man’s face disappears).

However, our method still shows certain level of artifact
such as the attributes of gender, pale skin and eyeglasses.
We speculate that this may be because Ic lacks constraint
in training, which is verified at some level by the better
performance of STGAN.

To quantify the performances among different methods,
we recruited six volunteers (5 male and 1 female) for user
study as shown in Table 1. Each volunteer was asked to eval-
uate 50×4×5 generated faces from 50 persons (half of these
faces come from our own collection) with 128 × 128 size.
Every person has five transformations: gender swap (G), hair
color (H), eyeglasses adding (E), age swap (A), and smiling
swap (S). Volunteers are asked which image is more realistic
(images are randomly scrambled). We can draw some con-
clusions from Table 1: our method is better than StarGAN
and GANimation, but worse than STGAN in gender swap,
eyeglasses adding, and smiling swap. In general, our method
has a performance close to STGAN in I2I translation task.

In particular, our method has great advantages in image
reconstruction since It = Io when vs = 0. The peak signal to
noise ratio (PSNR) and structural similarity (SSIM) of recon-
structed image of StarGAN and STGAN are 22.80/0.819
and 31.67/0.948 respectively reported by [15]. By contrast,
PSNR/SSIM of reconstructed image of our method is∞/1.

However, as our mentioned early, our goal is the facial
semantic decomposition and segmentation, but not to have
better image-to-image translation. Hence the performance
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FIGURE 4. Some ablation study results of with/without semantic decomposition.

evaluation of our method for I2I translation is not the focus of
this paper. The main advantages of our method are described
in detail in the next two sections.

C. FACIAL ATTRIBUTE MANIPULATION
WITHOUT GENERATOR
AAMs remain stable since Ga has nothing to do with vs, and
each AAM overlays the area of the corresponding attribute.
Hence, we can manipulate the color and strength of single
attribute without generator after we get AAMs. Color manip-
ulation can be achieved simply by adjusting the value of the
pixel with AAM as

I ′t = [Io +1C ·Mc] , (14)

where, 1C is color adjustment value, Mc is the AAM corre-
sponding to the attribute you want to manipulate, [·] means
clip the value to the effective color range.

Figure 6 illustrates the results of arbitrary manipulation of
hair color. Hair color can be controlled at will through the hair
mask and is no longer subject to attribute labels.

On the other hand, according to (3),

Io =
It − Im · Ic
1− Im

=
It − AWM (M) · Ic
1− AWM (M)

, (15)

where It , Ic, and M are already known after the genera-
tion of It . Hence, we can reconstruct Io without generator.
What’s more, we can adjust the reconstruction strength of any
attribute by a strength factor ρ:

If =
[
[It − AWM (ρ ·M) · Ic]

1− AWM (ρ ·M)

]
, (16)

where ρ ∈ {0, . . . , 1}1×c, the values in ρ determine the
reconstruction strength of attributes. E.g., (16) is equivalent

to (15) if all the values in ρ are 1, but only the hair color
will turns back to the color in Io if only the value of hair
color in ρ is 1. Therefore, we can adjust the strength of the
attribute changes evenwithout the generator. This process can
be called fading because If fades from the translated face It .
Figure 7 shows the results of qualitative comparison

between interpolation and fading in different attribute
strength manipulation. It makes a small difference in the
effect of attribute strength manipulation whether the gener-
ator is used or not. Ic changes with vs when manipulating
with generator, but it is an invariant tensor in (16). Therefore,
fading can provide a more linear changes for the attribute
strengthmanipulation, attribute change is more obvious when
ρ = 0.2 and 0.4. However, fading may not suitable for
geometry-level manipulation due to the ghosting. For exam-
ple, compared to the first row, the girl in the second row has
a more pronounced double chin when ρ = 0.4 and 0.6.

Figure 8 demonstrates the process of attribute strength
fading between age and gender. The overlapping areas of their
masks cause them to be unable to adjust attributes indepen-
dently without affecting one another. Interestingly, we can
find out which areas are more important for which attributes.
Eyebrows, for example, are more important to gender
than age.

To quantify the difference between interpolation and fad-
ing, we recruited eight volunteers (5 male and 3 female) for
user study. Each volunteer was asked to evaluate 70× 2× 4
generated faces from 70 persons with 128× 128 size. Every
person has four transformations: gender swap, paler skin,
age swap, and smiling swap. There are two ways to do each
transformation: 0.5 interpolation and half fading from the
completely transformed face (0.5 for |vs| and ρ) respectively.
Volunteers are asked two questions for interpolated face and
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FIGURE 5. The qualitative results of facial attribute manipulation with generator.

faded face: which transformation is more obvious and which
image is more realistic (images are randomly scrambled).

We can draw the following conclusions from table 2:
1) In general, the faded image has much more obvious

attribute changes than the interpolated image. This proves that
fading can provide more linear changes.

2) However, people tend to think that the images with small
changes are more realistic. On the one hand, it is due to the
lack of reality of the fake images, on the other hand, it may
also be because people can speculate the results through
hairstyles and so on (e.g., people tend to doubt the reality of
men with long hair).

3) It is difficult for people to distinguish the obvious and
realistic skin color, which shows that there is not much
difference between the two methods in the result of color
transformation.

D. FACIAL SEMANTIC SEGMENTATION
Theoretically, the attention mask of single attribute gives
us the opportunity to segment facial region automatically,

TABLE 2. User study results of interpolation and fading.

without the supervision by semantic segmentation labels. For
example, the area corresponding to the hair color attribute can
be used to segment the hair and the skin segmentation in the
same way by skin color.
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FIGURE 6. Results of hair color manipulation without generator.

FIGURE 7. Results of attribute strength manipulation with/without
generator.

However, the corresponding region of some attributes may
contain unexpected regions (e.g., the AAM of hair includes
the eyebrows due to they have a same color). On the other
hand, some facial features have no corresponding mask such
as mouth and eyes. Therefore, semantic segmentation results
need to be processed by prior knowledge. Here are the logical
rules based on prior knowledge in our method for calculating
the face area:

1. Skin = Skin
2. Gender = Gender
3. Eyes = Eyeglasses - Skin
4. Hair = Hair - Skin - Gender - Eyes
5. Mouth = Smiling - Skin - Hair - Eyes

We first binarize each mask with a threshold of 25, and
then according to the above rules, we get the semantic seg-
mentation of each face area. Figure 9 shows some semantic

FIGURE 8. Attribute strength fading between age and gender.

segmentation results trained by CelebA-HQ with 256 × 256
size. Although there are still many holes in the image, our
method has completed the correct semantic segmentation.

We use the semantic labels of CelebAMask-HQ as the
benchmark to calculate the mIoU (mean intersection over
union) with two sizes. The mIoU of each area is shown
in Table 3. The ‘‘∗’’ in table 2 means the model is trained
by CelebA-HQ, otherwise trained by CelebA. We use deeper
Ga and D for 256 × 256 size training. Some areas in
CelebAMask-HQ are separated such as ears and neck, but
our method identifies them all as skin. Hence in ground truth,
we uniformly label them as skin.

As mentioned early, our method is the first attempt
for facial semantic segmentation only by attribute labels.
No other weakly supervised facial semantic segmentation
method can be used for performance comparison. Existing
weakly semantic segmentation methods such as [37] and [38]
are based on class labels but not attribute labels. In these
methods, the label indicates the existence of the object, e.g.,
in the training, [37] and [38] will output the semantic segmen-
tation of the horse if ‘‘horse’’ in the image is labeled as 1, and
will not output horse segmentation if ‘‘horse’’ in the image is
labeled as 0.

However, attribute label does not indicate the existence of
object but the attribute strength, e.g. ‘‘pale skin’’ is 0 doesn’t
mean there’s no skin in the image. Therefore, when applying
the existing weakly semantic segmentation methods directly,
the methods in [37] and [38] will not output the semantic
segmentation result of skin when ‘‘Pale skin’’ is 0. They
can only output the skin segmentation when the skin is pale.
Therefore, existing weakly semantic segmentation methods
can only output segmentation results when the class label
ground truth is 1. By the same reason, they cannot output
semantic segmentation of the eyeglasses region for the people
who do not wear glasses. On the contrary, our method outputs
the eyeglasses mask even there is no eyeglasses. Hence,
we can find the eyes segmentation by ‘‘Eyeglasses - Skin’’.
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FIGURE 9. Some semantic segmentation results of hair, skin, eyes, and mouth (256 × 256 size).

TABLE 3. The mIoU comparison results (%).

It is unfair to compare a weakly supervised method with
supervised ones. In spite of this, we trained a U-net [19] by
CelebAMask-HQ for comparison (20,000 images as training
set and 10,000 images as test set). We believe this should
help reveal the gap between supervised learning and weakly
supervised learning.

We can note that the segmentation of small area such as
eyes and mouth by our method is difficult in all size images,
meanwhile U-net has much higher accuracy. Therefore, there
is still a big performance gap between weakly supervised
methods and supervised ones. Interestingly, we found that the
mIoU of the skin decreased when the ear was added to ground
truth, possibly because CelebAMask-HQ marks the ear area
completely, even though it is partially covered, such as the
first image in Figure 8. This indicates that the semantic labels
of CelebAMask-HQ may have potential defects.

V. CONCLUSION
In this paper, we propose a self-attention-masking semantic
decomposition method, which is able to learn an attribute
attention mask for each attribute. We decouple the atten-
tion of different attributes and overcome the disadvantage
of overlap between different attribute attention masks by an
attentionweightingmodule. Ourmethod allowsmanipulating
facial attribute without generator after only once generation.
User study shows that fading result is more obvious than
interpolation result (over 80% for gender swap, age swap,

TABLE 4. Generator network architecture.

and smiling swap). Moreover, the attention mask of single
attribute can perform facial semantic segmentation without
pixel level semantic labels, with mIoU over 65% for hair and
skin.

Through the attention mask, we can segment the facial
image semantically. At the same time, attention mask deter-
mines the authenticity of I2I translation. Therefore, the accu-
racy of this weakly supervised semantic segmentation may
also determine the performance of I2I translation. Our future
work will focus on improving this accuracy of semantic
segmentation. On the other hand, we didn’t train a model for
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512 × 512 and 1024 × 1024 sizes since there is not enough
memory for these sizes in one single GPU.We hope that in the
future we will be able to achieve more streamlined network
structure and larger size image processing.

APPENDIX
Table 4 and 5 show details about the network architecture.
We use instance normalization (IN) [39] in all layers in Ga
except the last output layer. In Gc, we use IN in all down-
sampling layers except the weights sharing layers, and layer
normalization (LN) [40] in all up-sampling layers except the
output layer. We use nearest neighbor sampling before the
convolution for up-sampling. For the discriminator network,
we use Leaky ReLUwith a negative slope of 0.02. A standard
self-attention module is applied in the middle of discrimina-
tor. In tables, N is the number of output channels, K is kernel
size, S is stride size, P is padding size, and Lv is the size of
attribute vector.

TABLE 5. Discriminator network architecture.
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