
Received January 18, 2020, accepted February 8, 2020, date of publication February 17, 2020, date of current version February 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974191

Multipath Routing and MPTCP-Based
Data Delivery Over Manets
TONGGUANG ZHANG 1, SHUAI ZHAO 2, AND BO CHENG 2, (Member, IEEE)
1School of 3D Printing, Xinxiang University, Xinxiang 453003, China
2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Corresponding author: Tongguang Zhang (jsjoscpu@163.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1003804, in part
by the Key Scientific and Technological Projects in Henan Province under Grant 202102210146, in part by the National Natural Science
Foundation of China under Grant 61921003, in part by the Beijing Natural Science Foundation under Grant 4182042, and in part by the
Beijing Nova Program of Science and Technology under Grant Z191100001119031.

ABSTRACT In some special circumstances (e.g., tsunamis, battlefields, and earthquakes), communication
infrastructures are damaged or nonexistent. For communication among people, mobile smart devices (MSDs)
can be used to construct mobile ad hoc networks (MANETs). This paper focuses on the problem of data
delivery in MANETs aiming to improve the quality of service (QoS) and quality of experience (QoE) users
receive. MANETs, however, have the well-known problems of frequent disconnections and high rates of
failed transmissions as MSDs move in and out of network coverage areas, and the topology constantly
changes. To solve these issues, the main contributions of this work are as follows: (1) we provide and
investigate the QoE-driven multipath TCP (MPTCP)-based data delivery model in MANETs; (2) we present
hidden Markov model-based optimal-start multipath routing, which can effectively predict a mobile node’s
near future network connection state according to its past connection state; (3) we leverage MPTCP to
simultaneously transmit data via multiple interfaces of MSDs and improve the establishment method for
MPTCP subpaths; and (4) we study and improve the algorithm of multihop routing in MANETs. The test
results show that our algorithms can offer more efficient use of multiple subpaths and better network traffic
load balancing than using standard MPTCP alone.

INDEX TERMS Data delivery, hidden Markov, MANET, multipath routing, multipath TCP, quality of
experience.

I. INTRODUCTION
Natural disasters, e.g., earthquakes, tsunamis, and battle-
fields, often cause breakdowns or interruptions in com-
munication infrastructures. An example is the Wenchuan
earthquake, which had a magnitude of 8.0 Ms/7.9 Mw and
occurred at 14:28:01 China Standard Time on May 12, 2008.
Over 69,000 people lost their lives in the quake. In the after-
math of earthquakes, it is vital to speed up earthquake disaster
relief. The rescue center must determine what resources are
needed to shelter people and to help people recover from the
disaster. Hence, it is essential for rescue centers to identify the
location of disaster victims who may be trapped or isolated
and to bring them to safety and medical attention. To this
end, it is important to provide concise position informa-
tion. However, fast, reliable damage assessment is extremely

The associate editor coordinating the review of this manuscript and

approving it for publication was Quansheng Guan .

difficult, particularly in large disaster earthquakes. To eval-
uate the scope and severity of earthquakes and improve the
efficiency of search-and-rescue, advanced damage-detection
methods are needed. One key to enhancing the effectiveness
of response is to adopt communication technologies. It is
necessary to provide normal communication among people
or mobile smart devices (MSDs). Smartphones are more
powerful and can be used to construct mobile ad hoc networks
(MANETs). The appeal of MANETs is the capacity for rapid
deployment and reorganization. In MANETs, each node can
serve as a router and host. Basic types of routing algorithms
are single-hop and multihop. In multihop MANETs, nodes
cooperate to relay traffic on behalf of one another to reach
remote nodes. Mobile applications are sensitive to latency,
as the quality of experience (QoE) is negatively affected when
data are delayed. Due to the mobility of MSDs and the mul-
tihop wireless transmission, MANETs lack the performance
and reliability of wired networks, which results in a reduced

32652 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-8402-1279
https://orcid.org/0000-0002-5217-004X
https://orcid.org/0000-0003-2160-2839
https://orcid.org/0000-0001-6159-3194

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

quality of service (QoS). Currently, it is a challenge to provide
reliable data delivery over MANETs in disaster areas.

Now, MSDs are equipped with multiple communication
interfaces (e.g., WiFi, 4G/5G, etc.). Various methods for
improving the QoE of latency-sensitive mobile applications
are active subjects of research [1]. However, a weakly
explored area is determining whether utilizing all available
network interfaces on the MSDs could improve the QoE.
Thus, it is necessary to optimize the QoS of mobile applica-
tions and improve the QoE. For instance, how to efficiently
use multiple network interfaces simultaneously to reliably
transfer data for fewer failed communications. Multipath
transmission is an ideal solution. Unfortunately, the current
dominant transport layer protocols (e.g., TCP) cannot control
multiple paths. The main problem with the existing proto-
cols is that mobile applications cannot change a communi-
cation session to another path. Hence, we use multipath TCP
(MPTCP) [2]–[5], a new transport layer protocol, to solve this
issue. MPTCP is a TCP extension and is being standardized
by the Internet Engineering Task Force (IETF). MPTCP pro-
vides concurrent data transmission over multiple paths and
supports compatibility with a single TCP. In this case, there is
only one network interface, MPTCP creates only one subflow
on the interface and requires the stack on both ends. MPTCP
can help to improve the utilization of network resources by
aggregating multiple communication interfaces.

Although MPTCP has been shown to be more resilient
to link failures and can aggregate capacity to provide more
throughput, because it still uses TCP in its subflows, there are
some disadvantages of MPTCP with unreliable connections.
For example, subflows are built on several links that will
be disconnected, rather than using links that will remain
connected in the future. Thus far, whether MPTCP is suitable
for mobile applications transmitting latency-sensitive traffic
in special emergency MANET scenarios has not been thor-
oughly investigated. The lack of performance and reliability
in MANETs is a challenge for reliable and efficient data
communication. To achieve reliable and efficient multipath
data transmission, we provide and investigate the QoE-driven
MPTCP-based data delivery model in MANETs. In the pro-
posed model, we consider both symmetric and asymmetric
multipath communication and set up various levels of emer-
gency applications. Each level corresponds to a set of QoS
parameters that will be transferred to the network layer and
then act on route generation, path selection, packet scheduling
and so on. These are transparent to users.

In this paper, we have four main contributions. First,
to achieve optimal data transmission inMANETs constructed
by MSDs with multiple network interfaces, we provide and
design a QoE-driven MPTCP-based data delivery model.
Second, we present the hidden Markov model (HMM)-
based optimal-start multipath routing scheme, which can
effectively predict a mobile node’s near future network con-
nection state according to its past connection state and
improve OSPF (Open Shortest Path First) MANET Desig-
nated Routers (MDR) to add routing table entries according

to the number of next-hops and network interface number.
Third, we improve the establishment method for MPTCP
subpaths. To the best of our knowledge, this is the first time
that themethod of adding routing table entries and themethod
of establishing MPTCP subpaths have been simultaneously
considered to offer more efficient use of multiple subpaths
and better network traffic load balancing to increase through-
put and reliability. Finally, we implement and evaluate the
data delivery model in MANETs.

The rest of the paper is organized as follows. Section II
discusses related work. Section III introduces an overview of
the proposed QoE-driven MPTCP-based data delivery model
in MANETs. Section IV discusses MPTCP in QoE-Oriented
MANETs and provides a QoE-driven packet scheduling
framework and algorithm. Section V presents the implemen-
tation of MPTCP in MANETs and shows the measurement
results. Finally, Section VI concludes the paper and discusses
possible future work.

II. RELATED WORK
QoE enhancement for real-time data transmission in
MANETs is a challenging and important issue. The authors
in [6] developed an optimal bandwidth allocation strategy
in MANETs. The authors in [7] analyzed major factors
influencing the QoE of voice communication in MANETs.
However, they did not consider multipath transmission using
MPTCP. Multipath provides new opportunities for improving
mobile application performance. Hence, industry has also
been enthusiastically adopting MPTCP. In September 2013,
some built-in apps in iOS, e.g., Siri, began supporting multi-
path [8]. MPTCP v0.86 was ported to Android 4.4.4 on Sam-
sung Galaxy S3 smartphones [2]. MPTCP v0.89.5 was ported
to Android 4.4.4 [9]. By adding redundancy to data segments,
it is possible to improve the performance of MPTCP in lossy
environments [10], [11].

Paasch et al. [12] provided a detailed study of MPTCP
schedulers and their impact on performance. To date, several
schemes based on MPTCP have been proposed to prevent
goodput degradation. In [13], congestion window adaptation
and a proactive scheduler were proposed to prevent good-
put degradation. Although some transmission strategies have
been proposed in terms of delay [12], [14], these schemes
mainly focus on the buffer blocking phenomenon. One solu-
tion is to schedule data to subflows to independently operate
both application-dependent functions and network-dependent
functions. In [12], the impact of scheduling in MPTCP was
evaluated, and MPTCP was shown to improve performance
by scheduling strategies considering network conditions.
Some scheduling schemes [14], [15] have been proposed to
prevent goodput degradation. The authors in [16] showed
how path selection for a subflow affects network throughput.
The authors in [12] addressed the problem of head-of-line
blocking in the network. In MPTCP, this phenomenon is
caused by the packets that are scheduled on the low-delay
subflow, which have to wait for the high-delay subflow’s
packets to arrive in the out-of-order queue of the receiver.

VOLUME 8, 2020 32653

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

QoE-driven packet scheduling is based on MPTCP and
has already been extensively investigated in existing stud-
ies [17]–[23], and each work focused on a very specific and
detailed problem, e.g., mobile energy consumption, video
streaming quality, and throughput optimization. We consider
the QoE optimization for only one application in our work
because the QoE metrics for different applications are com-
pletely different. For instance, delay is the most important
for audio applications, while video applications have widely
used QoE metrics, such as the structural similarity score
(SSIM) [24]–[26] and rebuffering ratios. The authors in [27]
explored concepts and feasibility of realizing MPTCP with
path awareness, in which the path-aware information was
leveraged to reinforce theMPTCP transmissions. The authors
in [28] developed a comprehensive approach that is capable
of assessing the performance of long-lived MPTCP flows
with joint WiFi and cellular network access. Relying on a
parallel queueing model, the authors developed a framework
that features the controllable network parameters, such as
the retransmission limit and the buffer sizes, to capture their
impact on the TCP-level performance. However, they did not
consider both the method of adding routing table entries and
the method of establishing MPTCP subpaths simultaneously.
The proposed MPTCP scheduling is modified based on the
proposed multipath routing in this paper.

Several difficult problems (e.g., routing, reliability and
QoS) can arise due to the frequent disconnections of nodes in
MANETs. How to generate a routing table is the core issue.
Many routing protocols have been developed for MANETs,
which differ in their protocols characteristics, techniques
used, and network structure [29]. The two most popular
dynamic routing protocols are distance vector routing and
link state routing, both of which require each router to
periodically broadcast routing advertisements. These routing
algorithms are not efficient in MANETs. Thus far, routing
protocols used in MANETs can be classified as table-driven,
on-demand, and hybrid [30].

III. QoE-DRIVEN DATA DELIVERY MODEL IN MANETS
A. QoE-DRIVEN DATA DELIVERY MODEL
It is essential to deliver real-time data such as audio and
video in MANETs. Therefore, MANETs must be able to
provide the required QoS for the delivery of real-time data
that request a QoS routing and improving user QoE. QoS is
defined as a set of measurable prespecified service require-
ments such as delay, bandwidth, packet loss, and jitter that
a network needs to make them available for the end-users
while transporting a packet stream from a source to its des-
tination [30]. QoE extends the QoS by making statements
about the user experience. In contrast to QoS, QoE does
not provide numeric values about the bandwidth. QoE is a
user-centric concept reflecting the end-user satisfaction of
a service. QoE is identified as the degree of satisfaction or
annoyance of the user with an application or service [31].
However, in MANETs, there are some challenges that need
to develop efficient routing procedures, packet scheduling

FIGURE 1. QoE-Driven Data Delivery Model in MANETs.

TABLE 1. Description of QoS parameters.

for efficient use of partial bandwidth and communication
capacity. Thus, to provide efficient QoS and high QoE in
MANETs, we provide and design a QoE-driven data delivery
model, which contains 3 parts: users, applications and net-
work (TCP/IP) in MANETs, as shown in Fig. 1.

Fig. 1 shows the relationships among QoE, QoS, users,
applications, and network (TCP/IP). In the proposed model,
we simultaneously consider both symmetric and asymmetric
multipath communication. Various priorities are set up for
different types of applications, and each priority corresponds
to a set of QoS parameters. Users do not have to consider
QoS and QoE that are transparent to them. Usual QoSmetrics
include bandwidth, delay, loss rate and jitter. The relationship
between the proposed scheduling and proposed multipath
routing is that the former is modified based on the latter.
A detailed description will be given in Section IV.

The application layer shows the operation method of
application, which is directly related to the real experience
perceived by users.

The network layer is the key to the model and involves
the QoS parameters listed in Table 1. QoS parameters act on
route generation, path selection, packet scheduling and so on.

B. APPLICATION PRIORITY IN MANETS
Different applications have different network requirements,
which can be described in terms of metrics such as band-
width, delay, jitter and packet loss. Real-time applications
require more bandwidth and are sensitive to latency in
MANETs. It is difficult to support different applications with

32654 VOLUME 8, 2020

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

appropriate QoS in MANETs with MPTCP. In some situ-
ations, applications with low-priority and high-bandwidth
usage can consume so much bandwidth that other
high-priority applications become unavailable or limited.
This case can lead to a decrease in users’ QoE. Hence,
it is impossible to meet the needs of various applications
simultaneously. In fact, all parameters considered for packet
scheduling have already been discussed in previous studies.
In our proposed model, different priorities are assigned to
different applications. The application priority dictates a set
of QoS parameters required from the network for a specific
application. The application priority is used to assist in packet
scheduling, which attempts to match each defined application
to the most appropriate network resource.

C. HMM FOR NODE CONNECTION STATE IN MANETS
Disconnections are quite common in MANETs. To improve
the packet delivery ratio and QoS of data transmission, it is
necessary to devise efficient routing schemes. However, it is
a challenge to design an efficient routing scheme to deliver a
packet in a timely manner with a low drop rate in MANETs.
Due to the mobility of the node and the periodicity of routing
table updating, the current valid routing entries may soon
become invalid in the update cycle, and QoS might decease.
The key to solving this problem is to effectively predict
the future connection state for each node based on its past
connection state. The HMM is exploited to make predictions;
hence, we devise the HMM-based optimal-start multipath
routing scheme to improve the quality of routing and ensure
more reliable and timely data transmission in MANETs. Our
proposed scheme chooses the node that has a better connec-
tion state as the next-hop. This section focuses on HMM for
the node connection state in MANETs. In the next section,
we detail the HMM-based optimal-start multipath routing
scheme for MANETs.

HMM [32] is a statistical Markov model with hidden states
and observable states. Each node collects and maintains the
transition probability matrix and the state sequence. In an
HMM, observable states depend on the hidden states, and
each state has a probability distribution over the possible
observable states. The only method for evaluating hidden
states is to observe the observable states. The transition
between hidden states follows the Markov process in which
the current state only depends on the previous state.

Fig. 2 illustrates the hidden states and observable states for
the HMM in MANETs. The observable states include good
moderate and bad, good denotes continuous network con-
nections, moderate denotes intermittent network connections,
and bad denotes network disconnections. Observable states
can be measured according to packet loss rate, signal strength
or RTT (Round-Trip Time).

Table 2 shows the definitions of the observable states.
if_quality[i] in Appendix B is related to these states. The
thresholds for a given metric are set in Appendix B.
The ‘if_quality’ denotes the quality of a network interface.
The initial (maximum) value of if_quality is 10000. In the

FIGURE 2. Hidden states and observable states for HMM in MANETs.

TABLE 2. State definition.

running process of the system, the value of if_quality is
modified according to whether packet is lost, whether retrans-
mission timer times out, and whether ACK is received. The
procedure update_if_quality inAppendix B is responsible for
adjusting the value of if_quality.

Viterbi algorithm [33], [34] is used to find the most likely
sequence of connection (hidden) states. The algorithm is
modeled as a six-tuple HMM λ = (H, O, π , Y, A, B) where
H = {h1, h2, . . ., hN}, the hidden state space, N is the

number of hidden states. E.g., H = {connect, disconnect}.
O = {o1, o2, . . ., oM}, the observation space, M is the

number of observable states. E.g., O = {good, moderate,
bad}. Observable states aremeasured according to packet loss
rate, signal strength or RTT (Round-Trip Time).
π = {πi}, 1 ≤ i ≤ N, the initial hidden state probability

vector, where πi = (π1, π2,. . . , πN) = P(Hi), 1 ≤ i ≤ N and∑N
i=1 πi = 1.
Y = {y1, y2, . . ., yT }, the sequence of observations.
A = {aij}, the N×N state transition matrix, the transition

probabilities between the hidden states Hi and Hj, where
aij = P(qt = Hj | qt−1 = Hi), 1 ≤ i, j ≤ N, aij ≥ 0, ∀i,j and∑N
j=1 aij = 1, ∀i.
B = {bik}, the N×M state dependent emission matrix,

the probabilities of the observable states Ok in the hidden
state Hj, where bik = P(Ok |Hi), 1 ≤ i ≤ N; 1 ≤ k ≤ M and∑M

k=1 bik = 1, ∀i.
The procedures main and hmm_predict give the con-

nection states evaluation process in Appendix A. Due to
Viterbi algorithm [35], [36] uses dynamic programming,
it’s time complexity is O(T*|N|2) for any HMM with N
states and an observation sequence of length T. To ana-
lyze the prediction overhead, we carried out the command
‘‘time./viterbi_algorithm 2 1 0’’ 20 times on a notebook with
64G mem and an Intel Core i7-8750H processor. The execu-
tion times are 0.005s, 0.004s, 0.004s, 0.003s, 0.003s, 0.005s,
0.002s, 0.005s, 0.005s, 0.005s, 0.003s, 0.005s, 0.004s,
0.002s, 0.005s, 0.004s, 0.005s, 0.003s, 0.004s and 0.005s

VOLUME 8, 2020 32655

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

respectively. The source code for the Viterbi algorithm is
available from [51]. As shown in Appendix A, the procedure
hmm_predict is executed every 2 seconds or 1 second. There-
fore, the computation overhead will not affect the update of
routing table.

D. HMM-BASED OPTIMAL-START MULTIPATH ROUTING
When designing MANETs, several difficult problems can
arise due to the frequent disconnections of nodes. How to
generate a routing table is the core issue. In this paper,
we improve OSPF-MDR [37] to generate routing tables.
OSPF for IPv6 is also referred to as OSPF version 3
(OSPFv3). OSPF-MDR is an extension of OSPFv3 [38] to
support MANETs and is based on the selection of a sub-
set of MANET routers, consisting of MANET Designated
Routers (MDRs) and Backup MDRs (BMDRs). OSPF-MDR
uses data in the Hello packets to elect the MDR and BMDR.
The MDRs form a connected dominating set (CDS). For
robustness, the MDRs and BMDRs together form a bicon-
nected CDS that is constructed using 2-hop neighbor infor-
mation provided in a Hello protocol extension. It is important
to provide guaranteed QoS routing in MANETs. QoS routing
needs to mainly manage real-time communication. Multipath
routing generally consists of three components: route discov-
ery, route maintenance, and traffic allocation. The function
of traffic allocation is implemented by MPTCP, which is
discussed in Section IV.B. Route discovery and route mainte-
nance are responsible for multiple routes between source and
destination node pairs.

Fig. 3 shows how to maintain the multipath routing table
and propagate to all the nodes in MANETs. Both types of
Hello (full and differential) are supported in OSPF-MDF. Full
and differential Hellos are used for neighbor discovery and
for enabling neighbors to learn 2-hop neighbor information.
Full Hello packets always include the list of neighbors. Dif-
ferential Hello packets only include the neighbors whose state
has recently changed and are used to reduce control overhead.
Therefore, differential Hellos allow OSPF-MDR to react
quickly to the dynamic topology of MANETs. OSPF-MDR
has a Link-State DataBase (LSDB) composed of Link State
Advertisements (LSAs) and synchronized between adjacent
nodes. When two neighboring nodes become adjacent, they
synchronize their LSDBs. Each node sends the other node
a set of Database Description (DD) packets that describes
the node’s LSDB. This is done by listing the header of each
LSA in one of the sent DD packets. Each node can deter-
mines whether the other node has newer LSAs that should
be requested via Link State Request (LSR) packets. Initial
LSDB synchronization is performed through the exchange of
DD, LSR, and Link State Update (LSU) packets. Thereafter,
LSDB synchronization is maintained via flooding, utiliz-
ing LSU and Link State Acknowledgment (LSAck) packets.
Since the CDS is responsible for flooding new LSA (its
payloads carried by the LSU packets), the flooding procedure
in OSPF-MDR is called CDS flooding. As shown in Fig. 3,
each node is either in the CDS or one hop away from it.

FIGURE 3. Maintain the multipath routing table and propagate to all the
nodes in MANETs.

FIGURE 4. Optimal-start multi-interface multipath routing between
M1 and M8.

MDRs exchange LSA among each other and relay them its
neighbors. Nodes ignore LSA from neighbors with which
they do not have a bidirectional connection. The LSDB is
pieced together fromLSAs. From the LSDB, a routing table is
calculated by constructing a shortest-path tree. In MANETs,
each node is equipped with multiple network interfaces. It is
necessary to use multiple interfaces simultaneously for trans-
mitting data. OSPF-MDR generates routing table entries for
one network interface of a node by default. In this paper,
we improve OSPF-MDR by generating routing table entries
for other network interfaces as soon as for one network
interface of a node. Therefore, this improvement can reduce
the computing overhead of mobile nodes while generating a
complete routing table. Specific improvement methods are
detailed in the later part of this section and in Section V.A.1.

Now, we examine the issues of multipath routing in
MANETs.Multipath routing is typically proposed to increase
the reliability of data transmission (i.e., fault tolerance)
or to provide load balancing and higher aggregate band-
width. Multipath routing allows the establishment of multiple
paths between source and destination node pairs. To clearly
demonstrate this situation, see Fig. 4, where node M1 estab-
lishes three paths to node M8. If node M1 sends the same
packet along all three paths, as long as at least one of the
paths does not fail, node M8 will receive the packet, which
demonstrates how multipath routing can provide fault tol-
erance. In addition, simultaneously using multiple paths to
route data may increase the aggregate bandwidth; therefore,
the bandwidth requirement of mobile applications can be
satisfied.

32656 VOLUME 8, 2020

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

In MANETs, the routing entries for each destination con-
tain a list of the next-hops along with the corresponding
hop counts. There is a key problem, when a source node
sends data along multiple routes, some or all of the routing
entries may become obsolete due to nodemobility. Therefore,
routing protocols need to update the routing table; however,
performing a route discovery would result in a delay before
new routes are available. This may degrade the QoS of the
application. For more robust and reliable communications,
it is important that a mobile node can predict the connection
state of the next-hop. In these conditions, first, OSPF-MDR
is used to periodically find the latest routing entries, and the
periodic interval is 2 s. HMM is used to predict the connection
state of the next-hop after 2 s and decide whether to add it to
the routing table based on the state. For example, in Fig. 4,
at time T1, OSPF-MDR on node M1 finds three next-hops to
node M8 and uses HMM to predict that the connection states
of the three next-hops at time T1+2 s are good; therefore,
the three next-hops (node M2, M3 and M4) are added into
the routing table on node M1. At time T1+2s, OSPF-MDR
on nodeM1 finds three next-hops to nodeM8 and uses HMM
to predict that the connection states of two next-hops (node
M2 and M3) at time T1+4s are good, the connection state
of the next-hop (node M4) at time T1+4s is poor; therefore,
the two next-hops (node M2 and M3) are added into the
routing table on node M1.

Another key problem is that disjoint routes offer cer-
tain advantages over nondisjoint routes. In principle,
node-disjoint routes offer the most aggregate resources and
higher fault tolerance. In node or link-disjoint routes, a link
failure will only cause a single route to fail. Node-disjoint
routes offer the highest degree of fault tolerance. The main
advantage of nondisjoint routes is that they can be more
easily discovered. Node-disjoint routes are the least abundant
and are the hardest to find. Hence, some researchers want to
improve network performance through node or link disjoints.
For example, MPTCP mainly relies on open shortest path
first/equal cost multipath (OSPF/ECMP) to hash different
subflows to different paths. However, the authors in [39]
indicated that OSPF/ECMP routing is not flexible if all the
subflows of a connection use the same path. To solve the prob-
lem, the authors in [40] used k disjoint paths to route the sub-
flows of an MPTCP connection. However, the authors in [41]
proved that four versions of the problem (i.e., the graph is
directed or undirected and the paths are link-disjoint or node-
disjoint) are strongly NP-hard, even if k equals two. It costs
exponential time to find an optimal solution for the above
problems. Because the problem is NP-complete, we propose
an optimal-start multipath routing scheme that does not con-
sider this NP-hard problem of k disjoint paths. However,
the problem cannot be solved fundamentally by using only
routing; we simultaneously consider using multi-interface
multipath routing and multipath transmission technology.

In MANETs, each mobile node is equipped with multiple
network interfaces. Simultaneously using multiple interfaces
can create many benefits for users. However, the different

types of connectivity must be considered. For example, it is
necessary to distinguish between WiFi and 4G/5G. First,
the weight of each route is set up based on an accurate link
state. Then, MPTCP chooses routing according to the weight
to route the subflows of anMPTCP connection.Wewill detail
the multipath transmission technology in Section IV.

As shown in Fig. 4, each node has multiple interfaces,
and the original OSPF-MDR may obtain all of the available
next-hops and add them to the routing table. For example,
when node M1 finds next-hops to node M8, it can obtain 9
next-hops; that is, there are 3 next-hops between the pair of
nodes M1 M2, M1 M3 and M1 M4. Based on the routing
table, MPTCP may use the paths between the same pair of
nodes, which leads every subflow to compete for the same
resources in the same pair of nodes. We, hence, improve
the OSPF-MDR for MANETs. Our proposed algorithm is
divided into three phases. The first phase is to find the can-
didate next-hops. Due to the timeliness of routing items, it is
necessary to use HMM-based prediction technology. The sec-
ond phase is to predict the connection states of the next-hops
by using HMM. The third phase is to update the routing table
using the next-hopswith a good connection state. The greatest
advantage of the scheme is that it can reduce the computing
overhead of mobile nodes.

Take Fig. 4 as an example to illustrate the results gen-
erated by the HMM-based optimal-start multipath routing.
In this example, we give all the next-hops from node M1 to
node M8.

We define a function hmm(x1, x2), which can find the best
next-hop between node x1 and node x2 based on HMM.

As shown in Fig. 4 (A), the next-hops from node M1 to
node M8 are hmm(M1, M2), hmm(M1, M3) and hmm(M1,
M4).

As shown in Fig. 4 (B), the next-hops from node M2, M3,
M4 to node M8 are as follows.

M2: hmm(M2, M5), hmm(M2, M6)
M3: hmm(M3, M5), hmm(M3, M6), hmm(M3, M7)
M4: hmm(M4, M6), hmm(M4, M7)
As shown in Fig. 4 (C), the next-hops from node M5,

M6, M7 to node M8 are hmm(M5, M8), hmm(M6, M8),
hmm(M7, M8), respectively.

Appendix A gives the HMM-based optimal-start multi-
path routing algorithm, which is an extension to OSPF-MDR.

E. QoE-DRIVEN MULTIPATH TRANSMISSION
We now consider the situation where HMM-based optimal-
start multipath routing is used, and the multiple paths
are scheduled simultaneously to transfer data by MPTCP.
Fig. 5 (A) shows the subpaths created by the original MPTCP
based on the original routing table, which clearly leads every
subflow to compete for the same resources in the same pair
of nodes. Fig. 5 (B) shows the subpaths created by the
improved MPTCP based on the HMM-based optimal-start
routing table. MPTCP can use multipath for a single MPTCP
connection and hash different subflows to different subpaths.
This improves the robustness of the MPTCP connection.

VOLUME 8, 2020 32657

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

FIGURE 5. Creating subpaths between M1 and M8.

However, there is the problem of head-of-line blocking in
MANETs, which is caused by the packets that are sched-
uled on the low-delay MPTCP subflow that have to wait
for the high-delay subflow’s packets to arrive in the out-of-
order queue of the receiver. In addition, it is important to
consider the real-time voice and video communications that
may benefit from bandwidth aggregation. Multipath trans-
mission has great promise. However, the optimal allocation
of traffic to multiple paths is challenging. Thus, we propose
a new scheduling scheme, QoE-driven packet scheduling,
which schedules packets to subflows according to network
delay and bandwidth, aiming to achieve efficient concurrent
transmission over multiple paths. The scheme is detailed in
Section IV.B.

F. SCHEME OF USING QoS PARAMETERS
Many applications have specific network requirements (QoS
parameters). To improve user QoE in MANETs, the QoS
parameter selection should be a black box to users. Therefore,
we present a scheme for transferring application priority from
user space to kernel space via socket, as shown in Fig. 6.
In the scheme, applications for special tasks in MANETs
are bound with a priority that is transparent to users. Once
an application starts up, the priority of which application is
transferred into the kernel and the available network resource
can be intelligently allocated.

IV. MPTCP IN QoE-ORIENTED MANETS
MPTCP uses multiple subflows to implement concurrent
multipath transport [42]. Each subflow is defined by a
source/destination IP address pair and appears as a regular
TCP connection. MPTCP can manage many paths, improve
the transmission performance and robustness of end-to-end
connections, and automatically transfer the traffic from the
congested path to the better path. In addition, MPTCP can be
backward compatible with traditional TCP. Because Android
is a popular mobile operating system, Android Things is
an Android-based operating system for MSDs in IoT; thus,
we research MPTCP Linux implementation (MPTCP-L) [43]
and implement it on MSD with Android installed. As shown
in Fig. 6, MPTCP-L consists of several main parts: a meta
socket, a master subsock, slave subsocks, a multipath control
block (MPCB) [44]), path managers, schedulers, reorders,
and congestion controllers [45], [46]. If MPTCP is enabled
on MSD with Linux/Android installed, when an application

FIGURE 6. The relationship between each portion of MPTCP-L.

creates a TCP connection, several data structures are created
in the kernel space: ameta socket,MPCB and subflows socket
(master/slave subsocks). MPTCP-L includes three main com-
ponents that are not standardized by the IETF: pathmanagers,
congestion controllers and schedulers.

Path managers manage the paths between the sender and
the receiver. An outstanding characteristic of MPTCP is its
ability to use several paths (subflows) in a single MPTCP
connection. The path managers are responsible for creat-
ing and deleting subflows and reacting to events (activation
or deactivation of network interfaces) by creating/removing
the appropriate subflows. Current path managers that are
built into the Linux MPTCP kernel implementation include
default, fullmesh, ndiffports and binder. In this paper, we use
the combination of improved MPTCP and improved MDR to
help latency-sensitive applications to achieve high QoE. The
combination is discussed in Section V.

Congestion Controllers: The congestion window
(CWND) is used in the sender’s flow control and is based
on the network capacity and conditions. It is ordinarily in
multiples of maximum segment size (MSS). The CWND
is initially increased by TCP slow start. Once the cwnd
reaches the slow start threshold or there is data loss due to
congestion, and the cwnd growth changes to a congestion
avoidance algorithm. Ultimately, the cwnd increases to either
the network’s limit due to congestion or it hits the receiver’s
window limit. Even though the rwnd (receive window) is
larger than the cwnd (congestion window), the sender is
bound by the cwnd. Therefore, the quantity of data the sender
can send is min(rwnd, cwnd). The cwnd gives the limit of
in-flight bytes, which is the quantity of data that has been sent
but not yet acknowledged. The chosen congestion controller
has an impact on the performance of MPTCP. The following
three principles must be followed in the design of congestion
control inMPTCP: (1)MPTCP’s throughput should reach the
throughput of the best subflow in all subflows; (2) MPTCP
and traditional TCP should have the same throughput at
the connection level, instead of each subflow having the
same throughput as the traditional TCP at the subflow level;

32658 VOLUME 8, 2020

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

and (3) MPTCP should choose the better subflow and move
traffic away from the most congested paths. Currently avail-
able controllers built into the Linux MPTCP kernel imple-
mentation include LIA, OLIA, wVegas and BALIA. The
default controller in the Linux MPTCP implementation is
LIA.

A. SEND BUFFER AND RECEIVE BUFFER
MPTCP uses window-based data flow and congestion control
similar to TCP but modified to accommodate multiple paths
and the principles of MPTCP. The sender transfers segments
over several subflows. The receiver aggregates subflows and
reassembles the segments that come from different paths.
However, it is challenging to handle buffer as send and
receive buffers are shared among all subflows. On the receiver
side, the received segments are stored in the receive buffer;
only when all segments have been received in their correct
sequence can they be passed to the appropriate application.
In the sender side, segments that are being transmitted and are
not acknowledged by the receiver are stored in the send buffer.
That is, only the segments are acknowledged by a cumulative
ACK, and they can be removed safely from the send buffer.

The quantity of data that can be sent is the minimum of the
receive window (rwnd) and the congestion window (cwnd).
The rwnd denotes how much data the receiver can advertise
to the sender and can receive and buffer. The rwnd is also
representative of the free buffer space for the socket. The
amount of free space in the receive buffer is advertised to
the sender in every ACK packet as the Window Size. The
quantity of data the sender can send is more complicated.
The upper bound is the receiver’s advertised window, and the
sender cannot send more than that, or data will be discarded.
In addition, the sender cannot send more data at one time than
is available in the send buffer, which is the buffer that the
application writes data for TCP to send. The send buffer size
is the size of the socket send buffer. The optimal send buffer
size depends on the bandwidth-delay product (BDP), which
denotes howmuch data the network can buffer. To achieve the
highest throughput, it is vital to retain plenty of outstanding
data (sent but not acknowledged) in the MPTCP connection.
The ideal value (IV) for the outstanding data to achieve the
best throughput for the MPTCP connection is a function of
the BDP and the rwnd of each subflow. As shown in the
following formula:

IV = min(BDP, total of all subflow rwnd)

If the IV value for the MPTCP connection is larger than
the send buffer size, then the throughput achieved on the
connection will not be optimal. Therefore, the size of the send
buffer should be larger than the IV value.

Due to the difference in the characteristics of subpaths, seg-
ments transmitted to a fast path and sent later than segments
transmitted to other paths can be out-of-order in the receiver’s
buffer. In addition, the so-called head-of-line blocking prob-
lem can occur when segments transmitted in fast subpaths
arrive at the receiver and fill the receiver’s buffer while

waiting for segments transmitted in the slow subpaths. This
issue is known as receive buffer blocking. Mechanisms such
as opportunistic retransmission [47], nonrenegable selective
acknowledgments [48], and smart scheduling decisions [14]
are necessary to avoid these issues. However, in any case,
the buffers must be large enough to deal with the maximum
RTT of any subpaths. The buffer size requirements strongly
depend on the RTTs of paths. In the traditional Internet,
timer-based retransmissions should be rare; however, they
must be considered due to the characteristics of MANETs.
Hence, to utilize a network path and cover fast retransmission
and timer-based retransmission, the send/receive buffer size
constraint B is shown in the following formula [42]. In the
worst case, it takes three times the highest subflow RTT
(first transmission, fast retransmission, timer-based retrans-
mission) plus the highest subflow RTO (retransmission time-
out).

B ≥
(
3 ∗ max

1≤i≤n
(RTTi)+ max

1≤i≤n
(RTOi)

)
∗

∑N

i=1
Bandwidthi

From the above formula, we can easily knowwhenMPTCP
simultaneously uses multiple paths with different delay char-
acteristics; the required buffer size can be very large.

B. QoE-DRIVEN PACKET SCHEDULING
As shown in Fig. 6, MPTCP schedulers are responsible for
transparently passing user data from the application layer
over different active subflows and adding sequence num-
bers and confirmation numbers into segments before handing
them to the network layer. When the receiver receives the
segments, the schedulers reorder them and pass them to the
application layer. To reorder packets, two levels of sequence
numbers are used: the regular TCP sequence numbers that are
used to ensure in-order delivery at the subflow level, and the
data sequence numbers that can be used to guarantee in-order
delivery at the MPTCP connection level. The scheduler has a
large impact on the performance of data transmission. There
are different ways to schedule the transmission of data. Cur-
rent schedulers in the Linux kernel implementation include
default, round-robin and redundant.

The different schedulers are detailed in [47]. However,
due to the error-prone nature of wireless links and the high
mobility of mobile nodes in MANETs, it is challenging to
provide the required QoS for the end-users in MANETs.
Therefore, the MPTCP schedulers in MANETs are wanted to
manage real-time communication, such as audio and video.
Nevertheless, the original MPTCP schedulers have some
defects and cannot fit multiple kinds of applications to maxi-
mize throughput and reliability in MANETs. The fundamen-
tal problems with the default scheduler are threefold. (1) It
always tries to transmit data over the subflow with the lowest
RTT, as long as there is free space in the congestion window.
Although it is less influenced by slow subflows than the
round-robin scheduler, it can cause the aforementioned prob-
lems of head-of-line blocking and receive buffer blocking.
The authors in [49] provided detailed classifications of the

VOLUME 8, 2020 32659

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

FIGURE 7. The framework of QoE-driven packet scheduling.

blocking issues. (2) When the packet is lost in multipath
transmission, the scheduler must decide whether to retransmit
this packet over the same subflow or over different ones [1].
(3) Lower priority applications may suffer from starvation.

To solve the above issues, the default scheduler includes
a mechanism that reinjects packets, causing head-of-line
blocking in a different subflow. The authors in [50] intro-
duced a chunk rescheduling mechanism that reinjects the
segment causing head-of-line blocking on a different sub-
flow that has space available in its congestion window. The
authors in [15] presented a delay aware packet scheduler that
tries to send packet sequences in a manner that guarantees
in-order delivery at the receiver. However, it is hard to guar-
antee QoS and higher QoE for real-time communications in
MANETs. We thus propose the framework of QoE-driven
packet scheduling, as shown in Fig. 7. We study the coordi-
nation between MPTCP and multipath routing in MANETs.
We modify the MPTCP scheduler and path management
based on optimal-start multipath routing. Appendix B shows
how it works. We consider both the QoS of the subflows
and the application priorities aiming to prevent applica-
tions with minimal QoS requirements from occupying more
bandwidth.

To solve the issues of out-of-order, head-of-line blocking
and receive buffer blocking, our scheme distributes packets
among subflows according to the rwnd size, the cwnd size,
bandwidth, RTT and priority. For instance, subflows with
a smaller RTT are allocated more packets, more packets
belonging to an application with higher priority can be sched-
uled to subflows as much as possible, and as long as there is
free space in the rwnd and cwnd, packets can be scheduled
to subflows. Due to the characteristics of MANETs, the BDP
may not be a constant. Hence, packets should be distributed
among the subflows proportional to the BDP of the subflows
aiming to adapt well to fluctuating network conditions caused
by changes in BDP or subflow failures. Our QoE-driven
packet scheduling algorithm is described in Appendix B.
The source code for the scheduling algorithm is available
from [51].

The related references mentioned earlier in this paper
improved MPTCP’s throughput and stability mainly by
improving path manager and congestion controller. However,

FIGURE 8. The application scenario of MPTCP in MANETs.

they did not consider both the method of adding routing
table entries and the method of establishingMPTCP subpaths
simultaneously. As far as we know, this is the first time that
the method of adding routing table entries and the method
of establishing MPTCP subpaths have been simultaneously
considered to offer more efficient use of multiple subpaths
and better network traffic load balancing to increase through-
put and reliability. MPTCP doesn’t have the ability to update
the routing table, and is only based on routing table for path
manager. The improved OSPF-MDR is responsible for updat-
ing the routing table. MPTCP and OSPF-MDR are loosely
coupled, as shown in Fig. 7.

V. IMPLEMENTATION, TESTING AND EVALUATION
A. IMPLEMENTATION OF MPTCP IN MANETS
To evaluate the performance of MPTCP in MANETs, a sim-
plified topology is more useful than a complex topology.
Fig. 8 shows a scenario of MPTCP in MANETs. We assume
that each node (M1–M8) is equipped with four network
interfaces (e0,e1,e2,e3). IP addresses assigned to network
interfaces belong to different network segments. In expres-
sion 1, Y denotes nodes (M1–M8), X denotes interfaces
(e0,e1,e2,e3).

112.26.X .Y/24, X ∈ [0, 3], Y ∈ [1, 8] (1)

1) HMM-BASED OPTIMAL-START MULTIPATH ROUTING
In this paper, MPTCP mainly relies on HMM-based optimal-
start multipath routing to hash different subflows to different
paths. In the scenario shown in Fig. 8, MDR [52] can only
generate routing information for e0; however, MPTCP needs
to build subpaths using interfaces (e0,e1,e2,e3); therefore,
MDR cannot provide routing support for the establishment of
the MPTCP subpaths. To solve this problem, it is necessary
to improve MDR; the method is as follows: generate routing
table entries for e0; meanwhile, the same routing table entries
are also generated for e1,e2,e3. For example, in M1, the rout-
ing table entries to M8 generated by the original MDR are
represented in equation 2, where E0RE represents the routing
table entries for e0 in M1.

E0RE = nexthop via 112.26.0.Y eth0 to 112.26.0.8,

Y ∈ [2, 4] (2)

32660 VOLUME 8, 2020

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

EXYRE = nexthop via 112.26.0.Y eth0 to 112.26.X .8,

X ∈ [1, 3],Y ∈ [2, 4] (3)

EXRE = nexthop via 112.26.0.Y eth0 to 112.26.X .8,

X ∈ [1, 3],Y = X + 1 (4)

After the first improvement to MDR, in M1, the rout-
ing table entries to M8 generated by the improved MDR,
in addition to the three entries (as represented in equation 2),
include the newly added 9 entries; that is, three routing table
entries are generated for each destination address (e1,e2,e3),
as represented in equation 3, where EXYRE represents the
routing table entries for e1,e2,e3 in M1. Now, if M1 can
successfully ping e0 in M8, then M1 can successfully ping
e1,e2,e3 in M8.

To allow the routing table to provide better network load
balancing for multipath transmission, a second improvement
to MDR is necessary. The method is as follows: only one
routing table entry is generated for each destination address
(e1,e2,e3). Hence, in M1, there are 6 routing table entries to
M8 generated by the second improved MDR, as shown in
equations 2 and 4, where EXRE represents the routing table
entries for e1,e2,e3 in M1.

The improved multihop routing algorithm is described in
Appendix C.

2) MPTCP ON ANDROID
It is the key to the implementation of MPTCP in MANETs
to run MPTCP on MSDs. In this paper, we assume that the
operating system on UAVs or MSDs is Android. We port
MPTCP to Android-x86-nougat (Android 7.1, kernel 4.9.31)
based on the MPTCP Linux kernel implementation. The doc-
uments for porting MPTCP to Android, all-modified source
code files and MPTCP demo (mp4 file) can be obtained
from [51].

3) IMPROVING SUBPATHS ESTABLISHMENT ALGORITHM
We assume that M1 acts as a server, M8 acts as a
client, the original MPTCP uses M8:(e0,e1,e2,e3) and
M1:(e0,e1,e2,e3) to establish subpaths, such as the MPTCP
subpaths of M8 to M1, as represented in expression 5.

src : 112.26.X .8, dst : 112.26.Y .1, X ,Y ∈ [0, 3] (5)

src : 112.26.X .8, dst : 112.26.X .1, X ∈ [0, 3] (6)

Why not use the subpaths as in expression 6? The root
reason resides in the improvement to the routing protocol in
Section V.A.1. For better network traffic load balancing, it is
necessary to establish subpaths represented in expression 6.
Hence, it is essential to improve the subpath establishment
algorithm.

Table 3 shows the subpaths established by the improved
MPTCP. NoNH is the number of next-hops. NoNH=3 of
the master-subpath improves its connectivity reliability. The
interfaces (M1-M8:e0) play three roles: (1) used by quagga
to generate multihop routing entries; (2) used to establish the

TABLE 3. The established subpaths.

master-subpath; (3) midnodes to forward packets. The inter-
faces M1-M8:(e1,e2,e3) are used to establish slave subpaths.

The improved algorithm for creating subflow is shown
below. The key is to create subpaths using pairs of IP
addresses that belong to the same network segment.

Algorithm for Creating Subflow

VAR: local_addr[i]← local ip addresses
VAR: remote_addr[j]
VAR: struct mptcp_loc4 loc
VAR: struct mptcp_rem4 rem
1: BEGIN:
2: PROCEDURE: create_subflow_worker
3: remote_addr[j]← peer ip addresses & ports
4: for ip_src in local_addr[i]
5: for ip_dst in remote_addr[j]
6: if ip_src can syn ip_dst successfully &&
7: (ip_src/24 == ip_dst/24 || ip_src/24 ==

‘‘112.26.0.0’’)
8: rem.addr = ip_dst->addr
9: rem.port = ip_dst->port
10: loc.addr = ip_src->addr
11: loc.port = ip_src->random_port
12: mptcp_v4_subflows(loc, rem)
13: end if
14: end for
15: end for
16: END PROCEDURE
17: END

B. TESTING AND EVALUATION
FEP [53] is used as the test platform.

1) TESTING GOALS
Weuse real-time data traffic to assess whethermultipath com-
munication is suitable for latency-sensitive applications and
can help special applications to satisfy the requirements of
end-users in MANETs. Multipath transport in heterogeneous
networks is challenging. Therefore, we consider MPTCP and
evaluate their proficiency in transporting real-time data traffic
over homogeneous/heterogeneous networks.

We address three key testing goals: (1) achieve perfor-
mance advantages over TCP; (2) offer robust performance;
and (3) although there may be fear of an overly large buffer
space need due to packet reordering over very dissimilar

VOLUME 8, 2020 32661

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

TABLE 4. Transmission rates of interfaces in Homo/Hetero scenarios.

paths, we show that buffer size requirements remain reason-
ably small. This is particularly important for systems having
to manage many simultaneous connections.

a: HOMOGENEOUS/HETEROGENEOUS SCENARIO
The test environment is an IBM server with 32 CPU-cores,
64 GB of memory, and Fedora 26 installed. We create eight
VirtualBox instances for Android, each of which has four
network interfaces. The network topology is generated by the
NS-3 script [51], which is shown in Fig. 8 and has eight nodes
representing eight mobile systems with four interfaces per
mobile system. Table 4 shows the transmission rates of inter-
faces in homogeneous scenarios or heterogeneous scenarios.
The scenarios are distinguished by setting different parame-
ters for the network interfaces. In this way, a unified model
can be used for testing; only the parameters are different.

b: MEASUREMENT TOOLS AND TEN COMBINATIONS OF
PROTOCOLS
We use iperf and nc as measurement tools to generate
real-time data traffic and record the throughput and RTTs
of the paths during the bandwidth and delay measurements.
Ten combinations of protocols are tested and compared:
(1) TCP-MDR (TM): the combination of the standard TCP
and the original MDR with multihop routing; (2) MPTCP-
FullPath-MDR (MFM): the combination of the standard
MPTCP [43] and the fullpath MDR using several (four)
virtual network interfaces. The term FullPath indicates that
full connection (one-to-many connection) among multiple
network interfaces in adjacent nodes is established via a
routing table generated by MDR; (3) MPTCP-FullPath-xIF-
MDR (MFxM): the combination of the standard MPTCP
and the fullpath (xIF) MDR. The term xIF indicates that
several (four) real network interfaces are used; (4) MPTCP-
PartPath-xIF-MDR (MPxM): the combination of the stan-
dard MPTCP and the partpath (xIF) MDR. The term partpath
indicates that part connection (one-to-one connection) among
multiple network interfaces in adjacent nodes is established
via a routing table generated by MDR; (5) MPTCP-Markov-
F-xIF-MDR (MMFxM): the combination of the standard
MPTCP and the Markov fullpath (xIF) MDR. The term F
is fullpath. The term Markov indicates that the HMM-based
optimal-start multipath routing algorithm is used in MDR;
(6) MPTCP-Markov-P-xIF-MDR (MMPxM): the combina-
tion of the standard MPTCP and the Markov partpath (xIF)
MDR. The term P is partpath; (7) Partflow-MPTCP-Markov-
F-xIF-MDR (PMMFxM): the combination of the improved

FIGURE 9. iperf3 - transmission speed and average transmission speed
difference over TM, MFM, MFxM, MPxM, MMFxM and MMPxM.

MPTCP and the Markov fullpath (xIF) MDR. The term
Partflow indicates that the subflow is established accord-
ing to the transmission rates of interfaces; (8) Partflow-
MPTCP-Markov-P-xIF-MDR (PMMPxM): the combina-
tion of the improved MPTCP and the Markov partpath (xIF)
MDR.

2) EXPERIMENTS OF DIFFERENT PROTOCOLS IN
HOMOGENEOUS SCENARIOS
We run command iperf3 in M1 to make it a server, run com-
mand iperf3 in M8 to download data from M1. iperf3 runs
for the 180 s to allow the flows to reach equilibrium. We car-
ried out experiments 90 times to compare the data transfer
performances of TM, MFM, MFxM, MPxM, MMFxM and
MMPxM. The test results are shown in Figs. 8 and 9. Fig. 10
represents the results of box-and-whisker plots. To attain
reliable results, each test runs for 180 s.

The test results show that MPTCP successfully runs in
MANETs. Note that the topology is simplified by letting
NS-3 nodes remain passive without affecting the function
test.

As shown in Fig. 9, the dotted lines indicate the average
transmission speeds. The average transmission speeds are
different over TM (138 KBytes/s), MFM (128 KBytes/s),
MFxM (340 KBytes/s), MPxM (313.8 KBytes/s), MMFxM
(347.4 KBytes/s) and MMPxM (361.6 KBytes/s). (1) In
the single-interface case, for the transmission speed, MFM
cannot provide a better throughput than TM. The reason is
the reordering caused by retransmissions on the lossy paths.
With the default buffer size, the full performance is already
reached. This is similar to the size needed for TCP. In addi-
tion, MPTCP increases the delay compared to TCP as the
data are split among subflows. (2) In the multi-interface case,
due to using four paths, the transmission speed over MFxM,
MPxM, MMFxM and MMPxM is two to three times the
transmission speed over TM and MFM. MMPxM has the
highest transmission speed.

32662 VOLUME 8, 2020

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

FIGURE 10. The quantity of data transmitted in 180 s (MB) over TM, MFM,
MFxM, MPxM, MMFxM and MMPxM.

As shown in Fig. 10, MMFxM and MMPxM have smaller
fluctuations than others due to more stable data transmission.
Therefore, MMFxM and MMPxM achieve higher reliability.
TM has the largest fluctuation for the quantity of data trans-
mitted in 180 s. In addition, MMFxM andMMPxM also have
better aggregation benefits. MMPxM has the largest quantity
of data transmitted in 180 s, which is more than MFxM,
MPxM and MMFxM. In addition, MMPxM has the smallest
fluctuation due to reducing the impact of network connec-
tion changing problem by using partial paths and Markov.
The fluctuation of MMFxM is similar to MMPxM. The
fluctuation of MFxM is similar to that of MPxM; however,
the quantity of data transmitted by MFxM is greater than
that ofMPxM. In addition, the fluctuation difference between
MMFxM and MMPxM is small. Specifically, MMPxM has
the largest steady throughput and the smallest fluctuation.

We run nc in M1 as a file server, and run command nc in
M8 to download a file (quagga/sbin/bgpd, just a binary file
with a fixed size of 1.8 MB) from M1. We carried out exper-
iments 180 times to compare the data transfer performances
of TM, MFM, MFxM, MPxM, MMFxM and MMPxM. The
test results are shown in Figs. 10–13.

As shown in Fig. 11, the dotted lines indicate the aver-
age transmission time. The average transmission times are
different over TM (107.33 s), MFM (92.93 s), MFxM
(50.07 s), MPxM (51.33 s), MMFxM (49.1 s) and MMPxM
(47.53 s). (1) in the single-interface case, for the trans-
mission time, TM is worse than MFM. The reason is that
MFM can send the file via multiple subflows over one path.
(2) In the multi-interface case, due to using four paths,
the transmission time over MFxM, MPxM, MMFxM and
MMPxM is a third to a quarter of the transmission time
over TM and MFM. MMPxM has the least transmission
time.

As shown in Fig. 12, MMFxM and MMPxM have smaller
fluctuations than the other methods. Therefore, MMFxM
and MMPxM achieve higher reliability. TM has the largest

FIGURE 11. nc - time to transfer file and average transmission time
difference over TM, MFM, MFxM, MPxM, MMFxM and MMPxM.

FIGURE 12. nc - time to transfer file and average transmission time
difference over TM, MFM, MFxM, MPxM, MMFxM and MMPxM.

fluctuation for the transmission time. MFxM, MPxM,
MMFxM and MMPxM have similar average transmission
times, which means they can transfer the file over multiple
paths and obtain bandwidth aggregation. However, MMPxM
has the least average transmission time. In addition, MMFxM
and MMPxM have the smallest fluctuation due to reduc-
ing the impact of network connection changing problem
using Markov. The fluctuation of MMFxM is similar to
MMPxM. The fluctuation of MFxM is similar to MPxM.
Thus, the test results show that multipath transmission can
effectively increase the application payload throughput and
greatly improve the robustness of the data transmission,
mainly due to the use of multiple paths and Markov.

As shown in Fig. 13, the red dotted line indicates that the
exact number (2,586) of packets should be transferred from
M1 to M8. M1 sent approximately 5,600 to 6,000 packets,
and 3,000 to 3,400 of the packets were duplicated. Let us
look at Fig. 8 again, and the path from M1 to M8 is [M1]
→ [M2, M3 or M4]→ [M5, M6 or M7]→ [M8]. For every

VOLUME 8, 2020 32663

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

FIGURE 13. The number of packets captured on M1–M8 over TM, MFM,
MFxM, MPxM, MMFxM and MMPxM.

FIGURE 14. The number of packets received by M8 - 2586 over TM, MFM,
MFxM, MPxM, MMFxM and MMPxM.

test of TM, MFM, MFxM, MPxM, MMFxM and MMPxM,
M3 captured more packets than M2 and M4, M6 captured
more packets than M5 and M7 because the path from M1 to
M3 and the path from M6 to M8 were shorter than others.
Finally, M8 received approximately 2,600 to 2,800 packets.

When M8 is downloading the file from M1, the command
tcpdump is used to capture packets received on each network
interface (eth0, eth1, eth2 and eth3) ofM1–M8. Fig. 14 shows
the difference in the number of redundant packets received by
M8when testing TM (35), MFM (192), MFxM (163), MPxM
(205), MMFxM (57) and MMPxM (16). It is obvious that
MMPxM received the least redundant packets than the others.
MMFxM and MMPxM received less redundant packets than
MFM, MFxM and MPxM due to the use of Markov.

3) EXPERIMENTS OF DIFFERENT PROTOCOLS IN
HETEROGENEOUS SCENARIOS
We run command iperf3 in M1 to make it a server, run
command iperf3 in M8 to download data from M1. iperf3
runs for 180 s to allow the flows to reach equilibrium.

FIGURE 15. iperf3 - transmission speed and average transmission speed
difference over TM, MFM, MFxM, MPxM, MMFxM and MMPxM.

We carried out experiments 90 times to compare the
data transfer performances of TM, MFM, MFxM, MPxM,
MMFxM and MMPxM. The test results are shown in Figs.
14 and 15. Fig. 16 represents the results of box-and-whisker
plots. To attain reliable results, each test runs for 180 s.

The test results show that MPTCP is successfully run-
ning in MANETs. As shown in Fig. 15, the dotted lines
indicate the average transmission speeds. The average trans-
mission speeds are different over TM (143.97 KBytes/s),
MFM (121.47 KBytes/s), MFxM (311.13 KBytes/s), MPxM
(307.87 KBytes/s), MMFxM (293.2 KBytes/s) and MMPxM
(310.67 KBytes/s). (1) In the single-interface case, for the
transmission speed, MFM cannot provide better throughput
than TM because of the reordering caused by retransmissions
on the lossy paths. With the default buffer size, the full
performance is already reached. This is similar to the size
needed for TCP. In addition, MPTCP increases the delay
compared to TCP as the data are split among subflows. (2)
In the multi-interface case, due to using four paths, the trans-
mission speed over MFxM, MPxM, MMFxM and MMPxM
is two to three times the transmission speed over TM and
MFM. MFxM has the highest transmission speed. How-
ever, MMPxM has a similar average transmission speed as
MFxM.

As shown in Fig. 16, TM has the largest fluctuation for
the quantity of data transmitted in 180 s. MMFxM has the
least fluctuation, and the fluctuation of MMFxM is similar
to MFM. Therefore, MMFxM achieves higher reliability.
In addition, MFxM, MPxM, MMFxM and MMPxM have
better aggregation benefits by using multiple paths. However,
the fluctuation difference between MMFxM and MMPxM
is larger. The performance of MMFxM in heterogeneous
scenarios is more stable than that of MMPxM.

We run command nc in M1 to make it a file server, run
command nc in M8 to download the file from M1. We car-
ried out experiments 180 times to compare the data transfer
performances of TM, MFM, MFxM, MPxM, MMFxM and
MMPxM. As shown in Fig. 17, the red dotted line indicates

32664 VOLUME 8, 2020

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

FIGURE 16. The quantity of data transmitted in 180 s (MB) over TM, MFM,
MFxM, MPxM, MMFxM and MMPxM.

FIGURE 17. The number of packets captured on M1–M8 over TM, MFM,
MFxM, MPxM, MMFxM and MMPxM.

that the exact number (2,586) of packets should be transferred
fromM1 to M8. M1 sent approximately 5,400 to 6,000 pack-
ets, and 2,800 to 3,400 of the packets were duplicated. Let
us look at Fig. 8 again, and the path from M1 to M8 is [M1]
→ [M2, M3 or M4]→ [M5, M6 or M7]→ [M8]. For every
test of TM, MFM, MFxM, MPxM, MMFxM and MMPxM,
M3 captured more packets than M2 and M4, M6 captured
more packets than M5 and M7 because the path from M1 to
M3 and the path from M6 to M8 are shorter than the others.
Finally, M8 received approximately 2,600 to 2,800 packets.

When M8 is downloading the file from M1, the command
tcpdump is used to capture packets received on each network
interface (eth0, eth1, eth2 and eth3) ofM1–M8. Fig. 18 shows
the difference in the number of redundant packets received by
M8 over TM (77), MFM (145), MFxM (169), MPxM (252),
MMFxM (131) andMMPxM (39). It is obvious thatMMPxM
received the least redundant packets than others. In addition,
MMPxM can achieve better results thanMMFxMwhen using
Markov.

FIGURE 18. The number of packets received by M8 - 2586 over TM, MFM,
MFxM, MPxM, MMFxM and MMPxM.

FIGURE 19. The quantity of data transmitted in 180 s (MB) over TM, MFM,
MFxM, MPxM, MMFxM and MMPxM in various network scenarios
(homogeneous and heterogeneous).

As shown in Fig. 19, there is not a large difference in
the quantity of data transmitted in homogeneous and het-
erogeneous scenarios for TM, MFM, MFxM and MPxM.
However, for MMFxM and MMPxM, the quantity of data
transmitted in the homogeneous scenario is more than that
in the heterogeneous scenario because the transmission rates
of interfaces in homogeneous areas are the same, namely,
11 Mbps. However, the transmission rates of interfaces in
heterogeneous areas are 11, 5.5, 2 and 1 Mbps.

4) DIFFERENT BUFFER SIZES OF DIFFERENT PROTOCOLS IN
HETEROGENEOUS SCENARIOS
To determine the receive buffer size (net.ipv4.tcp_rmem),
we perform ping tests from M8 to M1 (ping -c 100
112.26.0.1) three times. The RTT values are as below.
min/avg/max/mdev=11.733/81.778/552.873/68.240 ms
min/avg/max/mdev=21.392/84.480/347.809/55.355 ms
min/avg/max/mdev=12.332/75.246/365.917/51.515 ms

VOLUME 8, 2020 32665

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

FIGURE 20. Time to transfer file <libstlport_shared.so, 3.6 MB> in various
network scenarios (different buffer size) versus various values of
net.ipv4.tcp_rmem.

average: (transfer 5.534 MBytes, bandwidth
257.867 Kbits/s)

Thus, BDP = bandwidth * RTT / 2 = 257.867 * 0.084480
/ 2 = 10.89230208 Kbits ∼ = 10892 bits = 1361.5 Bytes,
receive_win = max [1361.5, 1024+512] = 1536 Bytes,
Due to net.ipv4.tcp_adv_win_scale = 1,
Therefore, receive_win = net.ipv4.tcp_rmem / 2,
Set RB = 2 * receive_win = 3072 Bytes.
Note: mdev denotes mean deviation. BDP denotes the

bandwidth-delay product. RB represents the receive buffer.
We run command nc in M1 to make it a file server, run

command nc in M8 to download the file libstlport_shared.so
(3.6 MB) from M1. We carried out experiments 180 times
to compare the data transfer performances of MMFxM,
MMPxM, PMMFxM and PMMPxM. The test results are
shown in Figs. 19 and 20.

We investigated the effect of buffer size on the MPTCP.
The buffer size varies between 2*RB and 200*RB. MPTCP
uses multiple paths with different delay characteristics.

As shown in Fig. 20, the average transmission time
rapidly decreases as net.ipv4.tcp_rmem increases when
net. ipv4.tcp_rmem is less than 6*RB for MMFxM and
MMPxM. As shown in Fig. 21, the average transmission
time rapidly decreases as net.ipv4.tcp_rmem increases when
net.ipv4.tcp_rmem is less than 6*RB for PMMFxM and
PMMPxM. PMMPxM has smaller fluctuations than PMM-
FxM.

As shown in Fig. 22, the average transmission time
rapidly decreases as net.ipv4.tcp_rmem increases when
net.ipv4.tcp_rmem is less than 6*RB forMMFxM and PMM-
FxM.When net.ipv4.tcp_rmem is more than 6*RB, MMFxM
has less average transmission time than PMMFxM.

As shown in Fig. 23, the average transmission time
rapidly decreases as net.ipv4.tcp_rmem increases when
net.ipv4.tcp_rmem is less than 6*RB for MMPxM and
PMMPxM. When net.ipv4.tcp_rmem is more than 6*RB,
MMPxM has less average transmission time than PMMPxM.

FIGURE 21. Time to transfer file <libstlport_shared.so, 3.6 MB> in various
network scenarios versus various values of net.ipv4.tcp_rmem.

FIGURE 22. Time to transfer file <libstlport_shared.so, 3.6 MB> in various
network scenarios versus various values of net.ipv4.tcp_rmem.

In addition, when net.ipv4.tcp_rmem is less than 6*RB,
PMMPxM has less average transmission time and smaller
fluctuation than MMFxM.

Four factors influence the choice of path: (1) the priority
of this path to the end machine, (2) the priority of this
path in the local machine, (3) whether the packet has been
sent using this path, the packet cannot be sent repeatedly
on the same path, and (4) SRTT (smoothed RTT), which is
calculated by equation 7, and RTO, which is calculated by
equation 8.

The adjustment of path priority can be made through the
commands: ip link set dev eth0 multipath backup.

SRTT = (ALPHA ∗ SRTT)+ ((1− ALPHA) ∗ RTT) (7)

RTO = min[TCP_RTO_MAX ,max[TCP_RTO_MIN ,

(BETA ∗ SRTT)]] (8)

ALPHA is a smoothing factor, e.g., 1/8. BETA is a delay
variance factor, e.g., 2.

32666 VOLUME 8, 2020

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

FIGURE 23. Time to transfer file <libstlport_shared.so, 3.6 MB> in various
network scenarios. Contrast between different protocols.

FIGURE 24. Time to transfer file <libstlport_shared.so, 3.6 MB> in various
network scenarios (different buffer size, different RTO) versus various
values of net.ipv4.tcp_rmem.

We mainly adjust the TCP_RTO_MIN to affect the
scheduling of packets. The TCP_RTO_MIN is set to
100 ms, 200 ms, and 300 ms for PMMFxM100, PMM-
FxM200 and PMMFxM300, respectively, in the file ker-
nel/include/net/tcp.h as follows:
#define TCP_RTO_MIN ((unsigned)(HZ/10))
#define TCP_RTO_MIN ((unsigned)(HZ/5))
#define TCP_RTO_MIN ((unsigned)(3*HZ/10))
We run command nc in M1 to make it a file server,

run command nc in M8 to download the file libstl-
port_shared.so (3.6 MB) from M1. We carried out experi-
ments 3*14*6=252 times to compare the data transfer perfor-
mances of PMMFxM100, PMMFxM200 and PMMFxM300.
The test results are shown in Fig. 24.

In Fig. 24, the average transmission time is rapidly
decreased as net.ipv4.tcp_rmem increases when net.ipv4.
tcp_rmem is less than 6*RB for PMMFxM100, PMMFxM200
and PMMFxM300. As shown in Fig. 24, the average

TABLE 5. Percentage of packets received of each protocol in
Homogeneous scenarios.

transmission time of PMMFxM300 is less than that of
PMMFxM200, and PMMFxM200 is less than that of PMM-
FxM100. The TCP buffer size (receive buffer) is set to
x*RB (x values are 2, 3, 4, 5, 6, 7, 8, 10, 14, 18, 50,
100, 150, 200). Side-by-side comparisons are made between
PMMFxM100, PMMFxM200 and PMMFxM300 to study the
influence of the receive buffer size (x*RB) on the stability
and performance improvement. Fig. 24 shows how the dif-
ferent values of the receive buffer size in a heterogeneous
scenario influence the time of the file sending. Therefore,
it is important to adjust TCP_RTO_MIN according to the
RTT.

As seen in Figs. 19–23, when net.ipv4.tcp_rmem is
less than 6*RB, the average transmission time rapidly
decreases as net.ipv4.tcp_rmem increases in all cases, which
means that the receive buffer size is severely insuffi-
cient for transferring packets from a delay perspective.
When net.ipv4.tcp_rmem is larger than 6*RB, the average
transmission time slowly decreases as net.ipv4.tcp_rmem
increases.

5) PERCENTAGE OF PACKETS RECEIVED AND END-TO-END
DELAY OF EACH PROTOCOL IN HOMO/HETEROGENEOUS
SCENARIOS
Not all protocols can achieve full throughput due to lossy
paths. Table 5 and Table 6 show how much each link
received. M1.eth0 indicates the number of packets sent by
node M1 through eth0, M8.eth0 indicates the number of
packets received by node M8 through eth0, eth0.rec indicates
the percentage of packets on the path between node M1 and
node M8; therefore, the packet loss rate is 1 - eth0.rec, and
so on. As shown in Table 5 and Table 6, the packet loss rates
range from 50% to 56%.

Table 5 provides statistics on the six protocols: TM, MFM,
MFxM, MPxM, MMFxM and MMPxM. As seen in Table 4,
all interfaces in homo scenarios have the same transmission
rate, and the number of sending and receiving packets in the
four paths is similar.

VOLUME 8, 2020 32667

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

TABLE 6. Percentage of packets received of each protocol in
Heterogeneous scenarios.

Table 6 provides statistics on the eight protocols: TM,
MFM, MFxM, MPxM, MMFxM, MMPxM, PMMFxM and
PMMPxM. As seen from Table 4, the interfaces (eth0, eth1,
eth2, eth3) in the heterogeneous scenarios have different
transmission rates, and the number of sending and receiving
packets in the path between M1.eth0 and M8.eth0 is sig-
nificantly higher than in other paths. Due to the different
transmission rates of interfaces, two tests (PMMFxM and
PMMPxM) are performed in heterogeneous scenarios but not
in homogeneous scenarios. In the heterogeneous scenarios,
two subflows are established according to transmission rates
of interfaces.

Because the main application scenario of the model pro-
posed in this paper is real-time communication, for example,
VoIP, we give an evaluation for the end-to-end delay of each
protocol in different scenarios. Figs. 24 and 25 show the
time from sending a packet to receiving its acknowledgment
packet and average delay on each pair of interfaces (eth0,
eth1, eth2, eth3) between node M1 and node M8 for each
protocol in the homogeneous and heterogeneous scenarios,
respectively.

As shown in Fig. 25, MMPxM sends the same quantity
of data in less time than other protocols. The delay and
fluctuation of subflows created on different interfaces are
different, subflow created on eth0 has the least delay and the
best stability, subflow created on eth3 has the same delay
and stability as subflow created on eth0 after 36 s, as shown
in Table 5. The number of valid packets successfully trans-
mitted by the two subflows is similar (756 and 729).MMFxM
sends the same quantity of data in a time similar to MMPxM,
and the delay and fluctuation of subflows created on different
interfaces are similar. As shown in Table 5, the number of
valid packets successfully transmitted by the four subflows is
similar.

As shown in Fig. 26, MMFxM sends the same quan-
tity of data in less time than other protocols, and the
delay and fluctuation of subflows created on different inter-
faces are different. As shown in Table 6, the number of
valid packets successfully transmitted by the subflows is

FIGURE 25. The end-to-end delay of each protocol in homogeneous
scenarios.

FIGURE 26. The end-to-end delay of each protocol in heterogeneous
scenarios.

different. Due to the different transmission rates of interfaces,
two subflows created on eth0 and eth1 by PMMFxM and
PMMPxM. PMMPxM has less delay and more stability than
PMMFxM.

Because the experiments are carried out in FEP [53],
the test results will be different from the real environ-
ment due to the limitation and influence of hardware condi-
tions. However, the feasibility or correctness of the proposed
framework, protocols and algorithms are verified by the

32668 VOLUME 8, 2020

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

experiments in this paper. Our next workwill test and improve
the framework, protocols and algorithms in a real environ-
ment to enhance practicability.

6) DISCUSSION
In this paper, the work presented attempts to evaluate
whether the improved MPTCP and the improved MDR can
help latency-sensitive applications to achieve high QoE.
To evaluate the performance in the homogeneous and het-
erogeneous scenarios, we use iperf and nc as measure-
ment tools to generate real-time data traffic and record the
throughput and RTTs of the paths in the testing process.
For the homogeneous/heterogeneous cases, ten combina-
tions of protocols (TM, MFM, MFxM, MPxM, MMFxM,
MMPxM, PMMFxM, PMMPxM, PMMFxM100, PMM-
FxM200 and PMMFxM300) were tested to evaluate the
capability of MPTCP to carry latency-sensitive applica-
tion traffic. For each experiment scenario, we considered
the average delay and throughput and compared among
them.

Because the improved MPTCP and the improved MDR
can complement each other, the improved MDR can improve
the utilization of multiple paths, and the improved MPTCP
can implement robustness. Although the improved MPTCP
with the improvedMDR canmarginally underutilize multiple
paths in some cases, it can reduce opportunistic retrans-
mission, which can reduce the extra occupation of network
resources. Specifically, MMPxM had an obvious effect in
this respect, as shown in Figs. 13 and 17, and the results
show that MMPxM performed more efficient packet trans-
mission regardless of the performance differences of multiple
paths. It is worth noting that in all symmetric/asymmetric
scenarios, MFxM, MPxM, MMFxM, MMPxM, PMM-
FxM, PMMPxM, PMMFxM100, PMMFxM200 and PMM-
FxM300 enable a significant throughput increase compared
to TM.

In the homogeneous and heterogeneous scenarios used in
this paper, for the receive buffer size, 6*RB is the key value to
make good use of multipath. When the receive buffer is less
than 6*RB, there will be a serious head-of-line blocking. For
the moment, the value of the receive buffer size is hard-coded
in the Linux kernel for each test; in our further work, the value
will be automatically adapted.

Multipath routing is discussed in Section III.D. In the
experiments in Section V, the following main OSPF-MDR
configuration parameters are used: 2HopRefresh = 3, Hel-
loInterval = 1 and LSAFullness = 3. These parameters
affect the overhead of maintaining routing updates and
its efficiency. OSPF-MDR allows routers to originate both
full-topology LSAs and partial-topology LSAs. In a dense
network, partial-topology LSAs are typically much smaller
than full-topology LSAs, thus achieving better scalability.
The value of LSAFullness can be 0, 1, 2, 3 or 4. If LSA-
Fullness = 0, an LSA includes only a minimum set of
neighbors. This choice results in the minimum amount of
LSA flooding overhead, but does not ensure routing along

shortest paths. If LSAFullness = 1, the router originates a
min-cost LSAs, which provide routing along shortest paths.
Setting LSAFullness to 2 also provides shortest-path routing,
but allows the router to advertise additional neighbors to
provide redundant routes. If LSAFullness = 4, the router
originates full-topology LSAs, which include all routable
and full neighbors. If LSAFullness = 3, the router origi-
nates MDR full LSAs, which cause each MDR to originate
a full-topology LSA while other routers originate minimal
LSAs. This choice provides routing along nearly shortest
paths with relatively low overhead. OSPF-MDR allows the
use of differential Hellos and full Hellos. Full Hellos are sent
every 2HopRefresh Hellos, and differential Hellos are sent
at all other times (every HelloInterval seconds). If 2HopRe-
fresh = 3, every third Hello is a full Hello. If 2HopRe-
fresh = 1, then only full Hellos are to send. Differential
Hellos are used to reduce overhead and to allow Hellos
to be sent more frequently, for faster reaction to topology
changes. In our next phase of work, the overhead of main-
taining routing updates and its efficiency will be assessed in
detail.

The evaluation was performed by Android virtual
machines in VirtualBox, so seemingly there might be no
significant difference with Linux virtual machines. One
advantage of this is that the modified code on the simulation
platform can be almost directly used in real mobile operating
systems [53]. We created mobile device nodes to commu-
nicate between nodes using WIFI for delivering data in the
NS-3 simulator. One of the main objectives was to test the
feasibility of the proposed QoE-driven MPTCP-based data
delivery model; therefore, we simplified the experiment by
fixing the location of nodes. The model will be tested in
complex scenarios in subsequent work. In addition, HMM
was used in the connection states evaluation process based
on the different transmission rates of interfaces. Because the
experiments were carried out in FEP [53], it is not mentioned
how well it scales for different network sizes, how it affects
the energy consumption on nodes, or how much computa-
tional power is needed. These studies will be performed in
our future work.

VI. CONCLUSION
In this paper, to achieve reliable and efficient multipath
data transmission in MANETs, we provided and inves-
tigated a QoE-driven MPTCP-based data delivery model
in MANETs. We presented hidden Markov model-based
optimal-start multipath routing that can effectively predict a
mobile node’s near future network connection state according
to its past connection state.We studied and improved the algo-
rithms of both multihop routing and establishing subpaths
in MANETs. The test results show that our algorithms can
offer more efficient use of multiple subpaths and better net-
work traffic load balancing. The feasibility and effectiveness
of the data delivery model are verified; however, we need
to do further work to achieve a better application-level
QoE.

VOLUME 8, 2020 32669

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

APPENDIXES
APPENDIX A
MULTIPATH ROUTING ALGORITHM

Algorithm for HMM-Based Optimal-Start Multipath Rout-
ing

1: VAR: array_nexthop = [(nexthop1, new1, con1),
2: (nexthop2, new2, con2), . . ., (nexthopN, newN,

conN)]
3: //new=0, the nexthop is newly connecting with the

node,
4: // and the item is newly inserted into array_nexthop.
5: //new=1, the nexthop is already connecting with the

node.
6: //con=0, the connection state is connect.
7: //con=1, the connection state is disconnect.
8: PROCEDURE: find_next_hops
9: // The function is used to periodically find the latest
10: // routing entries, the periodic interval is 2 seconds
11: use OSPF-MDR to find nexthops
12: for each nexthop in nexthops do
13: if nexthop exists in array_nexthop then
14: update array_nexthop, set new=1 of nexthop
15: else
16: insert (nexthop, new=0, con=0) into
array_nexthop
17: end if
18: end for
19: insert next-hops into array_nexthop
20: END PROCEDURE
21: PROCEDURE: hmm_predict
22: // the Viterbi algorithm is used to predict
23: // the connection state of the next-hops after 2 seconds
24: VAR: obs_seq // the sequence of observations
25: VAR: hid_seq // the most likely hidden state
sequence
26: VAR: start_p // the start probability array
27: VAR: tran_p // the transition probability matrix
28: VAR: emis_p // the emission probability matrix
29: VAR: delta // the local probability matrix
30: VAR: psi // store max index matrix
31: VAR: K // the number of hidden states
32: VAR: T // the length of the observation sequence
33: for i in range [0, K) do
34: delta[0][i] = start_p[i] * emis_p[obs_seq[0]][i];
35: psi[0][i] = 0;
36: end for
37: for j in range [1, T) do
38: for i in range [0, K) do
39: //find maximum value and index
40: find_max_value_index(delta[j-1], tran_p[i],
41: emis_p[obs_seq[j]][i], K, delta[j][i], psi[j][i]);
42: end for
43: end for

44: hid_seq[T-1] = find_max_index(delta[T-1], K);
45: for t in range [T-2, -1) do
46: hid_seq[t] = psi[t][hid_seq[t+1]];
47: end for
48: update array_nexthop, set values of new and con
49: END PROCEDURE
50: PROCEDURE: update_routing_table
51: // used to update routing table according to
array_nexthop
52: for (nexthop, con) in enumerate(array_nexthop) do
53: if con == 0 then
54: insert nexthop into routing table
55: end if
56: end for
57: END PROCEDURE
58: PROCEDURE: main
59: INPUT: obs_seq // e.g. 2 1 0
60: VAR: hid_seq = (’connect’: 0, ’disconnect’: 1)
61: VAR: start_p = {’connect’: 0.65, ’disconnect’: 0.35}
62: VAR: tran_p = {
63: ’connect’: {’connect’: 0.7, ’disconnect’: 0.3},
64: ’disconnect’:{’connect’: 0.4, ’disconnect’: 0.6},
65: }
66: VAR: emis_p = {
67: ’connect’: {’good’: 0.55, ’moderate’: 0.35, ’bad’:
0.1},
68: ’disconnect’: {’good’: 0.1, ’moderate’: 0.3, ’bad’:
0.6},
69: }
70: while true do
71: find_next_hops()
72: hmm_predict(obs_seq, hid_seq, start_p, tran_p,
emis_p)
73: update_routing_table(hid_seq)
74: sleep 2 s // or sleep 1 s
75: done
76: END PROCEDURE

APPENDIX B
QoE-DRIVEN PACKET SCHEDULING ALGORITHM

Algorithm for QoE-Driven Packet Scheduling

VAR: if_quality[i] //quality of if_i, 0≤if_quality[i]≤10000
// initial value of if_quality[i] is 10000

VAR: if_rtt[i] // RTT for subflow on if_i
VAR: if_loss[i] // packet loss rate on if_i
VAR: if_metric[i] // metric of if_i according to destination
IP
1: PROCEDURE: update_if_quality
2: // If the fast retransmit algorithm detectes the loss,
3: // packet is only re-transmitted over the same subflow.
4: if loss on if_i then
5: if if_quality[i] ≥ 100 then if_quality[i] − = 100
6: end if

32670 VOLUME 8, 2020

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

7: // If the loss is detected by an expiration of the RTO
timer,
8: // the packet can be re-transmitted over both
9: // the same subflow and an additional subflow.
10: if RTO on if_i then
11: if if_quality[i]≥ 1000 then if_quality[i]− = 1000
12: end if
13: // If received an ACK from network interface if_i
14: if ACK on if_i then
15: if if_quality[i] ≤ 9999 then if_quality[i] + = 1
16: end if
17: END PROCEDURE
18: PROCEDURE: get_if_metric
19: INPUT: d_ip // destination IP address
20: if_metric[i] = -1 // initialize if_metric[]
21: for each destination in RIB // RIB: kernel routing
table
22: if destination == d_ip then
23: read if_i & metric
24: update if_metric[i] = metric
25: end if
26: end for
27: END PROCEDURE
28: PROCEDURE: send_packet
29: INPUT: priority // the priority of APP or socket
30: INPUT: if_quality[i]
31: VAR: NDS // normal delivery speed
32: // set delivery speed based on if_quality[i] & priority
33: if 8000 < if_quality[i] ≤ 10000 then //good
34: if priority == 1,2,3 then NDS
35: if priority == 4 then (NDS - NDS�5)
36: if priority == 5 then (NDS - NDS�4)
37: if priority == 6 then (NDS - NDS�3)
38: end if
39: if 5000 < if_quality[i] ≤ 8000 then //moderate
40: if priority == 1 then NDS
41: if priority == 2 then (NDS - NDS�6)
42: if priority == 3 then (NDS - NDS�5)
43: if priority == 4 then (NDS - NDS�4)
44: if priority == 5 then (NDS - NDS�3)
45: if priority == 6 then (NDS - NDS�2)
46: end if
47: if if_quality[i] ≤ 5000 then //bad
48: if priority == 1 then NDS
49: if priority == 2 then (NDS - NDS�1)
50: if priority == 3 then (NDS - NDS�1 - NDS�2)
51: if priority == 4,5,6 then (NDS - NDS�1 -
NDS�2 - NDS�3)
52: end if
53: END PROCEDURE
54: PROCEDURE: main
55: INPUT: priority // APP priority ∈ [1, 6]
56: INPUT: if_quality[i]
57: VAR: d_ip // destination IP address from packet
58: create_thread(update_if_quality);
59: get_if_metric(d_ip);

60: get index of if_metric where if_metric[i]!=−1,assume:
l,m,n
61: if if_rtt[l] < if_rtt[m] < if_rtt[n] then
62: send_packet(priority, if_quality[l]);
63: end if
64: if if_rtt[l] = if_rtt[m] = if_rtt[n] then
65: if if_loss[l] < if_loss[m] < if_loss[n] then
66: send_packet(priority, if_quality[l]);
67: end if
68: end if
69: END PROCEDURE

APPENDIX C
THE IMPROVED MULTIHOP ROUTING ALGORITHM
The improved multihop routing algorithm is detailed below.

(1) If the number of next hops from M1 to M8 is 3, then
add 3 routing table entries, as represented in equation 4.

(2) If the number of next hops from M1 to M8 is 2, then
add the following 3 routing table entries.

nexthop via nexthop-ip-1 eth0 to 112.26.1.8
nexthop via nexthop-ip-2 eth0 to 112.26.2.8
nexthop via nexthop-ip-1 eth0 to 112.26.3.8
(3) If the number of next hops from M1 to M8 is 1, then

add the following 3 routing table entries.
nexthop via nexthop-ip-1 eth0 to 112.26.1.8
nexthop via nexthop-ip-1 eth0 to 112.26.2.8
nexthop via nexthop-ip-1 eth0 to 112.26.3.8

Algorithm for Improving Multihop Routing Protocol

VAR: num_nexthop // the number of next hops
VAR: no_if // network interface number corresponding to

// network interface (e.g., e1,e2,e3)
VAR: rib // route information base
1: BEGIN:
2: PROCEDURE: add_routing_entry
3: // here, we assume that the destination ip is 112.26.0.5
5: if p0 = 112.26.0.5 then
6: p1 = 112.26.1.5
7: p2 = 112.26.2.5
8: p3 = 112.26.3.5
9: end if
10: num_nexthop = 0
11: nexthop = rib->nexthop
12: while nexthop != NULL do
13: nexthop = nexthop->next
14: num_nexthop++;
15: done
16: add_routing_entry (p1, rib, num_nexthop, 1);
17: add_routing_entry (p2, rib, num_nexthop, 2);
18: add_routing_entry (p3, rib, num_nexthop, 3);
19: return add_routing_entry (p0, rib, 0, 0);
20: END PROCEDURE
22: PROCEDURE: choose_nexthop
23: if (num_nexthop == 1

VOLUME 8, 2020 32671

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

24: || (num_nexthop== 2 && (no_if== 1 || no_if
== 3))
25: || (num_nexthop == 3 && no_if == 1)) then
26: use the first hop
27: end if
28: if ((num_nexthop == 2 && no_if == 2)
29: || (num_nexthop == 3 && no_if == 2)) then
30: use the second hop
31: end if
32: if (num_nexthop == 3 && no_if == 3) then
33: use the third hop
34: end if
35: END PROCEDURE
36. END

REFERENCES
[1] K. Yedugundla, S. Ferlin, T. Dreibholz, Ö. Alay, N. Kuhn, P. Hurtig,

and A. Brunstrom, ‘‘Is multi-path transport suitable for latency sensitive
traffic?’’ Comput. Netw., vol. 105, pp. 1–21, Aug. 2016.

[2] A. Nikravesh and Y. H. Guo, ‘‘An in-depth understanding of MPTCP on
mobile devices: Measurement and system design,’’ in Proc. ACM Mobi-
Com, 2016, pp. 189–201.

[3] A. Ford and C. Raiciu, TCP Extensions for Multipath Operation With
Multiple Addresses, document RFC 6824, 2013.

[4] (2019). TCP Extensions for Multipath Operation With Multiple Addresses.
[Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-mptcp-
rfc6824bis/

[5] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi,
‘‘A survey on recent advances in transport layer protocols,’’ IEEECommun.
Surveys Tuts., vol. 21, no. 4, pp. 3584–3608, Aug. 2019.

[6] P. Goudarzi and M. Hosseinpour, ‘‘QoE enhancement for video trans-
mission over MANETs using distortion minimization,’’ Scientia Iranica,
vol. 19, no. 3, pp. 696–706, Jun. 2012.

[7] C. Gottron, A. Konig, M. Hollick, S. Bergstrasser, T. Hildebrandt, and
R. Steinmetz, ‘‘Quality of experience of voice communication in large-
scale mobile ad hoc networks,’’ in Proc. 2nd IFIP Wireless Days (WD),
Dec. 2009, pp. 1–6.

[8] (2017). iOS: MPTCP Support in iOS 7. [Online]. Available:
https://support.apple.com/en-us/HT201373

[9] Q. De Coninck, M. Baerts, B. Hesmans, and O. Bonaventure, ‘‘Poster:
Evaluating android applications with multipath TCP,’’ in Proc. 21st Annu.
Int. Conf. Mobile Comput. Netw. (MobiCom), 2015, pp. 230–232.

[10] Y. Cui, L. Wang, X. Wang, H. Wang, and Y. Wang, ‘‘FMTCP: A fountain
code-based multipath transmission control protocol,’’ IEEE/ACM Trans.
Netw., vol. 23, no. 2, pp. 465–478, Apr. 2015.

[11] M. Li, A. Lukyanenko, S. Tarkoma, Y. Cui, and A. Ylä-Jääski, ‘‘Tolerat-
ing path heterogeneity in multipath TCP with bounded receive buffers,’’
SIGMETRICS Perform. Eval. Rev., vol. 41, no. 1, pp. 1–14, Jun. 2013.

[12] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, ‘‘Experimental eval-
uation of multipath TCP schedulers,’’ in Proc. ACM SIGCOMM Work-
shop Capacity Sharing Workshop (CSWS), Chicago, IL, USA, 2014,
pp. 27–32.

[13] D. Zhou, W. Song, and M. Shi, ‘‘Goodput improvement for multi-
path TCP by congestion window adaptation in multi-radio devices,’’ in
Proc. IEEE 10th Consum. Commun. Netw. Conf. (CCNC), Jan. 2013,
pp. 508–514.

[14] S. Ferlin-Oliveira, T. Dreibholz, and O. Alay, ‘‘Tackling the challenge of
bufferbloat in multi-path transport over heterogeneous wireless networks,’’
in Proc. IEEE 22nd Int. Symp. Qual. Service (IWQoS), Hong Kong,
May 2014, pp. 123–128.

[15] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
‘‘DAPS: Intelligent delay-aware packet scheduling for multipath trans-
port,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2014, pp. 1222–1227.

[16] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, ‘‘Improving datacenter performance and robustness withmul-
tipath TCP,’’ SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, p. 266,
Oct. 2011.

[17] A. A. Barakabitze, I.-H. Mkwawa, L. Sun, and E. Ifeachor, ‘‘Quali-
tySDN: Improving video quality using MPTCP and segment routing in
SDN/NFV,’’ in Proc. 4th IEEE Conf. Netw. Softwarization Workshops
(NetSoft), Montreal, QC, USA, Jun. 2018, pp. 182–186.

[18] H. K. Yarnagula, R. Anandi, and V. Tamarapalli, ‘‘Objective QoE assess-
ment of dash adaptation algorithms over multipath TCP,’’ in Proc. 11th Int.
Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2019. Bengaluru, India,
2019, pp. 461–464.

[19] S. K. Park, A. Bhattacharya, M. Dasari, and S. R. Das, ‘‘Understanding
user perceived video quality using multipath TCP over wireless network,’’
in Proc. IEEE 39th Sarnoff Symp., Newark, NJ, USA, Sep. 2018, pp. 1–6.

[20] A. Elgabli and V. Aggarwal, ‘‘SmartStreamer: Preference-aware multipath
video streaming over MPTCP,’’ IEEE Trans. Veh. Technol., vol. 68, no. 7,
pp. 6975–6984, Jul. 2019.

[21] A. Elgabli, K. Liu, and V. Aggarwal, ‘‘Optimized preference-aware multi-
path video streaming with scalable video coding,’’ IEEE Trans. Mobile
Comput., to be published.

[22] S. Afzal, V. Testoni, J. F. F. de Oliveira, C. E. Rothenberg, P. Kolan, and
I. Bouazizif, ‘‘A novel scheduling strategy forMMT-basedmultipath video
streaming,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM), Abu
Dhabi, United Arab Emirates, 2018, pp. 206–212.

[23] A. A. Barakabitze, L. Sun, I.-H. Mkwawa, and E. Ifeachor, ‘‘A novel QoE-
centric SDN-based multipath routing approach for multimedia services
over 5G networks,’’ in Proc. IEEE Int. Conf. Commun. (ICC), Kansas City,
MO, USA, May 2018, pp. 1–7.

[24] E. B. Smida, S. G. Fantar, and H. Youssef, ‘‘Video streaming forwarding
in a smart city’s VANET,’’ in Proc. IEEE 11th Conf. Service-Oriented
Comput. Appl. (SOCA), Paris, France, Nov. 2018, pp. 1–8.

[25] J. Vlaovic, M. Vranjes, D. Grabic, and D. Samardzija, ‘‘Comparison of
objective video quality assessment methods on videos with different spatial
resolutions,’’ in Proc. Int. Conf. Syst., Signals Image Process. (IWSSIP),
Osijek, Croatia, Jun. 2019, pp. 287–292.

[26] W. Song and D. W. Tjondronegoro, ‘‘Acceptability-based QoE models
for mobile video,’’ IEEE Trans. Multimedia, vol. 16, no. 3, pp. 738–750,
Apr. 2014.

[27] K. Nguyen, M. G. Kibria, K. Ishizu, F. Kojima, and H. Sekiya,
‘‘An approach to reinforce multipath TCP with path-aware information,’’
Sensors, vol. 19, no. 3, p. 476, Jan. 2019.

[28] S. R. Pokhrel and M. Mandjes, ‘‘Improving multipath TCP performance
over WiFi and cellular networks: An analytical approach,’’ IEEE Trans.
Mobile Comput., vol. 18, no. 11, pp. 2562–2576, Nov. 2019.

[29] A. Marwa and M. Imad, ‘‘A survey of vehicular ad hoc networks routing
protocols,’’ Int. J. Innov. Appl. Stud., vol. 3, no. 3, pp. 829–846, Jul. 2013.

[30] M. Karimi and D. Pan, ‘‘Challenges for quality of service in mobile ad-
hoc networks,’’ in Proc. IEEE 10th Annu. Wireless Microw. Technol. Conf.,
Apr. 2009, pp. 1–5.

[31] P. L. Callet, Qualinet White Paper on Definitions of Quality of Experience
(2012), document CH-1015, European Network on Quality of Experience
in Multimedia Systems and Services, Lausanne, Switzerland, Version 1.2,
Mar. 2013.

[32] L. Yao, J. Wang, X. Wang, A. Chen, and Y. Wang, ‘‘V2X routing in a
VANET based on the hidden Markov model,’’ IEEE Trans. Intell. Transp.
Syst., vol. 19, no. 3, pp. 889–899, Mar. 2018.

[33] M. Tajima, ‘‘An innovations approach to viterbi decoding of convolutional
codes,’’ IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 2704–2722, May 2019.

[34] E. Theodosis and P. Maragos, ‘‘Analysis of the Viterbi algorithm using
tropical algebra and geometry,’’ in Proc. IEEE 19th Int. Workshop Signal
Process. Adv. Wireless Commun. (SPAWC), Kalamata, India, Jun. 2018,
pp. 1–5.

[35] R. A. Rashid, H. Harun, Z. Mansor, N. Shamsudin, and S. M. Nor,
‘‘Pruning the algorithm complexity of the add-compare select unit (ACSU)
for the Viterbi decoder—A review,’’ in Proc. IEEE 5th Int. Conf. Smart
Instrum., Meas. Appl. (ICSIMA), Songkla, Thailand, Nov. 2018, pp. 1–5.

[36] S. Ahmed, F. Siddique, M. Waqas, M. Hasan, and S. U. Rehman, ‘‘Viterbi
algorithm performance analysis for different constraint length,’’ in Proc.
16th Int. BhurbanConf. Appl. Sci. Technol. (IBCAST), Islamabad, Pakistan,
Jan. 2019, pp. 930–932.

[37] Mobile Ad Hoc Network (MANET) Extension of OSPF. [Online]. Avail-
able: https://tools.ietf.org/html/rfc5614

[38] OSPF for IPv6. [Online]. Available: https://tools.ietf.org/html/rfc5340
[39] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, ‘‘A roadmap for

traffic engineering in SDN-OpenFlow networks,’’ Comput. Netw., vol. 71,
pp. 1–30, Oct. 2014.

32672 VOLUME 8, 2020

T. Zhang et al.: Multipath Routing and MPTCP-Based Data Delivery Over Manets

[40] J.-P. Sheu, L.-W. Liu, R. Jagadeesha, and Y.-C. Chang, ‘‘An efficient mul-
tipath routing algorithm for multipath TCP in software-defined networks,’’
in Proc. Eur. Conf. Netw. Commun. (EuCNC), Athens, Greece, Jun. 2016,
pp. 371–376.

[41] C.-L. Li, S. T. McCormick, and D. Simchi-Levi, ‘‘The complexity of
finding two disjoint paths with min-max objective function,’’ Discrete
Appl. Math., vol. 26, no. 1, pp. 105–115, Jan. 1990.

[42] F. Zhou, T. Dreibholz, X. Zhou, F. Fu, Y. Tan, and Q. Gan, ‘‘The perfor-
mance impact of buffer sizes for multi-path TCP in Internet setups,’’ in
Proc. IEEE 31st Int. Conf. Adv. Inf. Netw. Appl. (AINA), Taipei, Taiwan,
Mar. 2017, pp. 9–16.

[43] C. Paasch and S. Barrãé, Multipath TCP in the Linux Kernel. [Online].
Available: http://www.multipath-tcp.org

[44] S. Barrãé, C. Paasch, and O. Bonaventure, ‘‘MultiPath TCP: From theory
to practice,’’ in Proc. Int. Conf. Res. Netw., 2011, pp. 444–457.

[45] Extensions for Network-Assisted MPTCP Deployment Models.
document Internet draft, draft-boucadair-mptcp-plain-mode-10, Work in
Progress, Mar. 2017.

[46] Use Cases and Operational Experience with Multipath TCP,
document IETF RFC 8041, Jan. 2017.

[47] C. Raiciu, ‘‘How hard can it be? Designing and implementing a deployable
multipath TCP,’’ in Proc. 9th USENIX Conf. Networked Syst. Design
Implement., San Jose, CA, USA, Apr. 2012, pp. 1–14.

[48] F. Yang and P. Amer, ‘‘Non-renegable selective acknowledgments (NR-
SACKs) for MPTCP,’’ in Proc. 27th Int. Conf. Adv. Inf. Netw. Appl.
Workshops, Mar. 2013, pp. 1113–1118.

[49] H. Adhari, T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tüxen, ‘‘Eval-
uation of concurrent multipath transfer over dissimilar paths,’’ in Proc.
IEEE Workshops Int. Conf. Adv. Inf. Netw. Appl., Singapore, Mar. 2011,
pp. 708–714.

[50] T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tuxen, ‘‘On the use
of concurrent multipath transfer over asymmetric paths,’’ in Proc. IEEE
Global Telecommun. Conf. GLOBECOM, Miami, FL, USA, Dec. 2010,
pp. 1–6.

[51] (2019). Multipath-Routing and MPTCP-Based Data Delivery Over
MANETs. [Online]. Available: https://github.com/ztguang/DoM

[52] (2019). OSPF MANET Designated Routers (OSPF-MDR) Implementa-
tion. [Online]. Available: https://www.nrl.navy.mil/itd/ncs/products/ospf-
MANET

[53] T. Zhang, S. Zhao, B. Cheng, B. Ren, and J. Chen, ‘‘FEP: High
fidelity experiment platform for mobile networks,’’ IEEE Access, vol. 6,
pp. 3858–3871, 2018.

TONGGUANG ZHANG received the Ph.D. degree
in computer science and technology from the Bei-
jing University of Posts and Telecommunications,
in June 2018. He is currently an Associate Pro-
fessor of computer science with Xinxiang Uni-
versity. His current research interests include the
mobile Internet technology, the Internet of Things
technology, communication software and dis-
tribute computing, embedded systems, and service
computing.

SHUAI ZHAO received the Ph.D. degree in
computer science and technology from the Bei-
jing University of Posts and Telecommunications,
in June 2014. He is currently an Associate Pro-
fessor of computer science with the State Key
Laboratory of Networking and Switching Tech-
nology, Beijing University of Posts and Telecom-
munications. His current research interests include
the Internet of Things technology and service
computing.

BO CHENG (Member, IEEE) received the Ph.D.
degree in computer science from the University
of Electronics Science and Technology of China,
Chengdu, China, in 2006. He is currently a Pro-
fessor of computer science with the State Key
Laboratory of Networking and Switching Tech-
nology, Beijing University of Posts and Telecom-
munications. His current research interests include
network services and intelligence, the Internet of
Things technology, communication software, and
distribute computing.

VOLUME 8, 2020 32673

