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ABSTRACT Low-resolution medical images can seriously interfere with the medical diagnosis, and
poor image quality can lead to loss of detailed information. Therefore, improving the quality of medical
images and accelerating the reconstruction is of particular importance for diagnosis. To solve this problem,
we propose a wavelet-based mini-grid network medical image super-resolution (WMSR) method, which
is similar to the three-layer hidden-layer-based super-resolution convolutional neural network (SRCNN)
method. Due to the amplification characteristics of wavelets, a stationary wavelet transform (SWT) is
used instead of a discrete wavelet transform (DWT). Also, due to the nature of redundant (scale-by-scale)
wavelets, it is possible to retain additional information about the image and restore high-resolution images in
detail. For a large amount of training data, wavelet sub-band images, including approximation and frequency
subbands are combined into a predefined full-scale factor. The mapping between the wavelet sub-band image
and its approximate image is then determined. In order to ensure the reproducibility of the image, a method of
adding a sub-pixel layer is proposed to realize the hidden layer, and replacing the small mini-grid-network on
the hidden layer is of considerable significance to speed up the image recovery speed. Experimental results
on the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) show that the model has

better performance.

INDEX TERMS Medical images, super-resolution (SR), deep learning, wavelet learning.

I. INTRODUCTION

The medical imaging system provides detailed information
about the anatomy of human organs and the functions of
human organs. Typical conventional medical imaging sys-
tems for expert diagnoses, such as MRI, CT, PET-CT, and
Ultrasound [1]-[3]. However, these images are usually in
low quality and lack of internal information. Due to hard-
ware and current imaging technology limitations, medical
professionals and researchers prefer image super-resolution
processing technology for medical diagnosis [4]. The Single
Image Super-Resolution (SISR) problem is considered very
complex in theory because the number of unknown variables
in the High-Resolution (HR) image is better than in the Low-
Resolution (LR) image. To solve this problem, scientists have
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introduced several techniques in the field of Super-resolution,
which is mainly divided into three aspects based on edges
[5], interpolation-based methods [6], and sample-based
methods [7]-[9].

The sparse-based implementation method first proposed
by Yang [10], and it often takes the first place in the field
of high-quality rehabilitation. Later, Yang et al. [11] intro-
duced an improved popular technique for image super-quality
through sparse representation. In that article, the authors
believe that the image block can be well represented by
appropriate dictionary selection. Inspired by this observa-
tion, we look for a scarce view for each low-resolution
input patch and then use the coefficients of this view to
producing high-resolution output. Nowadays, researchers are
more interested in the neural network, deep learning-based
approach for solving the SISR problem, due to the enor-
mous capacity (payload) of the neural network model, and
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holistic learning. These neural networks help to acquire the
functionality applied in previous methods and also improve
many deep learning algorithms. These improved Deep neural
network DNN methods are cost-effective and significantly
reduced with sufficient quality.

Our proposed method is inspired by the category of the
wavelet domain SISR algorithms [12]-[15]. Many of these
algorithms provide convenient performance results. However,
their computational cost is too high. In [12], the author intro-
duces a wavelet dictionary learning algorithm that learns a
compact dictionary for single image super-resolution (SISR).
Later, a related method, the DWT dictionary learning method
[13] was introduced, which was inspired by DWT technology.
Deeba [14] used wavelet properties in conjunction with cou-
pled dictionary learning methods. Most of these algorithms
produce excellent results. However, their calculation costs are
high. As deep learning algorithms grow, acceptable quality
increases significantly, and computational costs reduce.

For a deep convolution network, the most reliable method
is SRCNN [8], which aims to extract high-resolution image
from the low-resolution image by CNN. SRCNN [8] in the
wavelet domain used to improve excellent visual effects [15].
In SRCNN [8], the authors used three-layer network archi-
tectures to learn the complex nonlinear mapping between HR
and LR image patches. After that, a deep network architecture
was proposed by [16], authors use residual images for training
instead of using HR and LR images, and adjustable gradi-
ent clipping to increase the convergence of their algorithm.
Besides, the same author [8] proposed an accelerated version
of the SRCNN [8] algorithm called the Fast Super-Resolution
Convolutional Neural Network (FSRCNN) [17] algorithm,
which can obtain better results without interpolation between
LR and HR images. This will reduce the mapping in the
feature learning steps. Shi [18] proposed the first real-time
image and video super-resolution using the sub-pixel con-
volutional neural network named as ESPCN [18]. However,
compared to the SRCNN method, the ESPCN method lacks
context information after reconfiguration. Super-resolution
with multiple degradation algorithm SRMD by deep network
model was proposed by [19], with the use of degradation
maps obtained using the dimensional reduction analysis of
necessary components (PCA) and then stretching. In this way,
they learned one network model for many scales.

Inspired by the three-layer network SRCNN [8],
Gao et al. [4] use a deep convolution network to achieve
super-resolution of a single image on a medical data set.
The treatment diagnosis can be further improved by recon-
structing these data sets. Although better quality can be
obtained, it usually costs more to restore the HR images.
Shortening the image recovery time has become an issue
and should be resolved instantaneously. The authors in [15]
introduced the DWT wavelet domain-based deep learning
method and achieved good results, but the author did not
make full use of the potential of deep learning and wavelet
performance. Authors [16] introduced the fast medical image
super-resolution by speeding the network of [18].
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Our proposed wavelet-based approach integrates the ben-
efits of end-to-end network learning with the potential of
model capacity [16] along with wavelet properties such
as redundancy, directionality, sparsity [20], [21] and etc.
To apply the wavelet analysis, we choose the SWT wavelet
instead of the DWT due to its upsampling property to preserve
more context information. Our proposed wavelet-based mini-
grid network for the medical image super-resolution method
focuses on the faster reconstruction as well as enhancing
the visual quality more significant for better diagnosis pur-
poses. Therefore, in order to improve the visual quality of
the algorithm, we adopted SWT and combined the network
with sub-pixel convolution and mini-grid network to reduce
the super-resolution time. Specifically, we implemented three
hidden layers to maintain information while training the
image.

For model training, we designed a wavelet domain deep
neural network architecture that trains the network between
approximate wavelet subbands and their corresponding sub-
band images. It can be clearly seen from the experiment that
by adding wavelets in the end-to-end network, the visual
performance of the image can be improved at a reasonable
cost, thereby realizing the task of the SISR. By using a public
dataset, the proposed method is well compared to the latest
algorithms. The quality of the visual measurements is ana-
lyzed by the peak signal-to-noise ratio (PSNR) and structural
similarity index measurements (SSIM).

Below we first explain how to propose and improve the
speed of the network in the wavelet domain. Then, we out-
line how we conducted the experiment and described the
experimental results in the next section. At the end of this
article, we summarized the proposed approach and stated the
future work.

Il. PROPOSED METHOD

In this paper, a mini-grid wavelet-based model is proposed,
due to unique characteristics of wavelets, including wavelet
sub-bands are sparse, and they exploit multi-scale modeling.
We chose the SWT wavelet because of its upscaling features,
so the size of the wavelet subband remains the same while
retaining the details of the wavelet subbands. Figurel shows
DWT and SWT decomposition, and the technique used in
these [22]-[25] regarded the LR image as a wavelet approxi-
mation image of the corresponding HR image.

A=Y YU LR AL) O
Hoo= Y, YO hiiadh) @
Vipa = 3 0 el A O)
Do)=Y, U elgAdh) @
Here wavelet analysis filters are represented as h! ,h’qz, glly gg

where  As—1 (P, @), Hg—1 (P, @), Vg1 (P,q@), and Ds_
(p,q), are wavelet sub bands approximation, horizontal,
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FIGURE 2. Visual results of wavelet decomposition, original, approximation, horizontal, vertical and diagonal sub-bands.

vertical, and diagonal, respectively. The visual decomposition
is represented in Figure 2. The wavelet synthesis equation is
written as

P Q 4.~ % .
A2 (@) = D0 > hTph AL DA, )

P Q o ~M2~ g
+Zl=jj Zj=1 h g He (L))

Y Q  ~r 2y~
X Z[:jj Zj=1 glfpgl_th,nvs €@

P Q 2~y
+ZI=1 ijlgl—phjiqu ) (5)

It can be seen from Figure 2 that the wavelet subband is very
sparse, which reveals the obvious directionality of the image.
Further application of dimensions will lead to the lack of
fine features of this directionality. A first-order inverse trans-
form is performed to obtain an HR image. Figure2 depicts
the strong dependency among wavelet coefficients toward
wavelet sub-bands.

In image processing, reducing the size is a well-known
problem, and many methods have been introduced for this
[26]-[28]. In [26], the authors proposed a method that
combines the dimensionality reduction cycle using principal
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component analysis (PCA) and multidimensional scaling
capabilities. This approach can detect non-linear degrees of
option underlying complicated common observations such
as an individual signature or images faces in varying viewing
positions. The authors of [27] described the KPCA method is
the best among three (principal component analysis (PCA),
independent component analysis (ICA), and kernel prin-
cipal component analysis(KPCA)) for the vector support
machine (SVM) feature extraction. Authors in [28], proposed
an optimization algorithm with geometry represents higher
dimensional data, allows for a reduction in computational
measurement over previous PCA and MDS models. Our
proposed method studies a single network model at several
scales, where wavelet domain decomposition is used before
training the network, and then the image of the wavelet sub-
band is used as the input to the training.

The proposed method is changed prior to the neural net-
work and wavelet-based processes, based on the following

perspectives.
« SWT wavelet decomposition is utilized in our proposed

method to evaluate the wavelet coefficients.
« We propose a deep network architecture similar to the
fast medical image super-resolution method based on

37037



IEEE Access

F. Deeba et al.: Wavelet-Based Enhanced Medical Image SR

3x3 + 3x3

l channels

Hidden Layers

FIGURE 3. Structure framework of the proposed model.
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FIGURE 4. Process of the proposed Super-Resolution method.

deep learning networks [29]. Still, we train the network
on wavelet domain images instead of residuals. How-
ever, the author [15] used DWT in conjunction with a
three-layer neural network inspired by SRCNN [8].

o« We designed a deep neural network based on the
wavelet domain, proposed a super-resolution accel-
erated wavelet domain, deep neural network model,
to determine sparse output, improveaccuracy, speed of
reconstruction, and training efficiency.

Figure 3 shows the structure framework of the proposed
model which depicts a proposed method for a fast medical
reconstruction method based on a three-layer deep learning
network called a “mini-grid-network,” hidden layer, and sub-
pixel layer. Because the ‘“mini-grid-network™ is a kind of
small convolution neural network, sub-pixel convolution can
be used as the output layer of the super-resolution image
directly. The output sparsity can be determined by wavelet,
thus improving the accuracy of image reconstruction, while
figure 4 represents our three-layered network-based output.

A. SUB-PIXEL CONVOLUTION LAYER
The sub-pixel convolutional layer is used as the last layer
in the proposed model. Shi [18] introduced the sub-pixel
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convolutional layer to reconstruct a low-resolution image.
As shown in Figure 3, by using an upscaling filter for each
feature map (R*R channel), the sub-pixel convolution layer
can obtain a high-resolution image directly from the low-
resolution feature map. Several kernels W with size k can
be activated in a low-resolution subspace.

In the convolutional layer, W is the kernel of size K and
can be activated in low-resolution space. R*R is the number
of active patterns, as shown in Figure 3. Activation weights
are being activated for the active pattern position [k/R]>.
These patterns are regularly activated during the convolution
of the image according to the location of the different sub-
pixels mod (x, y), mod (y, r). Here (x, y) represents the
high-resolution output pixel coordinates used to rearrange the
elements.

B. MINI-GRID- NETWORK

Two convolution kernels of size 3*3 are nested in hidden
layers to reduce the time named mini-grid-network. After
analyzing model SRCNN (9-5-5), the feature map is achieved
better with the second layer having the configuration of 5*5
convolution kernel. In the proposed method, a 5*5 convolu-
tion kernel is replaced by this mini grid-network to achieve
the same results much faster as in [29]. To achieve the greater
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TABLE 1. MINI-GRID -Network.

Mini-Network ESPCN[25](5%5) (3x3+3x3)

Time Complexity O(N2(5 %X 5 x 64)) O(N2(3%x3+3x3))
Parameter 5x5+1=26 3x3+2+3x342=22
Calculations 25(N — 4)? 9(N —2) + 9(N — 4)?

TABLE 2. Parameters of hidden layers.

HIDDEN LAYER PARAMETERS

Convl 3x3x32 Tanh activation
function

Mini-grid- (3x3+3x3)x64 ReLUactivation

Network function

Conv3 3 x3x32 Tanhactivation
function

susceptibility, large convolution kernels will be used with
increased numbers of parameters, but it also increases the
number of calculations. As convolution kernel size is directly
proportional to the number of parameters, so considering this
small size of the kernel is favorable. In the proposed method,
we utilized the ReLU function instead of the Tanh activation
function due to its lower calculation property. ReLU only
determines that the input is greater than zero. The same
receptive field is achieved by 3*3 convolution kernels by
mini-network.

T = O(N*4%K*%F) (6)
N—K-—2x%P
output = T +1 (7)

Here T represents time, the size of the input image is rep-
resented by N, kernel size is K and number of the filter is
represented by F, padding is represented by P and step length
in horizontal as well as in vertical direction is represented
by S. we used padding P =0and S = 1.

Tablel shows the calculation of time complexity and
parameters in the mini-grid-network.

C. HIDDEN LAYERS
The deep network consists of multiple layers, each parameter
of each layer is utilized for feature learning purpose, as the
layers increase the feature learning rate is also increased.
Additionally, mini-grid-network is added for exploiting the
speed of the network due to its good quick performance on the
network [29]. The proposed model comprised of three layers,
convl, and con3 comprised of 32 kernel size with 3*3 conv
size with Tanh activation function, while conv2 is named as
mini-grid-network.

This mini-grid-network consists of two conv layers with a
3*3 conv kernel and ReLLU activation function. Table2 listed
all parameters.

IIl. EXPERIMENTAL SETUP FOR TRAINING

AND TESTING

As our model is wavelet-based, so we used the one-
level wavelet decomposition before training and utilized
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approximation image and its corresponding sub-band images
for training the model. Wavelets have redundancy property
across each scale, provide approximation wavelet sub-band
as input at a certain scale, reconstruction of approximation
image can be perfectlyreconstructed due to its wavelet redun-
dancy property.

LR image is decomposed into one level wavelet decom-
position represented by x, and sub-bands (horizontal, ver-
tical, and diagonal) sub-bands represented by Y. Here in
our proposed method, we learn the relationship between
LR approximation image and wavelet sub-band (horizontal,
vertical, and diagonal) images. One problem with SRCNN
[8] network is that the details about the input image should
be saved after getting the output image. Those learned fea-
tures are utilized and the input image is removed. If the
network is so deep with several layers, that will be an end
to end learning in this case and increase the overload and
also requires memory. Because of this, the vanishing gradient
problem [30] occurs, and it needs a solution. In the pro-
posed network, we solve this problem by learning the wavelet
coefficients.

In our proposed network model parameters are adjusted
with the mentioned values, the learning rate is 10~% is set,
momentum is 0.9, weight decay is 0. Mini- Batch Gradient
Descent algorithm is chosen in our process.

Mini-Batch Gradient Descent

Repeat:

{
Fori=1,11,21,31,...911

{

1 2 k k) (K)
0j:=0ij—agp kX_:i (hy (x( )) —y! ))xj )
(for every j =0,.....,n)

}
}

From above, 3¢t (1 (x®) — y(k))xj(k)) represents the loss
function. In the proposed method Gaussian distribution is
implemented for each convolution layer to initialize the
weights, described in the equation below.

1 (x — )
~ 2 — —
X ~N (x | w,0 ) —271026 57 (8)

o represents the standard deviation, o2 is variance in it, and p

is the mean of the distribution. For the training dataset, batch
size sets to the value of 128, while for testing, we use 32 batch
size. To calculate the loss between label value and predictive
values Euclidean loss [31] function is used and described as
below.

. 1 N / 2
Euclidean Loss = — 1Y’ = Ya; ©

2N “n=1
Here N and n represents the total input image and num-
ber of the input image, Y’ is predictive value, and Y, is
label value. Wavelets have redundancy property across each
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FIGURE 6. Abdomen image based on a scaling factor of 2, in which (a) original, (b) Bicubic, (c) SRCNN [8], (d) VDSR [16], (e) FMISR

[29], and (f) proposed approach sub- figures respectively.

scale, provide approximation wavelet sub-band as input at
a specific scale, reconstruction of approximation image can
be perfectly reconstructed due to its wavelet redundancy
property. For SISR, we learn the corresponding mapping
between approximation image and its corresponding coef-
ficients by employing the redundancy property of wavelet.
As can be seen from Table 3, the algorithm provides good
results by applying a deep neural network architecture in
the wavelet domain. We use a depth of 20 weights listed
in Table.1. Performance Table for proposed and FMISR [29]
algorithm for Knee image(PSNR), is shown in Table3, and
performance curves for different learning rates (0.1, 0.01) at
scale parameter of 2 is represented in Figure 5. Hence, our
approach provides better performance at mentioned learning
rates.

For training and testing purposes, our experiment environ-
ment setup consists of a windows based machine with intel(R)
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Core(TM) i5-7300HQ CPU @ 3.40GHz, NVIDIA GeForce
GTX 1080-Ti. Additionally, Matlab 2017 with CUDA Toolkit
and Anaconda is utilized for the setup.

Computational time concerning different comparable algo-
rithms is calculated and shown in table 4.

As can be seen from the Table 4, our method is faster
and better than the bicubic, SRCNN [8], and VDSR [16]
methods. Still, due to the same small network and hidden
layer, the calculation time of our approach is almost similar
to that of FMISR[29] but still can provide a better calculation
of level 2.

IV. DATASET FOR TRAINING AND TESTING

In our proposed method, a publicly available data Shen-
zhen Hospital X-ray Set [33] containing 662 X-ray images
were used for training purpose. All images were resized to
512 x 512 size, and we tested the models on three different
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FIGURE 7. Chest image based on a scaling factor of 2, in which (a) original, (b) Bicubic, (c) SRCNN [8], (d) VDSR [16], (e) FMISR [29], and

(f) proposed approach sub-figures respectively.
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FIGURE 8. Knee image based on a scaling factor of 2 in which (a) original, (b) Bicubic, (c) SRCNN [8], (d) VDSR [16], (e) FMISR [29], and

(f) proposed approach sub-figures respectively.

publicly available datasets, including Montgomery County
X-ray, Teeth, Abdomen1, and knee images. Quantitative anal-
ysis was performed according to PSNR [14] and SSIM [14].
The mathematical definition is as follows.

A. PEAK SIGNAL-TO-NOISE RATIO (PSNR)
The Peak signal-to-noise ratio (PSNR) is used for the quan-
titative performance measure. Given a true image (original

VOLUME 8, 2020

HR image) F and its estimatedF, with Mx N pixels size, The
PSNR is described as

3 2552
PSNR(F, F) = 101og,,

MSE(F,F)

where MSE (F,F) represents the mean—square error between
two images (F,F). Given (F,F), MSE defined as

, 1 M N , 2
MSE (E.F) = - >, Zj: (B —Fy)™ A
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FIGURE 9. Teeth image based on a scaling factor of 2, in which (a) original, (b) Bicubic, (c) SRCNN [8], (d) VDSR [16], (e) FMISR [29], and

(f) proposed approach sub-figures respectively.

TABLE 3. Table 3 Shows the Performance (peak signal to noise ratio or PSNR) for the proposed and FMISR [29] network (“Knee” mage, scale 2).

(a) 0.1 rate of learning

Epoch FMISR Proposed Variance
20 28.15 30.11 1.96
40 29.21 30.72 1.51
60 29.27 31.04 1.77
80 29.49 31.35 1.86
(b) 0.01 rate of learning
Epoch FMISR Proposed Variance
20 27.19 29.03 1.84
40 27.87 28.92 1.05
60 27.81 28.12 0.31
80 27.95 30.07 2.12
TABLE 4. Computational time for different method. SSIM index defined as:

Time Computation

Method  Bicubic SRCNN VDSR FMISR Proposed
Scale 2 2 2 2 2
SR-Time/s  0.017 2.371 2.101 0.257 0.254

An error is calculated between the real HR image and the
reconstructed HR image. The higher the PSNR value, the bet-
ter the reconstruction image.

B. STRUCTURAL SIMILARITY INDEX

MEASUREMENT (SSIM)

For high-resolution quality evaluation of reconstructions,
SSIM (structural similarity index) is extensively used. Wang
and Zhou [32] and the mathematical representation of the

37042

(2uxpy + €1)(2oxy + ¢2)

SSIM =
(F + 15 +c)oF + 07 +c2)

(12)

where ux, uy are the average of x and y respectively, d2
cxz, oy2 are the variance of x and y respectively, oyy is the
covariance of x and y, C1, C2 are the constants. Our model
is compared with four different methods included the bicubic
technique, SRCNN [8], VDSR[16], and FMISR[29], which is
represented in Table 5 respectively. Trained models of these
compared algorithms are provided by authors. The proposed
algorithm gives better results than compared algorithms.
Figures 6-9 represent the comparative visual resultswith
the scale 2 parameters. The proposed wavelet domain-based
mini-grid-network for medical image super-resolution pro-
vides sharper edges and textures based visual results at

scale 2, represented by Figures 6-9, respectively.
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TABLE 5. Quantitative comparison values in terms of PSNR (Left) and SSIM (right).

Dataset Scale Bicubic SRCNNI[9]
Brain 2 26.31/0.821 27.50/0.845
3 23.90/0.814 24.92/0.828

4 21.63/0.805 22.40/0.811

Chest 2 26.30/0.825 26.65/0.841
3 23.92/0.818 24.75/0.827

4 21.51/0.803 22.14/0.816

Knee 2 27.24/0.828 27.58/0.849
3 23.98/0.821 24.96/0.836

4 21.76/0.814 22.54/0.825

Teeth 2 24.53/0.796 24.84/0.811
3 22.40/0.783 22.68//0.797

4 20.07/0.768 20.18/0.784

V. CONCLUSION

In this paper, we propose an effective wavelet-based deep
neural network model to achieve super-resolution of a single
image. In the experiments, we used medical datasets of four
types of images (abdomen, X-rays, knees, and teeth). Com-
pared with other deep neural network methods, the proposed
network expands the convolutional layer to obtain a more
realistic image reconstruction, thereby significantly reduc-
ing the computing time based on the mini-grid-network. To
shorten the time of image reconstruction, we optimize the
speed structure by combining sub-pixel convolution layers
and ““mini-grid-network.” Besides, we implemented a hid-
den layer to preserve information when training images to
improve the quality of reconstruction. By using wavelets,
many useful features of neural networks are used in SISR
tasks such as large model capacity, end-to-end learning, and
high performance in the wavelet domain. The SWT used
instead of DWT due to its upscaling property experimen-
tal analysis is carried out to validate the efficiency of the
proposed model. In the future, this work can be extended
by applying other wavelet transforms, for example, Multi-
resolution discrete wavelet transform, and dual-tree complex
wavelet transform.
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