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ABSTRACT This paper presents a novel frequency-domain approach to reveal the exact range of the
imaginary spectra and the stability of linear time-invariant systems with two delays. First, an exact relation,
i.e., the Rekasius substitution, is used to replace the exponential term caused by the delays in order to
transform the transcendental characteristic equation to a quasi-polynomial. Second, this quasi-polynomial
is uniquely tackled by our proposed Dixon resultant and discriminant theory, leading to the elimination of
delay-related elements and the revelation of the exact range of the frequency spectra of the original system of
interest. Then, by sweeping the frequency over this obtained range, the stability switching curves are declared
exhaustively. Last, we deploy the cluster treatment of characteristic roots (CTCR) paradigm to reveal the
exact and complete stability map. The proposedmethodologies are tested and verified by a numerical method
called Quasi-Polynomial mapping-based Root finder (QPmR) over an example case.

INDEX TERMS Time-delay system, Dixon resultant, stability, frequency domain.

I. INTRODUCTION
In this paper, the frequency spectra and the stability of a
general class of linear-time invariant systems with two delays
are analyzed from a new perspective:

dx
dt
= Ax (t)+ B1x (t − τ1)+ B2x (t − τ2) (1)

where x ∈ Rn is the state vector; A, B1, B2 are constant,
knownmatrices inRn×n; and τ1, τ2 are rationally independent
delays. In this paper, the boldface capital notation denotes
vector and matrix quantities. Apparently, the characteristic
equation of (1) is

f (s, τ ) = det
(
sI− A− B1e−τ1s − B2e−τ2s

)
(2)

where s is the Laplace variable, and τ = (τ1, τ2) ∈ R2 is the
delay vector that contains rationally independent delays.

The associate editor coordinating the review of this manuscript and
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The investigation of the stability of (2) in the domain of the
delays is a basic yet challenging problem among researchers
in the control community [1]–[5]. The notorious delay terms
in (1) bring about the exponential terms rendering (2) tran-
scendental and thus extremely difficult to be tackled. One of
the most crucial and interesting problems is to reveal the sta-
bility feature of the time-delay systems in the domain of the
delays. For this, a number of works have been proposed and
verified successfully [6]–[9]. Based on the obtained stability
maps, various control concepts have been developed with the
aim to increase the delay robustness of systems against large
delays, for example, the sign inverting [10], [11] and delay
scheduling controls [12], [13]. These large delays can be
several orders of magnitude larger than the sampling period
for a particular system [14], [15], in comparison with the
conventionally treated small delays that are a few sampling
periods long [16].

However, among the prementioned successful attempts
to tackle the stability analysis of time-delay systems, none
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proposed a direct algorithm, to the best of the authors’
knowledge, to reveal the exact range of the frequency spec-
tra of the general time-delay system in (1). Several other
attempts have been indeed made for the stability investigation
of time-delay systems with more than two delays and the
bounds of the frequency spectra have been revealed as a
by-product [17]–[19]. However, we wish to clarify here that
the obtained frequency bounds in the cited works are by no
means for the original time-delay system being dealt with,
but rather for the two-dimensional cross section of the system
of interest in the domain of two arbitrarily selected delays.
In other words, the obtained frequency bounds are, in fact,
a subset of the original frequency spectra. It is noteworthy
that the revelation of the exact frequency range of (1) lays the
foundation for its stability analysis, which serves as the main
contribution of the paper. A series of techniques are proposed
to determine the stability map including the Rekasius substi-
tution [20], Dixon resultant [21] and discriminant [22], fre-
quency sweeping technique [23], and the cluster treatment of
characteristic roots CTCR) paradigm [8], [24], [25]. Specifi-
cally, the Rekasius substitution is a handy tool to convert the
transcendental equation (2) into a quasi-polynomial, which,
in turn, facilitates the deployment of numerous well-known
linear-system techniques. The Dixon resultant and discrimi-
nant are then used successively to eliminate delay-related ele-
ments in the characteristic eqution to obtain the exact range of
the frequency spectra of the original system (1). By sweeping
such frequency range, the complete set of stability switch-
ing curves are determined. With this knowledge, the CTCR
paradigm is utilized to declare the exact stabilitymap. Finally,
the proposed technique is verified over a published numer-
ical case using a numerical tool called Quasi-Polynomial
mapping-based Root-finder (QPmR) [26]. This numerical
method is based onmapping the quasi-polynomial and on uti-
lizing asymptotic properties of the chains of the roots, which
are determined as the intersection points of the zero-level
curves of the real and imaginary parts of the quasi-polynomial
in a certain region of the complex plane.

The rest of the paper is structured as follows: Section II
reviews some crucial definitions of the CTCR paradigm and
the Rekasius substitution [20]. The main novel results on
determining the range of the frequency spectra and the com-
plete stability map for the time-delay system (1) are presented
in Section III. Section IV shows the capability and strength of
the proposed approach over a published example case in the
literature using the QPmR method.

II. PRELIMINARIES
A general class of time-delay system (1) is declared asymp-
totically stable if and only if all its infinitely many character-
istic roots reside in the left half of the complex plane. As the
continuity of these characteristic roots with respect to delays
has been proved previously [27], the domain of the delays
is partitioned into stable and unstable regions if one restricts
the discussion within the delay-dependent stability problem
rather than the delay-independent one [28]. The boundaries

separating the stable and unstable regions are the stability
switching curves consisting of both the kernel and offspring
curves (KOH) [29], which are, in fact, the only loci where the
characteristic equation (2) exhibits purely imaginary roots.
The complete knowledge of the KOH is essential for the
declaration of the exact stability map of (1) in the domain of
the delays. Actually, the KOH is a fundamental concept for
the CTCR paradigm.

A. REVIEW OF THE CTCR PARADIGM
Before introducing the formal definitions of the KOH,
we first present a key definition of the complete set of the
frequency spectra, denoted as �, of (2) as follows,

� =
{
ω | f (s = ωi, τ ) = 0, τ ∈ R2+, ω ∈ R+

}
=

{
ω | 〈τ , ω〉, τ ∈ R2+, ω ∈ R+

}
(3)

where i is the imaginary unit, and the 〈τ , ω〉 notation implies
that a purely imaginary root, ω ∈ R+ of (2) exists for a
specific combination of delays, τ ∈ R2+. Note that special
cases in which ω = 0 or zero delays are not discussed within
this paper. With this, the following definitions arise.
Definition 1 (Kernel Hypersurfaces ℘0): The hypercurves

in the R2+ domain that consist of all the points τ ∈ R2+ that
cause a purely imaginary root of (2), i.e., s = ±ωi and satisfy
the constraint 0 < τkω < 2π, k = 1, 2 are called the kernel
hypercurves. The points on these hypercurves contain the
smallest delay values that incur the given pair of imaginary
roots at the frequency ω.
Definition 2 (Offspring Hypersurfaces ℘): The

hypercurves obtained from the kernel according to the fol-
lowing point-wise nonlinear transformation:〈

τ1 +
2π
ω
p1, τ2 +

2π
ω
p2

〉
, p1, p2 = 0, 1, 2, . . . (4)

where p1, p2 are not zero simultaneously, are called the off-
spring hypercurves. They are defined due to the periodicity
of the purely imaginary roots with respect to the time delays.

It should be noted that the stability switching curves,
i.e., KOH are actually ℘0 ∪ ℘. Another key concept follows
these two definitions as below.
Definition 3 (Root Tendency (RT)): At any point τ ∈ ℘0∪

℘, an infinitesimal increase in any of the delays τj(j = 1, 2)
creates either a leftward or rightward transition of the purely
imaginary root across the imaginary axis in the complex
plain. RT indicates the direction of the crossing as only one
of the delays, τj, increases by ε, 0 < ε � 1, while the other
remains fixed:

RT |
τj
s=ωi = sgn

[
<e

(
∂s
∂τj

∣∣∣∣
s=ωi

)]
, j = 1, 2. (5)

With these key definitions, we will then present a basic
yet crucial mathematical manipulation, i.e., Rekasius substi-
tution, to initially convert the transcendental equation (2) into
a quasi-polynomial.
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B. REKASIUS SUBSTITUTION
As a preparatory step for the main contribution in the next
section, we present an exact mathematical relation called
Rekasius substitution [20], to replace the exponential term
with a rational polynomial as follows:

e−τk s =
1− Tks
1+ Tks

, Tk ∈ R, k = 1, 2 (6)

where Tk ∈ R is called the agent parameter. The above
equation is an exact relation where s = ±ωi, ω ∈ R+ with
the following connection between τk and Tk :

τk =
2
ω

[
tan−1 (Tkω)± jπ

]
, k = 1, 2, j = 0, 1, 2, ....

(7)

C. CONVERSION OF THE CHARACTERISTIC EQUATION
The substitution of (6) into (2) results in a rational polynomial
fT (s,T) = 0 where T = [T1,T2] ∈ R2, which can then be
converted into a polynomial in terms of s with parameters in
T as follows,

f̂T (s,T) = fT (s,T)
2∏

k=1

(1+ Tks)ck =
m∑
k=0

ak (T) sk = 0

(8)

where a′ks are multinomials in T, ck = rank(Bk ) ≤ n is the
commensurate degree of τk and m = n+

∑2
i=1 ck ≤ 3n. It is

notable that only the imaginary spectra of (8) are identical
to those of (2) while the remaining complex roots of (8) are
completely different from those of (2).With these preliminary
results, we then present the main contribution of the paper in
the next section.

III. MAIN RESULT
We first define a similar frequency set as in (3) for the
converted characteristic equation (8) as:

�̂ =
{
ω | f̂T (s = ωi,T) = 0,T ∈ R2, ω ∈ R+

}
. (9)

Next, we present a theorem to show the equivalence of these
two frequency sets.
Theorem 1 (Identical Imaginary Spectra): Between the

characteristic equation (2) for the original time-delay system
(1) and the converted characteristic equation (8), the imagi-
nary spectra are identical. In other words, �̂ = �

Proof: From the properties of the Rekasius substitution,
(6) is an exact equation for purely imaginary roots, s = ±ωi.
Therefore, the purely imaginary roots obtained from the orig-
inal characteristic equation (2) should be the same as those
calculated from the converted equation (8) using the Rekasius
substitution. Notice that � is the set consisting of all the
purely imaginary roots of (2) and �̂ is the set composed of
the exhaustive imaginary roots of (8), one can claim that these
two sets are identical. �
We will later show a series of unique steps to reveal

the set �̂, then according to Theorem 1, we can reveal the

complete imaginary spectra of the original time-delay sys-
tem, i.e., �. For now, we revisit the converted characteristic
equation (8). It is trivial to observe that the new form of the
equivalent characteristic equation (8) is, in fact, a complex
polynomial in terms of three variables, i.e., s = ±ωi, T1,
and T2. If a solution ω ∈ R+ exists for (8), it should make
both the real and imaginary parts of this complex equation
vanish at the same time,

<e
[
f̂T (ω,T1,T2)

]
=

2c2∑
j=0

mj(ω,T1)T
j
2 = 0 (10)

=m
[
f̂T (ω,T1,T2)

]
=

2c2∑
j=0

nj(ω,T1)T
j
2 = 0 (11)

where the coefficients m′js and n
′
js are polynomials in T1 with

real coefficients in ω. In order for (10) and (11) to have
a common T2 solution, we deploy the Dixon resultant and
discriminant approach to obtain the necessary and sufficient
condition.

A. DIXON RESULTANT AND DISCRIMINANT
The Dixon resultant method is widely used to obtain the
necessary and sufficient condition for a set of polynomial
equations to share nontrivial common solutions [21], [30]
in addition to peer methodologies, such as Sylveter [31],
Macaulay [32], and Sparse [33] resultant. Dixon resultant is
selected over the others due to its efficiency in computation.
Next, we present fundamental formulations of the Dixon
resultant theory for the complete logic flow. To simplify
the notation, we denote the polynomials (10) and (11) with
coefficients parameterized in ω and T1,

p1 (T2) ≡ <e
[
f̂T (ω,T1,T2)

]
(12)

p2 (T2) ≡ =m
[
f̂T (ω,T1,T2)

]
(13)

We then formulate the Dixon resultant based on these two
polynomials to get the necessary and sufficient condition for
a common T2 solution.
Consider the following polynomial in T2

δ (T2, α) =
1

(T2 − α)

∣∣∣∣ p1 (T2) p2 (T2)p1 (α) p2 (α)

∣∣∣∣ (14)

where pk (α) , k = 1, 2 stands for uniformly replacing
T2 with a dummy variable α. The polynomial in (14)
is called the Dixon polynomial. It is obvious that δ
is symmetric with respect to α and T2, for the expres-
sion remains unchanged when exchanging α and T2,
i.e., δ (T2, α) = δ (α,T2). Besides, δ is of degree dmax in
α where dmax = max

[
deg (p1,T2) , deg (p2,T2)

]
and the

notation deg (pk ,T2) , k = 1, 2 stands for the highest degree
of T2 in polynomial pk . Due to the fact that each common
zero T2 of p1 and p2 will make δ (T2, α) zero regardless
of α values, the coefficient of each power product of α in
δ (T2, α) must be identically zero at this common T2 root.
This property leads to dmax equations in T2 based on the
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coefficients of αk (k = 0, 1, . . . , dmax − 1). The coefficient
matrix F (ω,T1) ∈ Rdmax×dmax of these dmax equations is
called the Dixon matrix,

F (ω,T1)


1
T2
...

T dmax−1
2

 =

0
0
...

0

 . (15)

For a nontrivial solution of (15) to exist, the Dixon matrix
F (ω,T1) should be singular

det [F (ω,T1)] = 0. (16)

The above equation yields the necessary and sufficient con-
dition on the coefficients of p1 and p2 for the existence of
a common T2 solution of (10) and (11). We formalize the
conclusion by the following theorem, proof of which has just
been discussed.
Theorem 2 ( [34]): The necessary and sufficient condition

for two polynomials p1 (T2) and p2 (T2) to share a nontriv-
ial common zero is that the corresponding Dixon matrix
F (ω,T1) is singular, that is

RT2 (ω,T1) ≡ det [F (ω,T1)] = 0. (17)

The notation RT2 represents the Dixon resultant obtained
by eliminating T2. Notice that RT2 is a function of ω and T1.
If the range of ω values is known, one can scan it within
this range and calculate the corresponding T1 ∈ R values
from RT2 . With the obtained pairs (ω,T1) ∈ R2, the remain-
ing variable T2 ∈ R can be calculated from either (10)
or (11). Then the delay values which form the KOH could be
reconstructed from (7) with feasible triplets (ω,T1,T2) ∈ R3.
The complete and exact knowledge of the frequency range
of (1) is the foundation for these steps, which serves as the
main contribution of the paper. To achieve this, we propose
the novel methodologies in the next subsection.

B. DETERMINATION OF THE EXACT RANGE OF
IMAGINARY SPECTRA
Due to the continuity and the differentiability of ω with
respect to agent parameters [19], we start the process by
checking the following extremum condition

dω
dT1
= 0. (18)

We will show later that the above condition leads to another
equation in ω and T1. Notice that both (17) and this new
equation have to be satisfied simultaneously, and we end
up having two equations with two unknowns. Taking the
differential of (17) leads to

dRT2 =
∂RT2
∂ω

dω +
∂RT2
∂T1

dT1 = 0 (19)

which can be converted to

dω
dT1
= −

∂RT1
∂T1

/
∂RT1
∂ω

. (20)

Considering that the general term
∂RT1
∂ω

is not identically zero
and the condition in (18) holds, the following equation is valid

∂RT1
∂T1
= 0. (21)

We now end up having two equations (17) and (21) with
two unknowns ω and T1. Next, we bring up the following
definition by applying the Dixon resultant procedure again
on (17) and (21) to eliminate T1.
Definition 4 ([22]) (Discriminant of RT2 (ω,T1)): The

discriminant of RT2 (ω,T1) with respect to T1, denoted as
DT1 (ω), is the resultant formulated to eliminate T1 by
using two polynomial equations RT2 (ω,T1) = 0 and
∂RT2 (ω,T1)

∂T1
= 0.

It is notable that DT1 (ω) is a function of only one vari-
able, i.e., ω. Solving its real roots yields candidates for the
lower and upper positive bounds of �̂ for the case where the
imaginary spectra are strictly positive, i.e., the lower bound
is nonzero. Notice that special cases with zero imaginary
spectrum is excluded from this paper. We will present the
main contribution as the following theorem.
Theorem 3: The exact lower and upper bounds of �̂ for the

time-delay system (1) are the minimum andmaximum positive
real roots of the discriminant DT1 (ω) that correspond to
(T1,T2) ∈ R2.

Proof: The imaginary spectra �̂ can be found exhaus-
tively by calculating the purely imaginary roots of the sys-
tem’s characteristic equation (2), which exhibits real and
imaginary parts being (10) and (11), respectively. Notice that
both these two equations are in terms of three variables,
i.e., ω, T1, and T2 with the last two being agent parameters.
The objective to find the exact lower and upper bounds of
�̂ is reduced to the detection of the minimum and maxi-
mum positive real values of ω corresponding to the com-
mon solution triplets (ω,T1,T2) ∈ R3 for (10) and (11).
A common T2 solution of these two equations enforces RT2
in (17) being zero. This equation and the extremum condition
of ω in (18) lead to the zero discriminant, the solution of
which leads to the minimum and maximum positive real
values of ω. �

C. A NEW METHODOLOGY FOR THE GENERATION OF THE
STABILITY MAP
As pointed out previously, the discriminant DT1 (ω) is a
function of only one variable, i.e.,ω, and therefore its positive
real roots can be calculated precisely. Denote the sequence of
all the positive roots of DT1 as ω̂1 < ω̂2 < . . . < ˆωq−1 < ω̂q,
where q ∈ Z+ is a positive integer. For the calculation of the
upper bound of �̂, the following procedure is presented with
the initial condition k = q, that is, the largest positive real
root of DT1 (ω) is used:
(1) Plug ω̂k into RT2

(
ω̂k ,T1

)
= 0 and solve for T1 ∈ R.

If the real solution set is empty, reduce the counter k by
1 and repeat step (1). Otherwise, denote the T1 ∈ R solution
sequence as T11 < T12 < . . . < T1(r−1) < T1r , where
r ∈ Z+.
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(2) For j = 1, 2, . . . , r − 1, r , plug the composition(
ω̂k ,T1j

)
∈ R2 into (10) or (11) to solve for T2 ∈ R. If no

such T2 ∈ R root exists, increase the counter j by 1 and restart
step (2). Otherwise, declare ω̂k as the upper bound of �̂ and
denote it as ω before exit. If j reaches r and still no T2 ∈ R
exists for (10) or (11), reduce k by 1 and return to step (1).
(3) If k reaches 1 and still no T2 ∈ R exists for (10), then

the system is delay-independent stable or unstable, that is,
the stability of the time-delay system is not affected by time
delays.

For the calculation of the lower bound, denoted as ω,
follow the same procedure from step (1) to step (3) except
beginning with k = 1 and increasing it by 1 in steps (1)
and (2) until the first (T1,T2) ∈ R2 are obtained. Label
the current ω̂i as ω. We can then claim that the lower and
upper bounds of �̂ are ω and ω, respectively. With this
crucial knowledge, the following procedure is performed to
reveal numerically the exact and complete stability map of
the time-delay system (1):
(a) Scan ω within the range

[
ω,ω

]
using a sufficiently

small step size and solve RT2 (ω,T1) = 0 for T1 ∈ R.
(b) For each (ω,T1) ∈ R2 pair obtained in (a), solve (10)

or (11) for T2 ∈ R. If such T2 ∈ R root exists, go to the next
step. Otherwise, return to step (a) with the next ω value to be
swept.
(c) For all the obtained feasible occurrences

(ω,T1,T2) ∈ R3, determine the kernel delay composition
(τ1, τ2) ∈ R2+ as per (7) and Definition 1.

The above steps (a) to (c) produce the exact set of ℘0. This
set, together with the generated ℘, constitute the complete
KOH, i.e., the stability switching curves, in the domain of
(τ1, τ2) ∈ R2+. Then the stable and unstable regions in the
domain of the delays can be determined effectively by the
CTCR paradigm. We will then test the proposed approach
over an example case in the next section.

IV. CASE STUDY
In order to demonstrate the effectiveness and strength of the
proposed method, we take an example case from a previous
published work [10]

A =
(−5.4 6.3
−6 5.8

)
,B1 =

(
0.192 0
0.348 0

)
,B2 =

(
0 −0.324
0 −0.384

)
(22)

The corresponding characteristic equation is

f (s, τ ) = s2 − 0.4s+ 6.48+ (−0.192s− 1.0788) e−τ1s

+ (0.384s+ 0.1296) e−τ2s + 0.039024e−(τ1+τ2)s. (23)

Note that for this particular example (22), we have
rank (B1) = rank (B2) = 1, and rank (B1 + B2) =

2. We then suppress the steps involving the Dixon resul-
tant as in (17), and discriminant as in Definition 4 for the
sake of space constraints. Due to Theorem 3, this system’s
exact range of the imaginary spectra, i.e., �̂, is obtained as[
ω,ω

]
= [2.1690, 2.9165], which is in accordance with the

FIGURE 1. Stability map of the time-delay system in (22). Shaded regions
are stable. Red curves are kernel and Blue ones are offspring.

FIGURE 2. Real parts of the dominant characteristic roots of (23) with
respect to delay values.

numerical findings in the cited paper. We then follow the
steps (a) to (c) in the last section to get the ℘0 and then
the complete set of ℘ as per (4). It is noticeable that the
union of ℘0 and ℘ is the KOH. Then the CTCR paradigm is
implemented to reveal the exact stability map of the system
as shown in Fig. 1.

The obtained stability map is identical to that in [10]. For
the purpose of further verification, a numerical algorithm
called QPmR is deployed to calculate the dominant (right-
most) roots of (1). The real parts of the dominant roots are
plotted with respect to the delay values τ1 and τ2 as in Fig. 2.
The stable regions that fall below the Re [sdom] = 0 plane
precisely match those in Fig. 1, which further verifies the
proposed methodology.

V. CONCLUSION
In this paper, a novel frequency-domain approach is proposed
for the determination of the exact frequency range and the
stability feature of the time-delay system (1). Different from
previous works in the literature, this is the first attempt, to the
best of the authors’ knowledge, to extract the exact range of
the imaginary spectra of the system of interest. By sweeping
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the obtained range, the complete set of the stability switching
curves could be effectively determined, which facilitates the
deployment of the CTCR paradigm for the stability analy-
sis. For future work, we would like to extend the proposed
methodology for systems with more delays and a higher
level of complexity in dynamics, including but not limited to
multi-agent systems [35] and switched systems [36], [37].
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