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ABSTRACT In laminography imaging, the laminographic tilt angle is an important factor that affects the
reconstruction result. However, the optimal tilt angle was mainly estimated from experience in the current
research. In this article, an estimation approach for measuring the quantity information of projections has
been proposed, which is based on the entropy of pixel grayscale distribution. The correlation of reconstructed
image quality and tilt angle was analyzed quantitatively by the method. In this way, a solution has been
proposed for seeking the optimal tilt angle, which aims to improve the image quality of reconstructed layers.
Additionally, numerical simulation was designed to validate the method, in which the reconstructed layer
images at different tilt angles were compared. The curves of grayscale MAE, PSNR and SSIM versus tilt
angle verified the reliability of calculated optimal tilt angle, which has proved that the method is effective.
Meanwhile, given a certain model of the scanned object, the optimal tilt angle is constant and computable.

INDEX TERMS Laminography, optimization, quantity information, image reconstruction, image quality,
numerical simulation.

I. INTRODUCTION
Computed tomography (CT), as an efficient non-destructive
testing method, is widely used in biomedical, industrial man-
ufacturing, security and other fields. CT imaging relies on a
decrease of the intensity (attenuation) of X-ray beam when
traversing the sample, which can be measured directly with
the assistance of an X-ray detector. The attenuation coeffi-
cient is determined by the property of penetrated medium.
In the scanning process, the sample rotates around the fixed
axis step by step in 360 degrees. Corresponding projection
image is collected by the detector at each angle. After acquisi-
tion of projections from all angles, a reconstruction algorithm
is used to obtain image data of sectional layers, then the
three-dimensional internal structure of the object is visible
by stacking the sectional images one by one.

The associate editor coordinating the review of this manuscript and
approving it for publication was Zhenliang Zhang.

However, circular cone beam CT is not suitable for imag-
ing of flat objects such as circuit boards, composite plates,
etc. The X-ray penetration distance in a flat object changes
obviously in different projection directions, which leads to
the lack of projection image data at some angles. The prob-
lem of imaging flat objects has challenged the traditional
CT technology, which has promoted the development of
laminography. The earliest linear tomography device, which
is also considered as the original laminography device, was
proposed and designed by Andre Edmond Marie Bocage
in 1921 [1], [2]. Later, Bernard Zeidses des Plantes verified
the tomography method both theoretically and experimen-
tally. The tomographic principle, originally called ‘‘planog-
raphy’’, was presented in his doctoral thesis in 1931 [1], [2].
Based on the principle of classical tomography, the multiple-
film laminography and relative reconstruction methods were
proposed in the early 1970s [3], [4], and then it gradually
developed into computed laminography (CL) in 1995 [5].
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The planar laminography is the earliest experimental method.
It was proved to be a superior way for imaging flat objects
than CT [6], [7]. The appearance of swing laminography [8]
and rotary laminography [9]–[11] symbolized the evolution
of CL scanning method, which improved the projection data
acquisition. Currently, the rotary laminography is commonly
used in engineering and scientific experiments, and it has
showed advantages in limited-angle imaging [12].

In view of the scanning geometries, the CL scan obtains
more sufficient projection data than the traditional circular
CT scan. That is the reason why CL is more suitable for
imaging plate objects. In the same way, scanning geometries
of CL have direct and obvious effects on data acquisition
whose difference will ultimately be reflected in the recon-
struction results. Some relevant experiments and correspond-
ing summaries were made for specific samples [10], [13].
Accurate analysis of optimal scanning geometry has great
significance for CL imaging. For the rotary laminography,
the tilt angle is a key geometric factor. In this article, the
influence of laminographic tilt angle on reconstruction results
have been analyzed from the perspective of the difficulty of
accurate reconstruction, which involves the maximum likeli-
hood estimation whose constraints are provided by projection
images. The optimal tilt angle maximizes the probability of
accurate reconstruction under projection constraints. On the
other hand, a simulation experiment is needed to validate the
optimization method. In our simulation, the laminographic
tilt angle was adjusted by changing the X-ray projection
directions. Based on the projection images, SART (simul-
taneous algebraic reconstruction technique) algorithm was
used to reconstruct the object. In order to precisely mea-
sure the accuracy of reconstructions at different tilt angles,
the grayscaleMAE (mean absolute error), PSNR (peak signal
to noise ratio) and SSIM (structural similarity index) were
used as quantitative indicators. The reconstructed image that
is closer to the original version has higher image quality,
which results in higher PSNR, SSIM value and lower MAE.
The curves of three indicators changing with tilt angle show
that the experimental optimal tilt anglematches the calculated
result. Therefore, the method has been proved to be useful for
optimizing laminographic tilt angle.

II. ESSENTIAL FACTORS FOR RECONSTRUCTION
A. BEER-LAMBERT LAW
The basic principle of CT reconstruction is to distinguish sub-
stances according to the change of X-ray attenuation degree
in different directions. According to Beer-Lambert law,

IL = IL0exp (−gL) , (1.1)

where IL0 represents the initial X-ray intensity along L; IL
represents X-ray intensity after penetrating the object; gL is
the complete projection along L,

gL =
∫ l

0
µ (x, y) dL, (1.2)

FIGURE 1. Diagram of Radon transforms: (a) projection along straight line
L; (b) projections along the same direction in Bm.

where l indicates the length of X-ray transmission in the
object; µ (x, y) represents the attenuation coefficient of the
substance at the (x, y) position.

B. RADON TRANSFORM
The Radon transform is an integral transform, which maps
the line integral of the function defined on the x-y plane to the
value of a point on the projection plane [14], [15]. According
to the normal form equation of L,

L : x cos θL + y sin θL = ρL , (1.3)

where the normal vector from origin O to L has length
ρL . It subtends an angle θL with the positive direction of
x-axis. θL is defined as the projection angle. L on the x-y
plane corresponds to (ρL , θL) on the projection plane. The
diagram is shown in Fig.1-(a). The complete projection gL
on the coordinate (ρL , θL) are given by the integral of the
attenuation coefficient along L, which is

gL =
∫
∞

−∞

∫
∞

−∞

µ (x, y) δ (x cos θL + y sin θL − ρL) dxdy

=

∫
∞

−∞

µ((l sin θL+ρL cos θL) ,(−l cos θL+ρL sin θL))dl,

(1.4)

where

δ (t) =

{
1, t = 0
0, t 6= 0,

(1.5)

For the circular CT scan, suppose there exists multiple par-
allel X-ray projection beams in two-dimensional plane. The
projection beams are marked by {Bm} (m = 1, 2, . . . ,M).
The Bm represents a series of projection line at the m-th
projection angle θm, whose width wm is equal to that of the
object in the same direction. Lm,n (n = 1, 2, . . . ,Nm) is the
n-th projection line in Bm. Lm,n has fixed width b, and

wm = bNm, (1.6)

The projection gm,n of Lm,n is the integral of line projection
along the normal direction of Lm,n. If the central axis of Lm,n
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is represented on the projection plane as
(
ρm,n, θm

)
, which is

shown in Fig.1-(b), then

gm,n =
∫ ρm,n+

1
2 b

ρm,n−
1
2 b

gL (ρ, θm) dρ

=

∫
∞

−∞

∫
∞

−∞

µ (x, y) δm,n (x, y) dxdy, (1.7)

where,

δm,n (x, y) =


1,
∣∣x sin θm + y cos θm − dm,n∣∣ ≤ b

2

0,
∣∣x sin θm + y cos θm − dm,n∣∣ > b

2
.

(1.8)

Consider that µ (x, y) has positive value only in a limited
region R (µ), which is the solution domain of µ (x, y). R (µ)
is composed of discrete pixels (square shaped) marked as
{pi} (i = 1, 2, . . . ,N ). By taking the mean of the integral of
µ (x, y) in the pi area, µ (x, y) is discretized as µi,

µi = a−2
∫∫
pi

µ (x, y) dxdy. (1.9)

µi is assumed to be constant in the i-th pixel pi. a is the size
(side length) of each pixel. Then

gm,n = a2
N∑
i=1

µiδm,n (i). (1.10)

where µi is the X-ray attenuation coefficient in the i-th pixel
pi; δm,n (i) is defined by

δm,n (i) = a−2
∫∫
pi

δm,n (x, y) dxdy. (1.11)

IfN →∞,µi can infinitely approach continuous distribution
of µ (x, y).

III. QUANTITY INFORMATION OF PROJECTION IMAGES
X-ray projection is essentially a mapping of pixels from
three-dimensional space to two dimensional plane. Obvi-
ously, the projection forms a continuous function. The X-
ray projection is a multitude-to-one mapping from the object
to the detector. That is to say, the projection image is the
superposition result of X-ray attenuation images on multiple
layers. Projections act as the carrier of information, for each
of them can partly reflect the internal structure of the object.
If the image to be reconstructed is regarded as a sys-

tem with arbitrary distribution of µi in the solution domain
R (µ) which is the common area covered by all projections,
then each projection is a constraint on µi distribution which
reduces the set of possible solutions for µi distribution. With-
out any projection information as the constraint, the distri-
bution of µi has great uncertainty. Referring to Maxwell’s
demon theory, the internal energy of a system tends to be uni-
form and chaotic when there is no external information input
[16]. The accumulated projection information is equivalent
to the input of certain external energy to the reconstruction

FIGURE 2. Example: The possible distributions of G = 2 particles in N = 4
pixels, where each particle represents a certain value of attenuation
coefficient and image gray-level.

region, which makes the inner part of the reconstruction
region orderly. That is a process of entropy reduction. If we
take the number of possibleµi distributions as theµi entropy,
then the quantity information of X-ray projections can be
evaluated by the reduction of entropy, which is introduced by
projections.

A. ANALYSIS OF RECONSTRUCTION COMPLEXITY
For a CT image to be reconstructed, assume the solution
domain R (µ) is divided into total N pixels. µ is the average
attenuation coefficient of the total pixels,

µ =
1
N

N∑
i=1

µi. (2.1)

µ > 0. The reconstruction process can be regarded as
distributing the µi value (where i = 1, 2, . . . ,N ) into image
pixels. The minimum µi of each pixel is 0. If the area of the
reconstructed region R (µ) is AR, and the pixel size is a, then

N = a−2AR. (2.2)

In order to quantify all possible solutions ofµi distribution,
we consider every µi to be composed of the minimum 1µ

that cannot be subdivided, where 1µ
µ
→ 0. The process refers

to the principle of energy dispersion in quantum mechanics.
Then the sum of µi is discretized into G particles of 1µ.
The problem is transformed into how many possibilities for
plugging totalG particles intoN pixels. For example, if a total
of 2 particles are randomly plugged into 4 pixels (G = 2,
N = 4), there will be 10 cases, which is shown in Fig.2.
Combined with (2.1), G satisfies

G =
1
1µ

N∑
i=1

µi = ηµN , (2.3)

where η is the resolution of µi value, η = 1
1µ

, ηµ → ∞.
If Ns

∣∣µ
G is the total quantity of solutions for the possible
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distribution of attenuation coefficientµi with totalG particles
in the image, then

Ns
∣∣µ
G = CN−1

T =
0 (T + 1)

0 (N ) · 0 (G+ 1)
. (2.4)

where, CN−1
T is for the combination of N − 1 elements from

T elements, T = N +G− 1; the gamma function for integer
Z ≥ 0 is

0 (Z + 1) =
∫
∞

0
tZ e−tdt = Z !, (2.5)

the symbolNs
∣∣∣φψ denotes the quantity of solutions forφ under

the constraintψ . The larger theNs
∣∣µ
G , themore conditions are

required for accurate reconstruction.
By Stirling’s approximation [17],

0 (Z + 1) ≈
√
2πZ

(
Z
e

)Z
. (2.6)

Substitute formula (2.6) into (2.4),

Ns
∣∣µ
G ≈

1
√
2π

√
1

N − 1
+

1
G
·

T T

(N − 1)N−1 GG
. (2.7)

Considering the situation N = 1 or G = 0, such approxima-
tion is used instead of (2.7), as

Ns
∣∣µ
G ≈

√
1

1+ 2π (N − 1)
+

1
1+ 2πG

·
T T

(N − 1)N−1 GG
.

(2.8)

Substitute formula (2.3) into (2.8), then (2.8) equals to

Ns
∣∣µ
G ≈

√
1

1+ 2π (N − 1)
+

1
1+ 2πηµN

·

(
1+

ηµN
N − 1

)N−1 (
1+

N − 1
ηµN

)ηµN
. (2.9)

Consider that ηµ→∞, N � 1, by further approximation,

Ns
∣∣µ
G ≈

(ηµ)N−1 exp (N )
√
1+ 2πN

. (2.10)

We take any of these possible solutions as the reconstruc-
tion result, if event µi ∼ µ represents the solution for
µi happens to subject the accurate attenuation coefficient
distribution of real image, then the probability P (µ |G ) is

P (µ |G ) =
(
Ns
∣∣µ
G

)−1
. (2.11)

Obviously, there is an increased difficulty for reconstruction
with smaller P (µ |G ). The entropy of µi distribution in
reconstructed region is defined as S (µ),

S (µ) = ln
(
Ns
∣∣µ
G

)
= − lnP (µ |G ) . (2.12)

Substitute (2.2), (2.10) and (2.11) into (2.12),

S (µ) = (N − 1) ln (ηµ)+ N −
1
2
ln (1+ 2πN ) . (2.13)

The conditions required for solving the µi distribution is

Ncon (µ) = lim
ηµ→∞

S (µ)
ln (ηµ)

= N − 1. (2.14)

Formula (2.14) shows that Ncon (µ) is almost equal to the
total pixel quantity N , which is approximately proportional
to the reconstructed area AR and inversely proportional to the
pixel area a2 according to (2.2).

B. QUANTITY INFORMATION OF SINGLE PROJECTION
IMAGE
The entropy of µi distribution in reconstructed region has
been quantified in the former section. A single projection
reflects some internal details of the object, which reduces the
entropy of the reconstructed region. Generally, the quantity
information obtained by the projection in a certain direction
depends on the quantity of projection lines. Accordingly,
the projection image reflects more information with shorter
X-ray crossing length through the object. For an object with
negligible thickness, a single X-ray projection along the
thickness direction can completely reflect the whole inner
material distribution.

Through the analysis in the former section, we have
deduced the conclusion that if a random solution of µi dis-
tribution approaches the real µ distribution, the probability is
inversely proportional to the quantity of total solutions for µi
distribution. In order to increase the probability of accurate
reconstruction, we introduce a constraint ψ for the image.
The quantity of solutions under ψ is Ns

∣∣∣µψ , Ns
∣∣∣µψ ≤ Ns

∣∣µ
G .

The probability of accurate reconstruction under constraintψ
is

P (µ |ψ ) =
(
Ns
∣∣∣µψ )−1 , (2.15)

whereP (µ |ψ ) is the conditional probability under constraint
ψ . Furthermore, the probability that any solution for µi that
satisfies constraint ψ is

P (ψ |G ) = P (µ |G ) · P−1 (µ |ψ ) =
(
Ns
∣∣µ
G

)−1
·

(
Ns
∣∣∣µψ ) ,
(2.16)

whereP (ψ |G ) is the probability that a random solution forµ
satisfiesψ . If S (ψ) is the entropy ofψ , thenQ (ψ) is defined
as

S (ψ) = − lnP (ψ |G ) = S (µ)− S (µ |ψ ) . (2.17)

where S (µ |ψ ) is the entropy of µi distribution under con-
straint ψ , and S (µ |ψ ) = ln

(
Ns
∣∣∣µψ ).

If P (ψ |G )→ P (µ |G ), then S (ψ)→ S (µ), the solution
forµi underψ tends to be unique. As a result, the information
provided by constraint ψ is enough to accurately reconstruct
the image.
Take the grayscale distribution of projection beam Bm as

the constraint ψ . For the projection beam Bm within R (µ),
it divides the images into Nm parts,

Nm = b−1wm, (2.18)
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where b is the width of each projection line Lm,n, wm is the
width of Bm. Within the projection line Lm,n,

Nm,n = a−2blm,n, (2.19)

where lm,n is the length of each projection line Lm,n through
R (µ). Given the constraint that Lm,n hasGm,n particles of1µ
and Nm,n pixels, as

Gm,n = ηµm,nNm,n, (2.20)

where µm,n is the average attenuation coefficient in Lm,n, and
µm,n > 0. The quantity of possible solutions is

Ns
∣∣∣µBm = Nm∏

n=1

CNm,n−1
Tm,n . (2.21)

By further approximation,

Ns
∣∣∣µBm =

( Nm∏
n=1

(
ηµm,n

)Nm,n−1√
1+ 2πNm,n

)
exp (N ) . (2.22)

And also

Ns
∣∣∣µBm ≤ (ηµ)N−Nm exp (N )Nm∏

n=1

√
1+ 2πNm,n

. (2.23)

Only when µm,n =
(Nm,n−1)N
(N−Nm)Nm,n

µ ≈ µ, formula (2.23)
takes the maximum. According to (2.16), given the constraint
ψ |Bm〉 that each projection line Lm,n has Gm,n particles of
1µ, the probability that a random solution for µi with total
G particles satisfies the constraint ψ |Bm〉 is

P (Bm |G ) =
(
Ns
∣∣µ
G

)−1
·

(
Ns
∣∣∣µBm )

≤

√
1+ 2πN

Nm∏
n=1

(√
1+ 2πNm,n

) (ηµ)−(Nm−1) . (2.24)

Consider that S (Bm) is affected by the distribution of µi,
we use the Smin (Bm) to estimate the entropy of Bm, which
is

Smin (Bm) ≈ (Nm − 1) ln (ηµ)+
1
2
ln (1+ 2πN )

−
1
2

Nm∑
n=1

ln
(
1+ 2πNm,n

)
. (2.25)

By referring to (2.14), we obtain the relation

Ncon (Bm) = lim
ηµ→∞

Smin (Bm)
ln (ηµ)

= Nm − 1, (2.26)

where Ncon (Bm) is the condition number of Bm, which means
the projection Bm reduces at least Ncon (Bm) conditions for
image reconstruction.

According to (2.17),

Smax (µ |Bm ) = S (µ)− Smin (Bm) . (2.27)

FIGURE 3. Diagram: The µi distribution of (N = 36, G = 72) tends to be
orderly under the constraints of projections. (a) random particle
distribution; (b) particle distribution that satisfies the constraint of a
single projection; (c) particle distribution that satisfies the constraint of
two orthogonal projections.

Substitute (2.14) and (2.26) into (2.27), we get

P (µ |Bm ) ≥ exp (−Smax (µ |Bm )) ≈ (ηµ)Nm−N , (2.28)

where P (µ |Bm ) is the probability of obtaining accurate µi
distribution under constraint ψ |Bm〉. Formula (2.28) shows
that larger condition number of Bm facilitates image recon-
struction. P (µ |Bm ) has an exponential correlation with
Ncon (Bm).

The analysis indicates that projections carry a certain quan-
tity of information into the solution domain R (µ). The quan-
tity information can be presented by the condition number
of each projection. The conditions provided by the projec-
tion images reduce the uncertainty of the solution in the
reconstructed region. Therefore, the entropy of the system is
reduced. The set of possible solutions shrinks gradually with
the accumulation of projections in different directions. The
principle can be intuitively reflected in Fig.3.

C. RECONSTRUCTIVE PRECISION OF PROJECTION GROUP
The entropy of every single projection Bm affects the data
acquisition of X-ray scanning. Another factor is the similarity
of projection images obtained from X-ray projection group
{Bm}. If the projection directions have reduced intersected
angles, the projection images have increased similarity. And
larger similarity of projection images causes the quality of the
reconstructed images to deteriorate.

The following parameters are known for group {Bm}: Nm
is the quantity of projection lines in each Bm, M is the total
number of projections, 1θ is the sampling interval angle. If
M > 1, then total condition number of {Bm} is

Ncon {Bm} =



M∑
m=1

Nm −
M
2

cot
1θ

2
− 1,Nm ≥ cot

1θ

2

1
2

M∑
m=1

N 2
m tan

1θ

2
− 1,Nm < cot

1θ

2
.

(2.29)
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FIGURE 4. The relations among Acon
{
Bm

}
(yellow colored region),

AR
{
Bm

}
(gray and yellow colored region) and distribution of projections

(M = 16): (a) projections overlapping (b) projections in limited angle 90◦;
(c) projections equally spaced among circumference.

FIGURE 5. The reconstructed images of bamboo slice using equal
numbers of projections with different distributions: (a) projections in
limited angle 90◦; (b) projections in nonadjacent 15◦ angles of equal
interval 15◦; (c) projections equally spaced.

The area of solvable domain related to Ncon {Bm} is

Acon {Bm} = b2 (1+ Ncon {Bm}) , (2.30)

where b is the width of projection lines. In particular, if

Ncon {Bm} = Ncon (µ) = N − 1, (2.31)

then the image has enough conditions to be accurately recon-
structed. Otherwise, the probability of the image being accu-
rately reconstructed under ψ |{Bm}〉 satisfies

P (µ |{Bm} ) ≥ (ηµ)Ncon{Bm}−N . (2.32)

Consider that the attenuation coefficients of all pixels cov-
ered by zero-value projection lines are all zero. The solution
domain R (µ) is regarded as the common area covered by
{Bm}. For the image with pixel size awhich can be accurately
reconstructed by {Bm}, a must satisfy

a ≥ amin

∣∣∣µ{Bm} = b

√
AR {Bm}
Acon {Bm}

, (2.33)

where AR {Bm} is the area of solution domain.
Smaller pixel size leads to higher image resolution. There-

fore, amin

∣∣∣µ{Bm} reflects the reconstructive precision. It is
determined by Acon {Bm} and AR {Bm}, affected by the distri-
bution of {Bm}. An example is showed in Fig.4.
As a consequence, the reconstructive precision of circular

projections is higher than that of limited-angle projections on
the premise of equal projection numbers, showed in Fig.5.
The main reason lies in that there are decreased condition
number of projection group and increased solution domain
area under limited-angle projections, which is not conducive
to the pixel refining of accurate reconstruction. A reconstruc-
tion experiment for a bamboo stick fully has proved this
fact. The reconstruction was performed with 360 projections

extracted from 720 total circumferential projections of the
bamboo stick sample.

On the premise of the same sampling number, the distribu-
tion of projections will significantly affect the acquired quan-
tity information and the reconstruction results. The recon-
structed image with equispaced projections, which corre-
sponds to the minimum solution domain, has higher detail
resolution than other cases. For the limited angle projections,
the reconstructed image quality gradually improves as the
projections tends to be uniformly distributed.

IV. OPTIMAL TILT ANGLE FOR FLAT OBJECTS
From the analysis in the former section, we estimated the
reconstructive precision by the minimum pixel size of the
image that can be accurately reconstructed. The quantity
information of projection group is closely related to the
reconstructive precision. In the laminographic scan, group
{Bm (ϕ)} represents the intersected parallel beam projections
at tilt angle ϕ(0 ≤ ϕ ≤ π

2 ). The tilt angle is the included angle
between the projection direction and the rotation axis. b is
the size (side length) of square shaped cross-sectional area of
each projection line. Assume the solution domain covered by
{Bm (ϕ)} has volume VR {Bm (ϕ)}, then for the laminographic
accurate reconstruction, the minimum voxel size is

amin

∣∣∣µ{Bm(ϕ)} = 3
√

VR {Bm (ϕ)}
1+ Ncon {Bm (ϕ)}

= b
3
√

VR {Bm (ϕ)}
Vcon {Bm (ϕ)}

,

(3.1)

in which

Ncon {Bm (ϕ)} = b−3Vcon {Bm (ϕ)} − 1. (3.2)

where Vcon {Bm (ϕ)} is the volume of solvable domain. The
optimal laminographic tilt angle ϕ̂ is acquired by

ϕ̂ = argmin
ϕ

(
amin

∣∣∣µ{Bm(ϕ)} ) = argmin
ϕ

(
VR {Bm (ϕ)}
Vcon {Bm (ϕ)}

)
.

(3.3)

In order to accurately describe the effect of the tilt angle on
reconstructed image quality, we take a regular shaped object
as an example. The method above can be used to find the
optimal tilt angle for scanning a cylindrical object with radius
r0 and height h0. The rotational axis passes through the center
of round surfaces vertically. In the case of parallel projections,
the X-ray beam passes through the object obliquely at tilt
angle ϕ.

By geometric relations and some calculation, the volume
of solvable domain is

Vcon {Bm (ϕ)} =
4
3
πr30 sinϕ cosϕ + πr

2
0h0 sin

2 ϕ. (3.4)

And the volume of solution domain is

VR {Bm (ϕ)} =
2
3
πr30 cotϕ + πr

2
0h0. (3.5)
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FIGURE 6. The cylindrical object model and its projection contour at tilt
angle ϕ.

FIGURE 7. The flowchart of seeking the optimal laminographic tilt angle
for an object with equal cross-sections.

According to formula (3.3), the optimal laminographic tilt
angle ϕ̂ is acquired by

ϕ̂ = argmin
ϕ

(
2 cotϕ + 3r−10 h0

4 sinϕ cosϕ + 3r−10 h0 sin2 ϕ

)
. (3.6)

ϕ̂ depends on the size of r0 and h0 of the cylindrical object,
which means the shape of the object may affect the relative
quality of reconstructed images at a certain tilt angle. The
object tends to be more ‘flat’ with decreased height-radius
ratio h0

r0
. Through the curve of VR

Vcon
versus ϕ, we can estimate

the optimal tilt angle ϕ̂ for cylindrical flat objects.
For a random shaped object with equal cross-sections,

we use the cylinder model to estimate its optimal tilt angle
for laminography. The flowchart of the proposed method is
shown in Fig.7. The method is quite suitable for objects with
equal convex polygon cross-sections, such as cuboids and
hexagonal prisms which are common shapes of flat objects.

Furthermore, the method is also suitable for determining
which placing attitude of the object is more conducive for CT

FIGURE 8. Original images of layers patterns: (a) pattern of even layers;
(b) pattern of odd layers.

FIGURE 9. The relation curve of the predicted optimal tilt angle ϕ̂ and the
logarithm of ratio

h0
r0

of cylindrical objects.

imaging. For imaging an IC chip as an example, it is better
to place it vertically than lying down to acquire desirable
reconstruction result, which can be well explained by this
theory.

V. SIMULATION OF LAMINOGRAPHY SCAN AND
RECONSTRUCTION
Some studies have shown that tilt angle can significantly
influence the quality of reconstructed laminography images.
The selection of optimal tilt angle is affected by both the
object and sampling method [10], [18]. For the cylindrical
object showed in Fig.6, a laminography imaging simulation
was designed to verify the proposed method. As the experi-
mental model, the cylinder is composed of two kinds of lay-
ers stacked alternately, whose patterns are showed by Fig.8.
It was scanned by circular laminography of parallel projec-
tions with changeable tilt angle under simulated environment.
The patterns inside the model depends on which layer they
are located in. The sharpness of patterns of the reconstructed
layer images reflects the quality of reconstruction.

According to formula (3.6), the relation of the estimated
optimal tilt angle ϕ̂ and the ratio h0

r0
of the cylindrical model

can be calculated, shown in Fig.9. The relation illustrates that
the optimal tilt angle varies from 73◦ to 90◦.

In the first simulation, the height-radius ratio of the
simulated object was set to h0

r0
=

1
80 . The projec-

tions was made along changeable tilt angles, as ϕ =

(30◦, 45◦, 60◦, 65◦, 70◦, 75◦, 80◦, 85◦, 90◦). The model was
reconstructed by SART algorithm in the phantom. By observ-
ing the pattern image in each layer we can view the disparity
of reconstructed images intuitively. Fig.10 shows the recon-
structed images of the 254th layer. Visually, as the tilt angle
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FIGURE 10. The reconstructed images of the 254th layer of
h0
r0
=

1
80 at

different tilt angles: (a) 45◦; (b) 60◦; (c) 70◦; (d) 80◦; (e) 85◦; (f) 90◦.

FIGURE 11. The reconstructed images of the 254th layer of
h0
r0
= 6 at

different tilt angles: (a) 45◦; (b) 60◦; (c) 70◦; (d) 80◦; (e) 85◦; (f) 90◦.

increases, the image quality improves first and then deterio-
rates after a certain angle. Both the reconstructed layers at tilt
angle 45◦ and 90◦ have relative degraded images, but not for
the same reason. When the tilt angle is quite small, the main
factor affecting image quality is the unevenly distribution of
gray values, which is caused by the much larger solution
domain than the actual region occupied by the object. And
when the tilt angle is close to 90◦, the low image quality is
caused by the insufficient conditions provided by projections.

In the second simulation, the height-radius ratio of the sim-
ulated object was set to h0

r0
= 6. Any other conditions were all

same as those in the first simulation. Fig.11 shows the recon-
structed images of the 254th layer. Compared with Fig.10,
each reconstructed layer at tilt angle below 85◦ has reduced
image quality. However, the reconstructed layer image at tilt
angle 90◦ is exactly the same as that in Fig.9, which verifies
that the proportion of the scanned object does not have an
effect on CT imaging. Due to the change of the model shape,
the optimal tilt angle is more close to 90◦.

A. GRAYSCALE ABSOLUTE ERROR OF RECONSTRUCTED
IMAGES
The proximity of reconstructed layer image to the original
layer image is reflected by the grayscale absolute error. The

FIGURE 12. The grayscale absolute error images of 254th layer of
h0
r0
=

1
80 at tilt angles: (a) 45◦; (b) 60◦; (c) 70◦; (d) 80◦; (e) 85◦; (f) 90◦.

FIGURE 13. The ϕ-depended grayscale MAE curve of the 254th layer and
the 257th layer.

grayscale difference image of the 254th layer ( h0r0 =
1
80 ),

shown in Fig.12, directly reveals the accuracy of reconstruc-
tion.

Furthermore, the grayscale mean absolute error (MAE) of
each pixel in the pattern image is calculated. It is indicated
by the ratio of the actual grayscale error to the maximum
pixel grayscale value. The grayscale MAE ranges from 0 to
1, where MAE = 0 means no error and MAE = 1 means the
maximum limit error. The curve of grayscale MAE versus
tilt angle is shown in Fig.13. Better image reconstruction
accuracy will lead to a reduction in MAE. It can be observed
from Fig.13 that the grayscale MAE decreases first and then
increases after a certain tilt angle, which confirms the visual
conclusion. In the second simulation, the minimum MAE
point is closer to 90◦ in the x-axis compared to that in the first
simulation. Fig.13 also shows the similarity of MAE curve
shapes of different layers in the same model.

B. IMAGE QUALITY EVALUATED BY PSNR AND SSIM
In order to objectively evaluate the quality of reconstructed
images, PSNR and SSIM were used to evaluate the quality
of reconstructed images at specific layers. PSNR, short for
peak signal to noise ratio, is a pixel-wise error metric, which
is normally used to judge CT image quality based MSE mea-
sure [19], [20]. SSIM, short for structural similarity index,
is regarded as a robust measure to compare image quality for
CT reconstructions relative to a reference [21], [22]. By com-
paring with the original images in the phantom, the PSNR and
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FIGURE 14. The ϕ-depended image PSNR curve of the 254th layer and the
257th layer.

FIGURE 15. The ϕ-depended image SSIM curve of the 254th layer and the
257th layer.

SSIM values of 254th layer image and 257th layer image at
each sampling tilt angle were calculated and fitted in contin-
uous curves. The PSNR curve is shown in Fig.14 and SSIM
curve in Fig.15. Fig.14 and Fig.15 illustrated that both the
PSNR and SSIM curves have peaks, which reflect the exis-
tence of maximum image quality. The result clearly showed
that the optimal tilt angle is different in two simulations. In the
first simulation, the PSNR and SSIM curves are plotted by the
red lines. The quality of reconstructed layer image is optimal
at tilt angle around 80◦, although the trend of the PSNR and
SSIM curves are not identical. The tilt angle of maximum
PSNR and SSIM is close to result of theoretical modeling.
The curves drop sharply when approaching 90◦. That phe-
nomenon is also confirmed by theoretical predictions.

Same as the first simulation, the PSNR and SSIM curves
of 254th layer image and 257th layer image at each sampling
tilt angle are plotted by the blue lines in Fig.14 and Fig.15.
The tilt angle of peak PSNR and SSIM curves is around 85◦

according to the figures, which is close to result of theo-
retical modeling. It is ascertained that the optimal tilt angle
approaches 90◦ as the ratio h0

r0
increases infinitely. On the

premise of parallel beam projections, CT scanning (when tilt
angle ϕ = 90◦) is more suitable for ‘rod-shaped’ objects
rather than flat objects. However, in any case when the tilt
angle is slightly less than 90◦, it does help to improve the
quality of reconstruction.

Based on the indicators above, we further obtained the
optimal laminographic tilt angles of different h0

r0
ratios, as

h0
r0
=

(
1
80 ,

1
20 ,

1
3 , 1, 2, 4, 6

)
. The line graph is shown

in Fig.16, where the interval of tested tilt angles is 1◦.

FIGURE 16. The experimental optimal tilt angles of different
h0
r0

ratios of
simulated cylindrical objects.

The proposed method provides a theoretical basis for
obtaining the optimal scanning tilt angle. Comparedwith con-
clusions only through conventional simulations and experi-
ments, the result acquired by this method is more suitable for
objects with various shapes [13], [23]. Three indicators have
been used to evaluate the image quality. Similar curves can
be obtained by using other indicators [23].

VI. CONCLUSION
This article has briefly introduced the computed laminogra-
phy as a superior method for imaging internal structures of
flat objects. As a scanning geometric parameter, the lamino-
graphic tilt angle highly affect the quality of reconstruction.
A method has been proposed to calculate optimal lamino-
graphic tilt angle. The method involves the two essential
factors: the quantity information acquired by projections,
the reconstructive solution domain of the object. We have
evaluated the quantity information by measuring the entropy
reduction caused by projection conditional constraints, and
calculated the general volume of solution domain for regu-
lar shaped objects (cylindrical models). The optimization is
about balancing the two factors, which adjusts the lamino-
graphic tilt angle for maximum ratio of the quantity informa-
tion and the volume of solution domain. At last, a CL imaging
simulation of cylindrical models was designed to verify the
effectiveness of the method. The calculated theoretical opti-
mal tilt angle was proved to be quite close to the experimental
result. Meanwhile, the method is expected to be effective for
other kinds of objects with clear boundaries, which requires
more experiments.
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