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ABSTRACT This paper is devoted to the convergence problem for second-order signed networks that are
associated with two signed graphs in the presence of heterogeneous topologies. An eigenvalue analysis
approach is presented to develop convergence results for second-order signed networks, which employs
a sign-consistency property for signed graph pairs. When the sign-consistency of two heterogeneous signed
graphs and the connectivity of their union are given, bipartite consensus (respectively, state stability) can
be derived for second-order signed networks if and only if the union signed graph is structurally balanced
(respectively, unbalanced). Two examples are provided to illustrate the effectiveness of the obtained results.

INDEX TERMS Bipartite consensus, eigenvalue analysis, heterogeneous topology, signed network, struc-
tural balance.

I. INTRODUCTION
Networks involving multiple nodes (vertices or agents) have
received considerable attention from various application
fields recently, such as unmanned aerial vehicles, forma-
tion satellites and mobile robots. Traditionally, networks
refer to cooperative networks that involve nodes to imple-
ment collaborative tasks, where consensus (or agreement) of
nodes plays a fundamental role (see, e.g., [1], [2] for more
explanations). For communications among nodes, the tra-
ditional networks resort to unsigned graphs whose posi-
tive adjacency edge weights can interpret the collaborative
relations among nodes. However, there are many situations,
especially in the area of social networks, for which the
antagonistic relations among nodes should be also noticed
since the unavoidable relations like, e.g., approve/disapprove,
like/dislike, or trust/distrust may be encountered. This leads
to a new class of signed networks that may have both coop-
erative and antagonistic relations. Compared to traditional
networks, signed networks use signed graphs to model com-
munications among nodes, with positive/negative adjacency
edge weights to represent cooperative/antagonistic relations,
respectively.

Signed networks barely reach consensus, and instead the
so-called bipartite consensus usually emerges, which means
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that all nodes can reach agreement with two camps and
the agreement values of different camps are opposite [3].
Recently, bipartite consensus problems for signed networks
have been extensively discussed (see, e.g., [4]–[8]). Many
additional problems have been also investigated for signed
networks, such as finite-time bipartite consensus [9]–[11],
modulus consensus [12]–[14], bipartite containment
[15], [16], interval bipartite consensus [17]–[19] and dynamic
behaviors of signed networks with switching topologies [20].
At the same time, many promising approaches to the behav-
ior analysis of signed networks have been proposed, see,
e.g., [21] for a lifting approach, [22], [23] for a feedback
approach, [24] for an M -matrix approach, and [25] for
a frequency-domain approach. The aforementioned results
most contribute to signed networks under homogeneous
signed graphs. However, in practical networked systems,
the communication topologies of signed networks may be
heterogeneous due to the disturbance of external environ-
ments and the restriction of transmission abilities. Networked
systems with heterogeneous topologies may be more suit-
able than these systems under homogeneous topologies in
actual applications (see [26]–[28] for more details). Though
in [29], an attempt has been made to accommodate bipar-
tite consensus problems for signed networks with hetero-
geneous topologies, it is achieved only by extending the
network-to-network control results of [30]. In fact, it is even
unclear what the eigenvalues are distributed for second-order
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signed networks. How to explore the relationship between the
eigenvalue distribution and the behaviour analysis of second-
order signed networks is also to be solved especially in the
presence of heterogeneous topologies.

In this paper, bipartite consensus problems on second-
order signed networks with heterogeneous topologies are
considered. We introduce a class of sign-consistency prop-
erties for pairs of signed graphs, based on which an eigen-
value analysis approach to exploring the convergence results
of the second-order signed networks is developed. More-
over, the relation among structural balance, connectivity
and eigenvalue distribution is established for second-order
signed networks with sign-consistent heterogeneous topolo-
gies.When the two signed graphs representing heterogeneous
topologies are sign-consistent and their union is connected,
second-order signed networks can achieve bipartite consen-
sus (respectively, state stability) if and only if the union
of the two signed graphs is structurally balanced (respec-
tively, unbalanced). This is also demonstratedwith simulation
tests.

The organization of the reminder of our paper is as follows.
In Section II, signed graphs and problems on signed networks
are introduced. We present necessary and sufficient condi-
tions for convergence behaviours of second-order signed net-
works in Section III. Simulations and conclusions are given
in Sections IV and V, respectively.
Notations: Denote In = {1, 2, · · · , n}, 1n = [1, 1,
· · · , 1]T ∈ Rn, 0n = [0, 0, · · · , 0]T ∈ Rn and Dn =

{D = diag{d1, d2, · · · , dn} : di ∈ {1, −1}, i = 1, 2,
· · · , n}. For A = [aij] ∈ Rp×q, |A| = [|aij|] is nonnega-
tive, namely, |A| ≥ 0. If p = q, then π+(A), π−(A), and
π0(A) denote the number of eigenvalues (counted with the
algebraic multiplicity) of A that have the positive, negative
and zero real parts, respectively. For a complex number
b ∈ C, let Re(b) be the real part of b. We denote In and
0n×n as the identity and null matrices with m dimensions,
respectively.

II. PRELIMINARIES AND PROBLEM OF
SIGNED NETWORKS
A. SIGNED GRAPHS
A signed graph is denoted by a triple G = (V ,E ,A ) [31],
including a node set V = {vi : ∀i ∈ In}, an edge set
E ⊆ V × V =

{(
vi, vj

)
: ∀i, j ∈ In

}
, and an adjacency

weighted matrix A =
[
aij
]
∈ Rn×n, where aij 6= 0 ⇔(

vj, vi
)
∈ E and aij = 0, otherwise. Let G have no self-loops,

namely, aii = 0, ∀i ∈ In. Each edge
(
vj, vi

)
∈ E , ∀j 6= i indi-

cates vi with a neighbour vj, and let Ni =
{
j : (vj, vi) ∈ E

}
be the index set of all neighbours of vi. Assume A = A T ,
i.e.,G is an undirected signed graph. IfG has sequential edges
(vi, vl1 ), (vl1 , vl2 ), · · · , (vlm−1 , vj) for distinct nodes vi, vl1 , · · · ,
vlm−1 , vj, then G has a path between vi and vj. Thus, G is
connected if there exists a path between each pair of distinct
nodes. In addition, we specifically denote the signed graph
G associated with A as G (A ), and LA =

[
lAij
]
∈ Rn×n

defines its Laplacian matrix, where

lAij =


∑
k∈Ni

|aik | , j = i

−aij, j 6= i.

By following [3], G (A ) is structurally balanced if V
admits two disjoint sets V (1) and V (2) such that aij ≥ 0,
∀vi, vj ∈ V (1) or ∀vi, vj ∈ V (2) and aij ≤ 0, ∀vi ∈
V (1), ∀vj ∈ V (2) or ∀vi ∈ V (2), ∀vj ∈ V (1); and it is
structurally unbalanced, otherwise. The structural balance of
G (A ) equivalently implies DA D = |A | for some D ∈ Dn.
For G (A ), together with two other signed graphs

G (A a) = (V ,E a,A a) and G (A b) = (V ,E b,A b),
if E = E a

∪E b, thenG (A ) is called the union ofG (A a) and
G
(
A b

)
, for which we denote G (A ) = G (A a) ∪ G

(
A b

)
.

For A a
=

[
aaij
]
∈ Rn×n and A b

=

[
abij
]
∈ Rn×n,

if aaija
b
ij ≥ 0, ∀i, j ∈ In, then we say that G (A a) and

G
(
A b

)
are sign-consistent; and we say that they are sign-

inconsistent, otherwise.

B. NETWORK DYNAMICS
We consider second-order signed networks under two signed
graphs G (A c) and G

(
A d

)
. Let A c

=

[
acij
]
∈ Rn×n and

A d
=

[
adij
]
∈ Rn×n, and the neighbour index sets of vi in

G (A c) and G
(
A d

)
be N c

i and N d
i , respectively. Then the

dynamics of node vi, ∀i ∈ In is given by

ẋi(t) =
∑
j∈N c

i

acij
[
xj(t)− sgn

(
acij
)
xi(t)

]
+ ui(t) (1)

where xi(t) ∈ R is the state, and ui(t) ∈ R is the driving input
that satisfies

u̇i(t) = −kui(t)+
∑
j∈N d

i

adij
[
xj(t)− sgn

(
adij
)
xi(t)

]
(2)

for some k > 0. Clearly, (1) and (2) form a second-
order signed network with nonidentical topologies that are
described by two signed graphs G (A c) and G

(
A d

)
.

The problem addressed in this paper is to find conditions
of G (A c) and G

(
A d

)
such that the states of the signed

network (1) and (2) satisfies

lim
t→∞

xi(t) ∈ {±ξ} and lim
t→∞

ui(t) = 0, ∀i ∈ In

where ξ ≥ 0 is closely related to xi(0) and ui(0) for all i ∈ In.
If, for all xi(0) and ui(0), i ∈ In, ξ = 0 holds, then we say that
the signed network (1) and (2) achieves the (state) stability;
and otherwise, we say that it achieves the bipartite consensus.

III. MAIN RESULTS
Next, we aim at exploring convergence analysis for second-
order signed networks given by (1) and (2).We can rewrite (1)
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and (2) in a compact vector form of[
ẋ(t)
u̇(t)

]
=

[
−LA c I
−LA d −kI

]
︸ ︷︷ ︸

,A

[
x(t)
u(t)

]
︸ ︷︷ ︸
,X (t)

(3)

where x(t) = [x1(t), x2(t), · · · , xn(t)]T , u(t) = [u1(t),
u2(t), · · · , un(t)]T , and LA c and LA d denote the Laplacian
matrices of G (A c) and G

(
A d

)
, respectively. Let us denote

X0 = X (0) as the initial state of the system (3). Then the
solution to (3) is X (t) = eAtX0, by which it is of vital
importance to develop the eigenvalue distribution of A in
order to determine the convergence of X (t) as t → ∞. For
this purpose, we show a similarity transformation of A as

� =

[
kI I
I 0n×n

]
A
[
kI I
I 0

]−1
=

[
0 −

(
kLA c +LA d

)
I − (kI +LA c)

]
. (4)

With the above discussions, the following theorem presents
convergence conditions for second-order signed networks
with sign-consistent heterogeneous topologies.
Theorem 1: Let two signed graphs G (A c) and G

(
A d

)
be sign-consistent, and the union G (A c) ∪ G

(
A d

)
be con-

nected. Then the signed network (1) and (2) converges, and
further two convergence results hold as follows.

1) Bipartite consensus can be accomplished if and only if
G
(
kA c
+A d

)
is structurally balanced, andmoreover,

lim
t→∞

x(t) =
[
1
n
1TnD

(
x(0)+ k−1u(0)

)]
D1n,

lim
t→∞

u(t) = 0

where D ∈ Dn satisfies D
(
kA c
+A d

)
D =∣∣kA c

+A d
∣∣.

2) Stability is achieved if and only if G
(
kA c
+A d

)
is

structurally unbalanced.
Remark 1: Based on Theorem 1, the convergence prob-

lems are solved for second-order signed networks in the
presence of heterogeneous topologies given by two distinct
signed graphs. Moreover, bipartite consensus and stability
correspond to the mutually exclusive structural balance and
structural unbalance properties of the union of the two signed
graphs, respectively. Theorem 1 extends the existing conver-
gence results of signed networks whose topology is associ-
ated with one single graph (see, e.g., [3]). Since traditional
unsigned (or cooperative) networks are a special case of
signed networks, Theorem 1 also extends existing second-
order consensus results that only admit cooperative interac-
tions among nodes.

To prove Theorem 1, we introduce some helpful lemmas,
especially by noting (3) and (4).
Lemma 1: For any k > 0, if G (A c) and G

(
A d

)
are

sign-consistent signed graphs, then

G
(
A c)
∪ G

(
A d

)
= G

(
kA c
+A d

)
. (5)

Further, if G (A c) ∪ G
(
A d

)
is connected, then

1) kLA c+LA d is positive semi-definite and has exactly
one zero eigenvalue if and only if G

(
kA c
+A d

)
is

structurally balanced;
2) kLA c + LA d is positive definite if and only if

G
(
kA c
+A d

)
is structurally unbalanced.

Proof: From the definition for sign-consistency of any
two signed graphs, (5) can be developed straightforwardly.
Further, we can verify that kLA c+LA d = LkA c+A d is the
Laplacian matrix associated with kA c

+ A d . Thus, we can
benefit from [3, Lemma 1 and Corollary 2] to establish the
results (1) and (2) as a consequence.
Remark 2: From (5), G (kA c

+ A d ) = G (kA c) ∪

G
(
A d

)
also holds. In fact, if we denote G (A a) =

G (kA c) ∪ G
(
A d

)
and G

(
A b

)
= G (A c) ∪ G

(
A d

)
,

then the entries of A a and A b fulfil sign(aaij) = sign(kabij),
∀i, j ∈ In, ∀k > 0. It implies that if G (A c) and G

(
A d

)
are sign-consistent, then for any k > 0, G (A c) ∪ G

(
A d

)
,

G (kA c) ∪ G
(
A d

)
, G (kA c

+ A d ) and G (A c
+ k−1A d )

have the same properties of connectivity and structural bal-
ance.
Lemma 2: Consider k > 0 and two sign-consistent

signed graphs G (A c) and G
(
A d

)
. If G

(
kA c
+A d

)
is

structurally balanced, then each of G (A c) and G
(
A d

)
is

structurally balanced. Equivalently, if D
(
kA c
+A d

)
D =∣∣kA c

+A d
∣∣ holds for some D ∈ Dn, then DA cD = |A c|

and DA dD =
∣∣A d

∣∣ hold simultaneously.
Proof: Based on [3, Lemma 1], the structural balance of

G
(
kA c
+A d

)
equivalently implies that there exists some

D ∈ Dn satisfying

D
(
kA c
+A d

)
D =

∣∣∣kA c
+A d

∣∣∣ . (6)

Since G (A c) and G
(
A d

)
are sign-consistent, we can vali-

date ∣∣∣kA c
+A d

∣∣∣ = k
∣∣A c∣∣+ ∣∣∣A d

∣∣∣
which, together with (6), DA cD ≤ |A c| and
DA dD ≤

∣∣A d
∣∣, leads to DA cD = |A c| and

DA dD =
∣∣A d

∣∣ immediately.
Remark 3: It is worth highlighting that Lemmas 1 and 2

take advantage of the sign-consistency property between two
signed graphs. The results 1) and 2) of Lemma 1 also benefit
from the diagonal dominance of the Laplacian matrices of
signed graphs (see also [3]). In addition, a consequence of
this diagonal dominance property of the Laplacian matrices
is that kI +LA c is positive definite for any k > 0.
Lemma 3: Let matrices U ∈ Rn×n, V ∈ Rn×n and

W ∈ Rn×n be symmetric. If U is nonsingular and V is
positive definite, then for a quadratic matrix polynomial as

F(λ) = Uλ2 + Vλ+W

the eigenvalues satisfy π+ (F) = π− (U) + π− (W ),
π− (F) = π+ (U) + π+ (W ) and π0 (F) = π0 (W ), where
π+ (F) + π− (F) + π0 (F) = 2n, and π+ (F), π− (F), and
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π0 (F) are the numbers of eigenvalues of F(λ) (i.e., the zeros
of det (F(λ))) which have positive, negative and zero real
parts, respectively.

Proof: This is a direct consequence of [32, Lemma 4.4]
and [33, Theorem 3].

By Lemmas 1-3, we can provide the proof of Theorem 1
as follows.
Proof of Theorem 1: Sufficiency:We begin with transform-

ing A into the Jordan canonical form as follows:

J = P−1AP (7)

with

P =
[
w1,w2, · · · ,w2n

]
and P−1 =


yT1
yT2
...

yT2n


wherewk denotes one of the right eigenvectors or generalized
eigenvectors of A associated with λk (A), and yl andwk satisfy
yTl wk = 1 for l = k and yTl wk = 0 for l 6= k . Let us denote
the eigenvalues of A as λ1, λ2, · · · , λ2n. Without any loss of
generality, we apply (7) to reformulate eAt in the form of

eAt=P



eλ1t

. . .

eλmt

J1
. . .

Jr


P−1

(8)

with

Ji=



eλm+it teλm+it
1
2!
t2eλm+it · · ·

1
(si − 1)!

tsi−1eλm+it

eλm+it teλm+it · · ·
...

eλm+it · · ·
...

. . .
...

eλm+it


where Ji ∈ Rsi×si for i ∈ Ir and m +

∑r
i=1 si = 2n. For

convenience, denoteQ(λ) = [Iλ2+(kI +LA c) λ+kLA c+

LA d ]. Two cases are divided to obtain this sufficiency.
Case 1): G (A c) ∪ G (A d ) is structurally balanced.
By considering Q(λ) = Iλ2 + (kI +LA c) λ + kLA c +

LA d , it follows from Lemmas 1 and 2 as well as Remark 3
that for any k > 0, kI +LA c and kLA c +LA d are positive
definite and positive semi-definite, respectively. It ensures
that Lemma 3 applies to Q(λ). Thus, we again consider the
property 1) of Lemma 1 for the eigenvalues distribution of
kLA c +LA d and can deduce

π+ (Q) = π− (I )+ π−
(
kLA c +LA d

)
= 0

π− (Q) = π+ (I )+ π+
(
kLA c +LA d

)
= 2n− 1

π0 (Q) = π0
(
kLA c +LA d

)
= 1. (9)

In addition, with the identical structural balance of G (A c) ∪
G (A d ) and G (kA c

+ A d ) from Lemma 1 and Remark 2,
it can be obtained from Lemma 2 that there exists some D ∈
Dn satisfying D

(
kA c
+A d

)
D =

∣∣kA c
+A d

∣∣ such that

DLA cD1n =
∣∣A c∣∣ 1n − DA cD1n = 0

DLA dD1n =
∣∣∣A d

∣∣∣ 1n − DA dD1n = 0. (10)

It is worth noting (see, e.g., [33] and [34]) that the eigenvalues
of Q(λ) coincide with those of the companion matrix 8
defined by

8 = �T
=

[
0 I

−
(
kLA c +LA d

)
− (kI +LA c)

]
.

Thus, A,�,8 andQ(λ) share identical eigenvalues, including
exactly one zero eigenvalue and others with negative real
parts. We denote them as λ1 = 0 and Re(λi) < 0 for
i ∈ {2, 3, · · · , 2n}. Based on (10), we can validate
A
[
1TnD, 0

]T
= 0, which inspires us to take w1 =

[
1TnD, 0

]T .
We proceed to determine y1. It is not difficult to deduce[
D1n
1
kD1n

]T
(λiI − A)=

[
D1n
1
kD1n

]T [
λiI +LA c −I

LA d (λi + k)I

]
= λi

[
D1n
1
kD1n

]T
, ∀i ∈ I2n\{1}. (11)

By noticing λi 6= 0 and (λiI − A)wi = 0 for any i ∈ I2n\{1},
as well as (11), it follows that

[
1TnD

1
k 1

T
nD
]
wi = 0 holds

for any i ∈ I2n\{1}. With this observation, we conclude
from (7) that yT1 =

1
n

[
1TnD

1
k 1

T
nD
]
. Based on Re(λi) < 0,

∀i ∈ I2n\{1}, we can validate that limt→∞ tqeλit = 0 holds
for any nonnegative integer q ≥ 0. Thus, we employ (8) to
get

lim
t→∞

eAt = P
[

1 01×(2n−1)
0(2n−1)×1 0(2n−1)×(2n−1)

]
P−1

= w1yT1 . (12)

The substitution of w1 =
[
1TnD, 0

]T and yT1 =

1
n

[
1TnD

1
k 1

T
nD
]
into (12) results in

lim
t→∞

x(t) =
1
n

[
1TnD

(
x(0)+ k−1u(0)

)]
D1n

and limt→∞ u(t) = 0 immediately. Namely, the second-order
signed network (1) and (2) achieves bipartite consensus.
Case 2): G (A c) ∪ G (A d ) is structurally unbalanced.
For Q(λ) in this case, we can easily conclude from

Lemma 1 andRemark 3 that for any k > 0, both kI+LA c and
kLA c +LA d are positive definite. We thus apply Lemma 3
to Q(λ) and can deduce

π+ (Q) = π− (I )+ π−
(
kLA c +LA d

)
= 0

π− (Q) = π+ (I )+ π+
(
kLA c +LA d

)
= 2n

π0 (Q) = π0
(
kLA c +LA d

)
= 0. (13)

Clearly, (13) implies that the eigenvalues of Q(λ), and con-
sequently of A, � and 8, are all in the open left half plane
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of the complex plane. We hence have Re(λi) < 0 for all
i ∈ I2n. Since limt→∞ tqeλit = 0 holds for any nonneg-
ative integer q ≥ 0 and any i ∈ I2n, we reconsider (8)
for eAt , and limt→∞ eAt = 0 directly follows, resulting in
limt→∞ X (t) = 0. This means that the stability is achieved
for the second-order signed network (1) and (2).
Necessity:We use the proof-by-contradiction to obtain this

necessity. If G (A c) ∪ G (A d ) is structurally unbalanced,
then G (kA c

+ A d ) is also structurally unbalanced from
Remark 2, which produces limt→∞ X (t) = 0 and leads to
a contradiction with bipartite consensus of the signed net-
work (1) and (2). Conversely, we can conclude that bipartite
consensus of the signed network (1) and (2) necessarily needs
the structural balance of G (A c) ∪ G (A d ). Likewise, we can
deduce that the stability of (1) and (2) needs the structural
unbalance of G (A c) ∪ G (A d ) as a necessary condition.
Remark 4: For the proof of Theorem 1, we take advantage

of the properties of quadratic matrix polynomials to investi-
gate the eigenvalue distribution of the second-order signed
network given by (3) with heterogeneous topologies. This
exploits the eigenvalue properties of Laplacian matrices of
signed graphs. Moreover, it provides an efficient eigenvalue
analysis approach in the time domain to overcome the effect
from heterogeneous topologies on convergence of second-
order signed networks.

There exists an interesting special situation whereA c
= 0.

Then the system (3) collapses into a second-order (or double-
integrator) system with the form of

Ẋ (t) =
[

0 I
−LA d −kI

]
X (t). (14)

With (14), we can develop the second-order bipartite consen-
sus results for signed networks in the following corollary.
Corollary 1: Consider any k > 0 and any connected

signed graph G
(
A d

)
. Then the following results can be

obtained for any x(0) ∈ Rn and u(0) ∈ Rn.
1) The second-order system (14) admits bipartite con-

sensus if and only if G
(
A d

)
is structurally balanced.

Moreover, the solution of (14) satisfies

lim
t→∞

x(t) =
[
1
n
1TnD

(
x(0)+ k−1u(0)

)]
D1n,

lim
t→∞

u(t) = 0

for some D ∈ Dn such that DA dD =
∣∣A d

∣∣.
2) The second-order system (14) achieves stability if and

only if G
(
A d

)
is structurally unbalanced.

Proof: Due to A c
= 0, the sign-consistency still keeps

for G (A c) and G
(
A d

)
, and connectivity of G

(
A d

)
ensures

that G (A c)∪G
(
A d

)
is connected. Hence, (14) is obviously

a special case of (3), and this corollary can be derived directly
with the help of Theorem 1.
Remark 5: The system (14) is similar to

[25, Example 1], which discusses a special case of dynamic
network systems. What such two systems in common is that
only one graph G

(
A d

)
matters for nodes. As Corollary 1

formulates, the sign-consistent property always keeps for
any signed graph G

(
A d

)
. Thanks to Theorem 1, if we

only consider the static interactions in [25, Example 1],
then it can be viewed as a special case of system (3)
and holds the same results as Corollary 1. Nevertheless,
its bipartite consensus and stability results can be devel-
oped from a WSPR (short for weakly strictly positive
real) property, instead of sign-consistency. Actually, for
any k > 0, the WSPR property of acij + (s+ k)−1adij is
equivalent to the sign-consistency of G (A c) and G

(
A d

)
.

Thus, our results may provide new insights into the
dynamic distributed control of signed networks considered
in, e.g., [25].

In a trivial case that G (A c) and G
(
A d

)
have no antag-

onistic interactions, the consensus problems are analogous
to the network-to-network ones in [30]. In this case, sign-
consistency of G (A c) and G

(
A d

)
always keeps apparently.

By definition of structural balance, this case can be viewed as
a special one of structural balance. In other words, V (l)

= Ø
and V (q)

= V for l 6= q and l, q ∈ {1, 2}, and therefore
A c
≥ 0 and A d

≥ 0 are both nonnegative. Under such
circumstance, we present a corollary as follows to make this
trivial case clear.
Corollary 2: Consider any k > 0 and any traditional

graphs G (A c) and G
(
A d

)
withA c

≥ 0 andA d
≥ 0. If the

union G (A c)∪G
(
A d

)
is connected, then for any x(0) ∈ Rn

and u(0) ∈ Rn, the system (3) achieves consensus such
that

lim
t→∞

x(t) =

[
1
n

n∑
i=1

(
xi(0)+ k−1ui(0)

)]
1n,

lim
t→∞

u(t) = 0. (15)

Proof: Because this situation belongs to structurally bal-
anced cases, and the gauge transformation matrix D = I
holds in Theorem 1, we derive from the result 1) of Theo-
rem 1 that (15) follows immediately. Namely, consensus is
achieved.
Remark 6: The result of Corollary 2 is consistent with the

traditional second-order consensus results. It also suggests
that the second-order consensus results can be extended to
traditional networks in the presence of heterogeneous topolo-
gies. For heterogeneous traditional networks, they are invari-
ably sign-consistent. Compared with the consensus results
of network-to-network systems in [30], the second-order
consensus is greatly generalized to signed networks with a
precondition of sign-consistent property.

IV. SIMULATION RESULTS
In this section, we give two examples for the signed net-
work (1) and (2) with twelve nodes to illustrate the proposed
results. Without loss of generality, we adopt k = 2 > 0 and
choose the initial conditions of (1) and (2) as

x(0) = [5,−3,−9, 2,−8,−5, 3,−7,−1, 6, 1,−6]T ,

u(0) = [4,−3, 6,−2, 1,−5, 2,−1,−2, 3,−4,−1]T .
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FIGURE 1. (Example 1). The signed digraph G
(
A c )

.

FIGURE 2. (Example 1). The signed digraph G
(
A d

)
.

Example 1: Consider (1) and (2) under two signed graphs
in Figs. 1 and 2. We can verify for Figs. 1 and 2 that
• G (A c) and G

(
A d

)
are sign-consistent;

• G (A c) ∪ G
(
A d

)
is structurally balanced and strongly

connected.
A gauge transformation can be determined for the union
signed graph as D = diag{1, 1,−1,−1, 1, 1,−1, 1, 1,
−1,−1,−1}. By the result 1) of Theorem 1, bipartite con-
sensus can be achieved for all nodes, which leads to

lim
t→∞

xi(t) = −1.75, i ∈ {1, 2, 5, 6, 8, 9}

lim
t→∞

xj(t) = 1.75, j ∈ {3, 4, 7, 10, 11, 12}.

For this case, the state evolution of xi(t), ∀i ∈ I12 is plotted
in Fig. 3. It can be easily seen from Fig. 3 that bipartite con-
sensus on the quantity with modulus equal to 1.75 is achieved
for all nodes. Consequently, the illustration of Fig. 3 coincides
with the bipartite consensus result of Theorem 1.
Example 2:We consider two signed graphs in Figs. 4 and 5

for the signed network (1) and (2). Obviously, G (A c) and
G
(
A d

)
in Figs. 4 and 5 are sign-consistent and give a

connected union G (A c) ∪ G
(
A d

)
. But, different from

FIGURE 3. (Example 1). Bipartite consensus of (1) with heterogeneous
topologies given by two signed graphs in Figs. 1 and 2.

FIGURE 4. (Example 2). The signed digraph G
(
A c )

.

FIGURE 5. (Example 2). The signed digraph G
(
A d

)
.

Example 1, G (A c) ∪ G
(
A d

)
is a structurally unbalanced

signed graph. From the result 2) of Theorem 1, we know
that all nodes described by (1) and (2) achieve the stability.
In Fig. 6, we depict the state evolution of xi(t), ∀i ∈ I12,
by which the stability is clearly realized. This illustrates the
stability result 2) of Theorem 1.
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FIGURE 6. (Example 2). Stability of (1) with heterogeneous topologies
described by two signed graphs in Figs. 4 and 5.

Through Examples 1 and 2, we illustrate our convergence
results developed for second-order signed networks subject
to heterogeneous topologies. These illustrations demonstrate
that given the sign-consistency of heterogeneous topologies,
the behaviours of second-order signed networks relate closely
to the structural balance of signed graphs.

V. CONCLUSION
In this paper, the bipartite consensus problems have been
discussed upon second-order signed networks subject to
the heterogeneous topologies. We have introduced a class
of sign-consistency properties for pairs of signed graphs.
Consequently, an eigenvalue-based approach has been pre-
sented to implement the convergence analysis, which may be
of independent interest for the higher-order signed networks.
These help us to provide necessary and sufficient conditions
for second-order signed networks to reach bipartite consensus
or stability of all their nodes. In particular, two special cases
of second-order signed networks have been involved and
discussed. Simulation tests have verified the validity of our
established results.
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