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ABSTRACT This paper develops an online parameter estimation and control method for both rigid and
flexible feed drive systems with unmeasurable parameter variations. The perturbations of the state-space
model caused by the parameter variations are formulated, thereby making it possible to obtain the parameter
variations in real-time by estimating the perturbations. To estimate the perturbations, they are regarded as the
extended states and estimated through the extended-state-observer. With the estimation method, a novel state
feedback control structure with double integrators is further proposed, which can eliminate the steady-state
tracking error at constant velocities. The H∞ optimization technique is used to design the proposed state
feedback controller. A simulation is conducted that integrates the estimator and the controller for a ball screw
setup with mass-dependent resonant modes, where several proposed state feedback controllers are linearly
interpolated into a gain-scheduling controller and scheduled by the estimated mass. The results demonstrate
that the designed gain-scheduling state feedback controller outperforms a linear-time-invariant state feedback
controller and an adaptive backstepping sliding mode controller. The proposed method is experimentally
validated on a rigid linear-motor-driven motion stage, of which the results indicate the proposed estimation
method can accurately estimate the parameter variations.

INDEX TERMS Extended-state-observer, feed drive systems, H∞ optimization, parameter estimation, state
feedback control.

I. INTRODUCTION
The rapidly developing high-speed machining requires fast
and accurate feed drive systems. However, the performances
of feed drive systems are commonly limited by resonant
modes [1], which can be excited by external disturbances,
such as the cutting force, during high-speed machining.
To achieve satisfactory performances, various advanced con-
trol methods have been applied to feed drive systems, e.g.,
sliding mode control [2], state feedback control, including
pole placement [3] and linear quadratic regulator [4], addi-
tional feedback loop control [5], H∞ robust control [6], and
active disturbance rejection control [7]. These methods can
improve the tracking performance, but they are commonly
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designed for the nominal model, of which the parameters are
varying during the machining processes. Once the parameter
values change, the performance and the stability of feed
drive control systems based on the nominal model may be
degraded.

Some control methods have been studied for feed drive
systems, which take into account the impacts of parameter
variations, such as load mass and stiffness change. Further-
more, two types of gain-scheduling control were applied
to feed drive systems with table-position-dependent dynam-
ics: the linear-parameter-varying (LPV) method [6], [8], [9]
and interpolating method [10], [11]. For the same purpose,
the neural networkwas also studied to interpolate the resonant
filter parameters [12]. Nevertheless, it is still challenging to
employ the varying parameters as gain-scheduling parame-
ters if they are not measurable in real-time. Although some
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methods can consider variations in the unmeasurable param-
eters by regarding them as uncertainties and design either
robust linear-time-invariant (LTI) controller [13] or advanced
gain-scheduling controller [14], these methods can not avoid
the inherent conservatism that will limit the performances of
control systems.

The adaptive control and the learning control can be
used to consider the unmeasurable parameter variations. For
instance, adaptive control and robust control were combined
into the adaptive robust control to consider the parameter
uncertainties [15]. This method was further integrated with
the linear extended-state-observer for DC motor control [16].
The adaptive control was also used in the feedforward frame-
work for vibration suppression [17]. Furthermore, the adap-
tive control was widely used in the sliding mode control
for feed drive systems [18]–[22]. Although the adaptive
control can handle the unmeasurable parameter variations,
it is commonly used in the specific control framework and
can not obtain the exact parameter variations. On the other
hand, the learning control was studied on a ball-screw-driven-
stage for the repetitive tasks [23]. This method can achieve
high-precision positioning, while its effectiveness will be
affected for varying tasks.

As a summary, limited control methods can adequately
handle the impacts of parameter variations on the control
performances in feed drive systems due to the unmeasurable
feature. Therefore, it is crucial to develop an online parameter
estimationmethod to detect the unmeasurable parameter vari-
ations and address their impacts by updating the controller.
Some methods of parameter estimation were proposed for
servomotors in the discrete domain, which were based on
the disturbance-observer [24], [25]. However, the iterations
are necessary to obtain accurate estimation results, and the
relationship between the observed output and the parame-
ter variations is not explicitly obtained. Furthermore, these
methods were proposed only for the rigid model but not for
the flexible model. These drawbacks will be improved by the
online parameter estimation proposed in this paper.

The objective of this paper is to develop integrated online
estimation and control that estimate the parameter varia-
tions in real-time and update the controller using the esti-
mated parameters. Motivated by the parameter estimation
with finite-time convergence [26] and inspired by the princi-
ple of generalized extended-state-observer [27], a parameter
estimation method is developed for both rigid and flexible
feed drive systems. Furthermore, concerning the controller
design, the conventional structure of state feedback servo
control used in [3], [4] yields the steady-state error for the
ramp input, which means the tracking error exists at con-
stant velocities. Although the feedforward loop can reduce
the tracking error at constant velocities, it highly depends
on the model accuracy, and the parameter variations would
damage the effectiveness of the feedforward loop. Therefore,
a novel state feedback control structure is proposed for feed
drive systems to eliminate tracking error of conventional state
feedback servo control at constant velocities.

FIGURE 1. Configuration of feed drive control systems.

The main contribution of this work consists of two aspects:
formulating the perturbations caused by the parameter varia-
tions, and proposing a state feedback control structure with
the double integrators. By formulating the perturbations,
the parameter variation can be obtained in real-time by esti-
mating the perturbations. To estimate the perturbations, they
are regarded as the extended states and estimated through
the extended-state-observer [27], [28]. On the other hand,
the proposed control structure skillfully includes an addi-
tional integrator, which eliminates the tracking error at con-
stant velocities and makes it available to design the pro-
posed state feedback controller through existing optimization
methods. The H∞ performance has been used to design the
controller [29], [30], and is adopted to optimize the state
feedback controller in this paper.

In the proposed estimation and control framework, the esti-
mated parameters can be used to update the controller,
thereby circumventing the performance degradation intro-
duced by the parameter variations. The extensive simulation
and experiment indicate the proposed parameter estimation
method can accurately obtain the parameter variations, and
the impacts of the unmeasurable parameter variations can
be well compensated by using the estimated parameter to
schedule the controller gain.

II. PRELIMINARIES
The standard control system of feed drives is shown in Fig. 1,
in black arrows and black blocks. After applying the trajec-
tory r to the system, the error between the trajectory r and
the table position y is input to the controller. Accordingly,
the controller outputs the voltage u to the motor, which gen-
erates the torque to drive the table through the transmission
mechanism.

A. PARAMETER VARIATIONS AND SOLUTION
During machining processes, some model parameters are not
constant but varying. For instance, the workpiece material is
removed from workpieces in cutting processes or increased
in additive manufacturing processes. The different workpiece
mass may cause the change of the equivalent mass over
100%. Furthermore, the viscous friction coefficient may also
change due to the lubrication condition, thereby affecting the
equivalent viscous friction coefficient.
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These parameter variations may deteriorate the control
performance and even destroy the closed-loop stability [10].
For instance, the effectiveness of acceleration feedforward
control requires the accurate value of the equivalent mass,
and the friction compensation is influenced by the equivalent
viscous friction coefficient. Besides, the variation in work-
piece mass would change the natural frequency of the flexible
feed drive systems, thereby degrading the vibration control
performance and reducing the stability margin.

A common challenge of these parameter variations is that
they are not directly measurable. As a result, the control
system cannot handle its effects. To overcome the effects,
an integrated strategy of online parameter estimation and
control is developed in this paper. As shown in the green block
of Fig. 1, an estimator is proposed to obtain the parameter
variations in real-time, and then the estimated parameters can
be used to update the controller.

B. MODELS OF FEED DRIVE SYSTEMS
The various feed drive systems can be mainly modeled in two
types: the rigid model and the flexible model.

1) RIGID MODEL
Many types of feed drive systems, including the servo
motor and the linear motor, can be modeled by the rigid
body motion. With the lumped model, the corresponding
state-space equations are given as

ṗ = v,
v̇ = (−bv+ u)/m,
y = p,

(1)

where the system states xp consist of the table position
p and the table velocity v, and the control input u is the
motor voltage. The model parameters m and b denote the
equivalent mass and the equivalent viscous friction coeffi-
cient, respectively, which are varying during the machining
processes.

2) FLEXIBLE MODEL
For the feed drive systems with the resonant modes, such as
ball screw drives, the flexible model can be built as the two-
degree-of-freedom model, which regards the transmission
between the motor and the table as a spring-damper structure.
Accordingly, the state-space equations with system states
xp = [p1 p2 v1 v2]T are given as follows:

ṗ1 = v1,
v̇1 = [−kp1 + kp2 − (c+ b1)v1 + cv2 + u]/m1,

ṗ2 = v2,
v̇2 = [kp1 − kp2 + cv1 − (c+ b2)v2]/m2,

y = p2,

(2)

where k is the stiffness, and c is the damping coefficient.
Subscript 1 and 2 denote the motor side and the table side,
respectively.

For the flexible model, the equivalent viscous friction coef-
ficient may change due to the varying lubrication, while the
equivalent mass is affected by the workpiece mass. Since
the workpiece is placed on the table side, the motor side
equivalent mass m1 is constant. Moreover, the stiffness k
and the damping coefficient c depend on the table position,
which can be directly measured by the encoder. Therefore,
the variations in these parameters are ignored in this work.

III. PARAMETER ESTIMATION
A. THE PERTURBATIONS CAUSED BY PARAMETER
VARIATIONS
1) PARAMETER VARIATIONS IN THE RIGID MODEL
Once the parameters m and b in the rigid model change,
denoted by the symbol δ, the acceleration term v̇ in the
state-space equations (1) is perturbed as

v̇ = [−(b+ δb)v+ u]/(m+ δm), (3)

which can be transformed into

v̇ = [−bv+ u− δbv− δmv̇]/m. (4)

By comparing (1) and (4), the parameter variations cause a
perturbation

xc := −δbv− δmv̇. (5)

The bold font denotes the state and the perturbation in this
paper. With the system states xp and the extracted perturba-
tion xc, the perturbed state-space model can be expressed as{

ẋp = Apxp + Bpu+ Bcxc,
y = Cpxp,

(6)

where the matrices

Ap =
[
0 1
0 −

b
m

]
, Bp =

[
0
1
m

]
, Bc =

[
0
1
m

]
,

Cp =
[
1 0

]
. (7)

2) PARAMETER VARIATIONS IN THE FLEXIBLE MODEL
The perturbation derivation for the flexible model is anal-
ogous to the one for the rigid model. As mentioned in
Section II-B, the equivalent mass m2 and the equivalent vis-
cous friction coefficient b1 and b2 may change during the
machining processes. Therefore, the acceleration terms v̇1
and v̇2 in the state-space equations (2) are given by{
v̇1 = [−kp1+kp2−(c+b1)v1+cv2+u−δb1v1]/m1,

v̇2 = [kp1−kp2+cv1−(c+ b2)v2−δb2v2−δm2 v̇2]/m2.
(8)

Compared to the state-space equations (2), the perturbations
associated with the parameter variations occur on both sides
of the motor and the table. By defining the perturbations as

xc :=
[
xc1
xc2

]
=

[
−δb1v1

−δb2v2 − δm2 v̇2

]
(9)
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the state-space matrices in (6) for the flexible model can be
derived as

Ap =


0 1 0 0
−

k
m1

−
c+b1
m1

k
m1

c
m1

0 0 0 1
k
m2

c
m2

−
k
m2

−
c+b2
m2

 , Bp =


0
1
m1
0
0

,

Bc =


0 0
1
m1

0
0 0
0 1

m2

 , Cp = [0 0 1 0
]
. (10)

By seeing (5), the variation in equivalent viscous friction
coefficient δb can be obtained by enforcing the feed drive
system to operate in any constant speed v, i.e., v̇ = 0, as

δb =
−xc
v
, (11)

provided that the signal xc is available. On the other hand,
the variation in equivalent mass δm is found when the feed
drive system changes its moving direction, i.e., v = 0, as

δm =
−xc
v̇
, (12)

again with the provision of xc’s availability. An analogous
argument holds for (9). Therefore, since the velocity v
and acceleration v̇ are measurable in feed drive systems,
the estimation problem of parameter variations δb and δm
is reduced to the problem of estimating the perturbation xc.
Our approach for this reduced problem is the extended-state-
observer, to be presented next.

B. PERTURBATION ESTIMATION THROUGH
EXTENDED-STATE-OBSERVER
In this section, the perturbations will be estimated by using
the extended-state-observer. To estimate the perturbations,
they are regarded as the extended states, and the extended
state-space model of the new system states xe = [xTp xTc ]

T

can be obtained accordingly:{
ẋe = Aexe + Beu+ E ẋc,
y = Cexe,

(13)

where the extended state-space matrices are defined as

Ae :=
[
Ap Bc
0r×n 0r×r

]
, Be :=

[
Bp
0r×1

]
, E :=

[
0n×r
Ir×r

]
,

Ce :=
[
Cp 01×r

]
.

The subscripts n and r denote the numbers of the plant states
and the perturbations, respectively.

After regarding the perturbations as the extended states,
the state observer can be designed for the extended system to
estimate the extended states. Given the extended state-space
model (13), the generalized extended-state-observer can be
designed as:

˙̂xe = Aex̂e + Beu+ L(y− Cex̂e) (14)

FIGURE 2. Configuration of the generalized extended-state-observer.

where x̂e = [x̂p x̂c]
T are the estimation states, and L

includes the tuning parameters of the generalized extended-
state-observer. The structure of the extended-state-observer is
shown in Fig. 2.

C. ESTIMATION ERROR ANALYSIS
The estimation error is defined as ex := xe − x̂e, and
the state-space representation for the estimation error e is
obtained by subtracting (13) from (14):

ėx = (Ae − LCe)ex + E ẋc (15)

The time-domain solution of the state-space model (15) is
given by

ex(t) = e(Ae−LCe)te(0)+
∫ t

0
e(Ae−LCe)(t−τ )E ẋcdτ, (16)

where the symbol e(·) denotes the matrix exponential term.
For feed drive systems, the parameters would not vary arbi-
trarily fast but may change suddenly at some moment. For
instance, the load mass may decrease once the weight is taken
away in a pick-and-place machine. Assuming the parameters
are steady during the estimation, the perturbation derivative
for the rigid model is obtained according to (5):

ẋc = −δbv̇− δmv̈. (17)

Given the perturbation derivative (17), the estimation
error (16) for a linear trajectory can be discussed as two parts:
• If the velocity of feed drive systems is constant, i.e., v 6=
0 and v̇ = v̈ = 0, the perturbation derivative ẋc = 0, and
the second term of (5) is zero. Therefore, the estimation
error ex will go to zero eventually, and the variation in the
equivalent viscous friction coefficient can be accurately
obtained at constant velocities.

• When feed drive systems are operated at constant accel-
eration, i.e., v 6= 0, v̇ 6= 0 and v̈ = 0, the estimation
error exist due to ẋc = −δbv̇. However, if the feed
drive system is operated with a small absolute value of
acceleration |v̇|, the estimation error ex would be small
enough and can be ignored as long as the eigenvalues of
(Ae − LCe) are far away from the imaginary axis.

It is straightforward to derive similar conclusions for the
flexible model.
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FIGURE 3. Configuration of the state feedback controller with double
integrators.

D. PARAMETERIZATION OF PARAMETER ESTIMATOR
For the rigid model (1), the extended-state-observer (14) can
be tuned by the bandwidth-based approach [31] to simplify
the parameterization process. The tuning parameters can be
designed as

L = [3ωe 3ω2
e ω

3
e ]
T
, (18)

where ωe is the desired observer bandwidth. For the flexible
model (2), the extended-state-observer (14) can be designed
through the pole-placement technique. To guarantee faster
dynamics, the poles of the observer should be placed further
from the imaginary axis than those of the closed-loop control
system.

It should be noted that, although the larger observer band-
width and the far poles contribute to the faster convergence
and the smaller estimation error, the observer may capture the
measurement noises existing in practices, thereby resulting in
an inaccurate estimation.

IV. STATE FEEDBACK CONTROLLER DESIGN
Since the parameter estimator also estimates states of the
initial state-space model, the state feedback controller can be
employed. In this section, a state feedback control structure
with the double integrators is presented, and the controller is
designed through the H∞ optimization.

A. STATE FEEDBACK CONTROL WITH DOUBLE
INTEGRATORS
The configuration of the proposed state feedback control
method is shown in Fig. 3. As shown in the red dashed block,
the proposed control structure introduces a new state xb:

ẋb = xa. (19)

Compared with the conventional structure of state feedback
with an integrator, the effect of the introduced state xb is
to add another integrator to the open-loop system, thereby
increasing the order of open-loop system type and eliminating
the steady-state error at constant velocities.

Given the proposed control structure, the closed-loop
state-space model with respect to the new system states x :=
[xTp xa xb]

T is formulated accordingly:{
ẋ = Ax+ Buu+ Brr,
u = Kx,

(20)

where the system matrices are defined as

A :=

 Ap 0 0
−Cp 0 0
0 1 0

 , Bu :=

Bp0
0

 , Br :=

01
0

 ,
K := [Kp Ka Kb]. (21)

For the feed drive systems, (Ap, Bp) is controllable and
Cp(sI − Ap)−1Bp has no zero at s = 0, which means the
augmented (A, Bu) is controllable [32]. Since the closed-loop
system (20) is formulated in the standard form of the state
feedback control, any design method for state feedback con-
trol can be applied, such as the pole-placement control and
the linear-quadratic regulator (LQR) control. Next, the H∞
optimization method is adopted to design the controller.

B. H∞ OPTIMIZATION WITH PROPOSED CONTROL
STRUCTURE
For the H∞ control of feed drive systems, the performance
and the control weights are introduced to tune the closed-loop
performance and avoid the motor saturation. In this work,
the performance weight Wp and the control weight Wu are
designed as

zp = Wpx, zu = Wuu. (22)

where zp and zu are the weighted outputs. The full row matrix
is selected as the performance weightWp to weigh each state
of the closed-loop system (20), and the control weight Wu is
designed as a scalar to adjust the control input amplitude. The
generalized plant from the input r to the weighted outputs z =
[zp zu]T is formulated as{

ẋ = Ax+ Buu+ Brr,
z = Cx+ Duu+ Drr,

(23)

where the generalized matrices are

C =
[
Wp
0

]
, Du =

[
0
Wu

]
, Dr =

[
0
0

]
.

The objective for servo control is to reduce the influence
of trajectories on the weighted outputs, which means the gain
of the transfer function from r to z:

Gzr (s) = (C + DuK )(sI − (A+ BuK ))−1Br (24)

should be minimized. The H∞ optimization can design a
stabilizing state feedback controllerK such that the H∞ norm
of the transfer function Gzr is minimized, i.e.,

min γ s.t. ‖Gzr‖∞ < γ. (25)

This optimization problem can be solved through the follow-
ing linear matrix inequalities (LMIs) [33]:(AX + BuW )T + AX + BuW ∗ ∗

Br T −γ I ∗

CX + DuW Dr −γ I

 < 0,

(26)
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TABLE 1. Tuning guidelines for Wp = [wp wv wa wb].

where X is a symmetric positive definite matrix, and W is a
matrix of appropriate dimension. The symbol ∗ denotes the
conjugate transpose of a matrix. By solving the LMIs (26),
the feedback controller can be obtained as

K = WX−1. (27)

C. TUNING OF THE WEIGHTS
The steady-state error and the transient response determine
the system performances. Since the zero steady-state error for
the constant velocity guarantees the zero steady-state error for
the position command, the steady-state error for ramp inputs
and the response speed and overshoot for step inputs are
considered as the main performance index of the closed-loop
control system. Based on the observations, Table 1 summa-
rizes the effects of the performance weight Wp on the index,
where wp, wv, wa, and wb are corresponding components on
the states p, v, xa, and xb, respectively.
One important tuning rule is to weigh the state of second

integrator xb more, i.e., a larger wb, for the elimination of the
tracking error at constant velocities. For the flexible model,
another important principle here is that the table side states
p2 and v2 should take more weights than the motor side states
p1 and v1. Otherwise, the natural mode of the table cannot be
well compensated.

As a summary, a simple way to tune the performance
weight Wp is to set the weighting component wb at a large
value. Then, other weighting components can be tuned from
low to high to specify transient performance. The tuning
principle is also appropriate for the LQR controller design
with the proposed control structure.

V. SIMULATION: GAIN-SCHEDULING CONTROL
USING THE PARAMETER ESTIMATION
FOR THE FLEXIBLE MODEL
A simulation example was conducted to verify the effective-
ness of the presented online estimation and control method.
In this simulation, the proposed estimator and controller were
integrated for a flexible ball screw setup, which uses the esti-
matedmass to update the gain of the state feedback controller.
The designed gain-scheduling state feedback controller was
compared with a linear-time-invariant state feedback con-
troller and an adaptive backstepping sliding mode controller
to verify its effectiveness.

A. CONTROLLER AND ESTIMATOR DESIGN
The ball screw setup presented in [18] was used in this simula-
tion, of which the model parameters are given in Table 2. The

TABLE 2. Model parameters of the flexible ball screw.

FIGURE 4. Outputs and errors of two control structures for the ramp
input: ramp input (blue); traditional (orange); proposed (green).

proposed state feedback controller was designed by setting
the performance and control weights as

Wp = [wp1 wp2 wv1 wv2 wa wb]
= [10−5 10−4 10−5 5×10−4 10 105],

Wu = 0.0001,

and the obtained γ in (25) value was 1.046. The poles of the
extended-state-observer were placed at [− 250 − 375± 25i
− 425 − 500 − 625], which were far enough from the
imaginary axis.

The ability of the proposed state feedback controller to
eliminate the tracking error at constant velocities was verified
first. As a comparison, a traditional state feedback controller
with one integrator was also designed through the H∞ opti-
mization in Section IV-B.

Fig. 4 shows the output and the error with two controllers,
and it can be seen that the traditional controller with one
integrator can not achieve the zero steady-state error for the
ramp input, which indicates the tracking error exists at con-
stant velocities. Although this tracking error can be compen-
sated by the feedforward controller, the performance is highly
dependent on themodel accuracy. Once themodel parameters
change, the effectiveness of the feedforward controller will
be degraded. On the contrary, the proposed state feedback
controller with double integrators well eliminate the tracking
error for the ramp input.

B. PARAMETER ESTIMATION RESULTS
A jerk-limited trajectory shown in Fig. 5 was applied to the
closed-loop control system, and the constant velocity and the
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FIGURE 5. The linear trajectory for the ball screw setup.

FIGURE 6. Estimated perturbations xc for the flexible model in the
presence of parameter increase: δb1

(top), δb2
(middle) and δm2 (bottom).

constant acceleration were 0.2 m/s and 2 m/s2, respectively.
As mentioned in Section II-B, the parameters b1, b2, and m2
may change during manufacturing processes. When the three
parameters individually varied, the estimated perturbations
are shown in Fig. 6. It can be seen that the estimation for
equivalent viscous friction coefficient variation was coupled
with the velocity signal, while the equivalent mass variation
was related to the acceleration signal.

The values of variations in the equivalent viscous friction
coefficient and the equivalent mass were calculated at the
constant velocity and the constant acceleration, respectively.
As calculated by (11) and (12), the estimation values listed
in Table 3. The results indicate that the dynamics of the

TABLE 3. Estimation values for the flexible ball screw.

TABLE 4. Estimation error for multiple-parameters varying cases.

designed extended-state-observer was fast enough to capture
the parameter variations, and the observer can accurately
estimate the parameter variations.

The estimation for the multiple-parameters varying case
was also investigated. In this case, the sinusoidal trajectory
r = 0.01 sin(2π t) m was used. For the sinusoidal trajec-
tory, the velocity is maximum when the acceleration is zero,
and only the equivalent viscous friction coefficient affects
the perturbations. Therefore, the equivalent viscous friction
coefficient was estimated as (11) at maximum velocity. Sim-
ilarly, the equivalent mass was estimated as (12) at maximum
acceleration. Table 4 compares the estimation errors when the
parameters vary individually and simultaneously. It can be
seen that the estimation is very accurate when the parameters
individually vary. Since the acceleration derivative was large,
the estimation error was relatively larger according to (17).
Although the estimation error is increased when the parame-
ters simultaneously change, the result is still satisfactory.

C. IMPACTS OF PARAMETER VARIATIONS AND
INTERPOLATING GAIN-SCHEDULING CONTROL
For flexible feed drive systems, the primary impact of param-
eter variations is that the control performance can be sig-
nificantly deteriorated by the varying natural modes, which
depends on the workpiece mass. As mentioned in [34],
the tablemass would increase 130% by adding 43.5 kgweight
to the table. Therefore, after putting a 33.5 kg workpiece on
the table, the table mass increased 100%, and the natural
mode reduced from 130 Hz to 99 Hz. Fig. 7 shows the
variation in the frequency response function when the load
mass increases from 0 kg to 33.5 kg. Since the state feed-
back controller was designed as a linear time-invariant (LTI)
controller without taking into account the equivalent mass
variation, the stability margin, especially the gain margin,
would be significantly decreased, as shown in the Nyquist
plot in Fig. 8.
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FIGURE 7. Mass-dependent natural mode.

FIGURE 8. Nyquist plot: Nominal mass (blue), 25% increased (red) and
50% increased (orange).

By using the proposed parameter estimation method,
the equivalent mass can be obtained in real-time, which
makes it possible to update the controller using the estimated
mass. In this example, two more local state feedback con-
trollers were designed with the same weights when the mass
increased by 25% and 50%. Then, a gain-scheduling (GS)
controller was synthesized by linearly interpolating the gains
of the three local state feedback controllers, while the esti-
mated equivalent mass was the scheduling parameter. Note
that a posteriori stability analysis for the closed-loop system
under the interpolating gain-scheduling control should be
conducted using the Lyapunov technique.1 The estimation
and controller update was completed during the acceleration.
Nyquist plot of the designed GS controller in Fig. 8 indicates
that the GS controller mitigates the stability deterioration
caused by the equivalent mass variation.

The GS controller was also compared with the LTI con-
troller in the step response test in the presence of load mass
change. As shown in Fig. 9, the GS controller maintains sat-
isfactory and consistent responses when the equivalent mass
increases. However, with the LTI controller, the overshoot
of the step response increased when the equivalent mass
increases and the oscillations in the response reveal that the
changed natural mode cannot be compensated by the LTI

1The Lyapunov functional technique can verify the closed-loop system
stability [35], and it can guarantee the quadratic stability of linear-time-
varying systems. If the constant Lyapunov function can not be found,
a parameter-dependent Lyapunov function [36] can be further used.

FIGURE 9. Step responses of the LTI and GS controllers: Nominal mass
(blue), 25% increased (red), and 50% increased (orange).

FIGURE 10. Tracking errors of ABSMC and GSFC controllers for the
machining process.

controller. Even worse, it was found in simulations that the
system with the LTI controller would lose stability when the
equivalent mass increased 100%.

D. COMPARISON WITH ADAPTIVE BACKSTEPPING
SLIDING MODE CONTROL
The GS controller was further compared with the adaptive
backstepping sliding mode controller presented in [21]. In the
simulated machining process, when the working table was
tracking the trajectory shown in Fig. 5, the equivalent distur-
bance force of 0.01 V acted on the table side from 0.19 s to
0.3 s in the feed direction. The load mass changed to 16.75 kg
between the first feed and the second feed.

Fig. 10 shows the tracking error before and after the mass
variation. It can be seen that the designed gain-scheduling
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FIGURE 11. Experimental linear-motor-driven stage with different load
mass.

TABLE 5. Model parameters of the linear-motor-driven stage.

state feedback controller yields more consistent and smooth
responses in the presence of the mass variation. On the
contrary, the tracking error of the adaptive backstepping
sliding mode controller changed after the mass variation.
Furthermore, the adaptive backstepping sliding mode con-
troller can not wholly reject the disturbance force, since
the tracking error significantly increased between 0.19 s
and 0.3 s. The results indicate that, by using the estimated
parameter to schedule the proposed state feedback con-
troller with double integrators, the obtained gain-scheduling
controller outperformed the adaptive backstepping sliding
mode controller in the presence of the unmeasurable mass
variation.

VI. EXPERIMENT ON A LINEAR-MOTOR-DRIVEN STAGE
The proposed parameter estimator and state feedback con-
troller were experimentally applied to a linear-motor-driven
X-Y stage shown in Fig. 11. This setup is driven by two
axes, which can be commonly modeled as the rigid model,
and the model parameters in (7) are listed in Table 5. The
remaining rotary table, fixture and bronze block were used
to change the equivalent mass. Since the variation in the
equivalent viscous friction coefficient in this setup is not
apparent, only the estimation for the equivalent mass will be
presented.

FIGURE 12. Profile and acceleration of the circular trajectory.

FIGURE 13. Estimated perturbation xc for three cases.

A. CONTROLLER AND ESTIMATOR DESIGN
By tuning the weight as Wp = [1 0.1 103 5 × 105] and
Wu = 0.0001, the state feedback controller for X-axis and
Y-axis was respectively obtained as

KX =
[
1.48×108 6.30×104 −2.84×1010 −3.63×1012

]
,

KY =
[
9.93×107 6.89×104 −1.86×1010 −2.29×1012

]
.

(28)

The system bandwidth under obtained controllers for X-axis
and Y-axis is 326 rad/s and 330 rad/s, respectively. According
to the estimator parameterization for the rigid model (18),
the tuning parameters of L were designed as

L=
[
9×105 2.7×108 2.7×1010

]T
. (29)

As shown in Fig. 12, a circular trajectory with a maximum
acceleration of 1m/s2 was applied to the driven stage, and on
each axis, the velocity and the acceleration were sinusoidal.
Given the circle trajectory, if the equivalent viscous friction
coefficient varied, it could be estimated when the acceleration
is zero. On the other hand, the equivalent mass variation was
estimated when the velocity is zero (acceleration is maxi-
mum) in this case.
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TABLE 6. Experimental results of linear motor stage.

B. EXPERIMENTAL RESULTS
As shown in Fig. 11, a rotary table, a fixture, and a bronze
block were used as weights to change the equivalent mass.
Three cases of the parameter variations were considered in
the experiment:
• Case I, only rotary table.
• Case II, rotary table and fixture.
• Case III, rotary table, fixture and bronze block.

The mass of each case is listed in Table 6.
Since the setup is a two-axes stage, both X-axis and Y-axis

can be used to estimate the change of equivalent mass. Fig. 13
shows the estimated perturbation xc caused by the mass
change. It can be seen that the estimated perturbation varies
with the acceleration. The maximum acceleration was used
to calculate the mass of load weights. According to (12),
the estimation results are listed in Table 6, which indicates
that the parameter variations can be effectively estimated.

VII. CONCLUSION
In this paper, a significant problem caused by the parameter
variations in feed drive systems was overcome by proposing a
novel method of online estimation and control. The core con-
cept of the proposed parameter estimation method is regard-
ing the perturbations caused by the parameter variations as
the extended states, formulating a new system containing the
extended states, and estimating the extended states through
the observer. A state feedback control structure with double
integrators was further proposed for achieving zero track-
ing error at constant velocities. The controller was designed
through the H∞ optimization, and the tuning guidelines for
the proposed state feedback control were also given. Fur-
thermore, since the proposed state feedback controller was
formulated in the standard form, it can also be designed
through the existing methods, such as pole-placement control
and LQR control.

To handle the impacts of parameter variations on the con-
trol performance, the estimated parameter was used as the
scheduling parameter to schedule the gain of the proposed
state feedback controller. The results indicate that the pro-
posed online estimation and control could be useful in man-
ufacturing products with feed drives in high and uniform
precision.
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