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ABSTRACT With the increasing demand for geological and weather information, remote sensing satellite
networks (RSSNs) play increasingly important roles in monitoring our planet. On account of the signifi-
cant differences between RSSNs and traditional communication networks, the traditional communication
capacity which only focus on the performance of data transmission process cannot well capture the service
capability of RSSNs. In order to provide efficient guidelines to the deployment of RSSNs, in this paper
we study a new capacity indicator, called information capacity, which takes into account the whole service
process of RSSNs, including information acquisition, processing, storage, and transmission. Specifically,
we firstly propose the formal definition of information capacity. Then, a new graph model called micro-
scopic time-expanded graph (MTEG) is developed, which characterizes the intertwined impact of the
observation, computational, storage and transmission resources on the service process of RSSNs. Base on
this graph model, a mathematical framework is developed to compute the information capacity. Owing to
the NP-completeness of the formulated problem, we decompose it into a flow optimization problem and
an arc scheduling problem of the MTEG model, and then propose a Graph-based Information Capacity
Solving (GICS) algorithm to efficiently solve the problem. Finally, simulation results highlight the necessity
of study the information capacity of RSSNs.

INDEX TERMS Remote sensing satellite networks, network capacity, performance analysis.

I. INTRODUCTION
Remote sensing is the technique of deriving information
about objects or phenomena remotely without physical con-
tact with them [1]. Benefiting from the extensive coverage,
remote sensing satellites have become important participants
in earth observation, and the acquired data of them are of great
need in the study of climate change, environment protection,
disaster control and so on. To meet with the surging vol-
ume and real-time requirements of geological information,
more and more remote sensing satellites are launched to
form constellation and networks in past decades [2]. Thus,
the analysis and investigation of remote sensing satellite
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networks (RSSNs) has become a hot topic in the field of space
research and design [3], [4].

Network capacity is one of the most prominent metrics
to characterize the network performance. The capacity of
terrestrial networks has been widely studied [5]–[7] since
the seminal work of Kumar in 2000 [8]. In these works the
capacity is described as the maximum achievable through-
put of the network. Similarly, in [9], [10] the authors
study two-layered satellite networks, wherein the capacity
is defined as the maximum achievable throughput of the
network. In [11], [12], the authors investigate the communi-
cation capacity of space-ground networks, which is defined
as maximum total amount of data downloaded to the ground
per unit time. In above literatures, the capacity defined based
on throughput can well capture the service capability of
networks.
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FIGURE 1. An example remote sensing satellite network.

However, the throughput-based capacity can not work well
in RSSNs, due to the remarkable differences between RSSNs
and traditional communication networks. Fig. 1 illustrates
an example of service processing of RSSNs. It can be seen
that firstly remote sensing satellites acquire raw images by
imagers. Afterwards, the raw images are compressed by com-
pression unit. Then, the compressed data will be transmitted
to ground stations and finally sent to the Data Processing
Center (DPC). After arriving at the DPC, the compressed
images are reconstructed. At last, the reconstructed image is
sent to the user. Based on the example, two major differences
between RSSNs and traditional communication networks can
be concluded.
• Besides the communication process, service capability
of RSSNs is also impacted by information acquisition,
processing and storage processes.

• Because of the effect of computational resources
(e.g., compression unit), in RSSNs the amount of effec-
tive information delivered to the users per unit time is
much more efficient to characterize performance than
throughput.

Therefore, a new metric should be considered to charac-
terize the service capability of RSSNs. As shown in Fig. 2,
the new metric should cover the ensemble service pro-
cess of RSSNs, which includes information acquisition, pro-
cessing, storage, and transmission, rather than only takes
the information transmission into account as the traditional
throughput-based capacity. For the convenience of follow-
ing discussion, the traditional throughput-based capacity is
referred to as communication capacity, and the new indica-
tor is referred to as information capacity hereinafter.
With the development of information technologies,

the joint management of heterogenous resources, especially
the 3C resources (i.e., Computing, Caching, and Communi-
cation resources), has become a new trend. Currently, some
works focus on the joint optimization of multiple processes of
information with different resources (especially information

processing, storage and transmission) in terrestrial networks,
such as internet of things [13], information centric net-
works [14] and mobile edge computing networks [15], [16].
However, it is still challenging to study the information capac-
ity of RSSNs, due to several reasons: 1) Although there have
been a big chunk of works focused on the capacity of net-
works, the indicator can efficiently characterize the capability
to provide effective information to users of RSSNs is still
absent. 2) On account of the compressing and reconstructing
effect of computational resource, the data flows of RSSNs
no longer keep conservation, which raises challenges to the
analysis of information capacity. 3) The interactions among
the information acquisition, processing, storage and transmis-
sion process is complex. For example, the observation and
transmission processes of an agile remote sensing satellite1

may conflict with each other when they require different
attitude of satellite platform. Therefore, the service process of
RSSNs cannot be resolve into independent parts to analysis
respectively, so that it is essential to represent the observation,
computational, storage and transmission resources jointly and
characterize their intertwined impact the service process.

In this paper we explore the information capacity of
RSSNs. We first propose the formal definition of information
capacity. Then, we extend traditional time-expanded graph
by modeling remote sensing satellite in a microscopic level
and adding virtual arcs and virtual vertex. A new graph
model called microscopic time-expanded graph (MTEG) is
developed, which characterizes the intertwined impact of the
information acquisition, processing, storage and transmission
resources on the service process of RSSNs. Base on this graph
model, we develop a mathematical framework to compute the
information capacity. Owing to the NP-completeness of the
formulated problem, we decompose it into a flow optimiza-
tion problem and an arc scheduling problem of the MTEG
model, and then propose a Graph-based Information Capacity
Solving (GICS) algorithm to solve the problem in polynomial
time. Simulation results highlight the necessity of study the
information capacity of RSSNs.

The main contributions of this paper are as follows:
• To evaluate the service capability of RSSNs, we formally
define a new indicator, information capacity, which
involves the entire service processes.

• MTEG is developed to capture the time-varying coor-
dination relationship among the observation, compu-
tational, storage and transmission resources and their
intertwined impact on the service process in RSSNs.

• We formulate the problem of solving information capac-
ity of RSSNs. Since the formulated problem falls in the
category of mixed-integer nonlinear program (MINLP),
we decompose it into a flow optimization problem
and an arc scheduling problem based on the MTEG
model. Then, a Graph-based Information Capacity

1An agile satellite is equipped with attitude and orbit control sys-
tem (AOCS) to be able to turn around three axes: roll, pitch, and yaw.
An example of an agile satellite is PLEIADES, which was developed by the
CNES, the French Space Agency [17].
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FIGURE 2. Comparison between information capacity and communication capacity. The light green, blue and dark green arrows indicate
the flowing of raw images, compressed data and reconstructed images in RSSNs, respectively.

Solving (GICS) algorithm is proposed to efficiently
solve the problem.

• Extensive simulation results are provided to validate the
effectiveness and necessity of analysis of information
capacity in RSSNs. The impacts of different network
resources on the information capacity are evaluated.

The remainder of this paper is organized as follows.
Section II introduces the RSSN system model under con-
sideration and proposed the definition of information capac-
ity of RSSNs. In Section III, we develop a graph model
calledmicroscopic time-expanded graph (MTEG) and formu-
late the problem of solving information capacity of RSSNs.
Section IV decomposes the problem and then proposes a
graph-based algorithm to solve the information capacity of
RSSNs in polynomial time. The performance evaluation by
simulations is presented in Section V, followed by concluding
remarks in Section VI.

II. SYSTEM MODEL
A. NETWORK MODEL
Consider a remote sensing satellite networkN (as illustrated
in Fig. 1), which is comprised of:
• A set of remote sensing satellites, denoted by OS =
{os1, os2, . . . , osn, . . .}. The payloads of each remote
sensing satellite include an imager, an image compres-
sion unit, a solid state mass storage and a transceiver.

• A set of ground stations GS = {gs1, gs2, . . . , gsn, . . .}.
• A data processing center (DPC), denoted by dc.
During planning horizon [0,T ], there are a set of

earth observation missions to be planed, which is denoted
by OM = {om1, om2, . . . , omn, . . .}. A mission omj
can be described by a 3-tuple [obj, crj, dyj], where obj
denotes the observation target of mission omj. Let OB =
{ob1, ob2, . . . , obn, . . .} denotes the set of observation targets
in N . crj denotes the maximum compression ratio that can
be adopted by omj. dyj is the tolerable delay of omj, which is
the maximum length of time taken from image acquisition to
arriving at the DPC.

RSSN completes the missions according to the plans
provided by the Mission Operation Center (MOC). Fig. 2
illustrates the implementation process of a mission. Firstly,
remote sensing satellites acquire the raw images of the obser-
vation target when it is in the observable range of the onboard

imagers. Then, the raw images are encoded by the com-
pression unit. Because of the orbiting movements, the link
between a remote sensing satellite and a ground station can
be established only when the satellite moves into the coverage
of the ground station. That is to say, the compressed data
are delivered to the ground station via store-carry-forward
paradigm [18]. Therefore, the output of the compression unit
would be stored in the onboard storage or transmitted directly.
After arriving at the ground station, the compressed data are
sent to the DPC and reconstructed. Finally, the reconstructed
image is sent to the user.

Therefore, a mission plan should specify the remote sens-
ing satellites and observation duration, compression level,
the downlinks and the transmission duration for eachmission.
Moreover, to guarantee the QoS requirement of each mission,
a feasible mission plan p should select a compression ratio no
larger than crj for mission omj and make all the image data
be sent to the DPC within dyj. Let P denote the set of feasible
mission plans.

B. ONBOARD COMPUTATIONAL RESOURCES
Being capable of solving the ‘‘bandwidth vs. data vol-
ume’’ dilemma of modern spacecraft, onboard computational
resource is playing amore andmore vital role in the service of
RSSNs. To be specific, with the growth of spatial resolution
and swath of satellite imaging payloads, the ever increasing
data acquisition rates incurs heavy burden on the limited on
board communication and storage resources [19], [20]. For
example, the acquisition data rate of CSG (COSMO-SkyMed
Second Generation2) satellites can be up to 2 × 1.2 Gbit/s,
while the data downlink rate and onboard storage capacity
are only 2 × 260 Mbit/s and 1500 Gbit, respectively [21].
By compressing mission data, the onboard computational
resources compensate for the limited onboard communica-
tion and storage resources, and thus improve the service
capability of RSSNs effectively. However, there exist few
works which focus on network capacity consider the effect

2COSMO-SkyMed second generation (Constellation of Small Satellites
for Mediterranean basin observation) or CSG is an Earth observation pro-
gram of the Italian Space Agency (ASI). The first satellite of CSG is
scheduled to launch in the last quarter of 2019.
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of computational resource. Therefore, in this subsection we
propose the model of onboard computational resource.

With the development of onboard image compression algo-
rithm and hardware design [22]–[24], the image compression
module has become an indispensable payload of remote sens-
ing satellites. For instance, the image compression module
of CSG satellites can provide seven different compression
ratios: 10:10 (uncompressed), 10:6, 10:5, 10:4, 10:3, 10:2 and
10:1. There are two classes of image compression meth-
ods: lossless or lossy [25]. With lossless image compression,
the reconstructed image is exactly the same as the original
one, without any information lost. On the contrary, lossy
image compression would reconstruct the image with a vary-
ing degree of information loss. Generally, for a given lossy
image compression method, the larger the compression ratio
is, the more information is lost through compression.

In this paper, we assume each remote sensing satellite is
equipped with an image compressionmodule with processing
rate Rp, which can provide Q levels of lossy compression.3

Let ϕi(1 ≤ i ≤ Q) denote the compression ratio of the ith
level. Consider anM ×N image with σbit data quantization,
where M andN are the number of rows and columns of pixels
in the image. The original volume of this image isMNσbits.
After the compression of ith level, only MNσ

ϕi
bits compressed

data are required to be downloaded to the ground. At the
DPC, an image of the same size with the original one can
be reconstructed.

The distortion of a reconstructed image can be evaluated by
image quality measures, such as MaximumDifference (MD),
Peak Mean Square Error (PMSE), Normalized Mean Square
Error (NMSE) [26]. Take NMSE as an example, which is
defined as follows

NMSE =

∑M
j=1

∑N
k=1[F(j, k)− F̂(j, k)]

2∑M
j=1

∑N
k=1[F(j, k)]2

(1)

where F(i, j) and F̂(i, j) denote the samples of original and
reconstructed image. In this paper, we use the average NMSE
of the images compressed by ith compression level, denoted
by dsi, to quantify the distortion caused by the ith compres-
sion level.

C. INFORMATION CAPACITY
In this subsection, we define a new metric called information
capacity to capture the service capability of RSSNs. For the
sake of convenience in comparison later, we first introduce
the definition of communication capacity, before formally
defining the information capacity.
Definition 1 (Communication Capacity [12]): The com-

munication capacity of N is the maximum sum amount of
the data that ground stations can receive from the satellites

3Note that although this paper only considers lossy compression, the anal-
ysis can be easily extended to incorporate lossless image compression. This is
can be realized by just regarding the lossless image compression as a special
case of lossy image compression with zero information loss.

per unit time, i.e.,

Ccm =
1
T

∑
1≤i≤|OS|

∑
1≤j≤|GS|

∫ T

0
αij(t)rij(t)dt, (2)

where αij(t) represents the availability of a link (the existence
of a line-of-sight) between remote sensing satellite osi and
ground station gsj, and rij(t) denotes the data transfer rate
between satellite osi and ground station gsj. �

As we have discussed in Section I, the major differences
between communication capacity and information capacity
lie in that communication capacity only focus on the informa-
tion transmission process, while information capacity should
cover the entire mission implementation process including
information acquisition, processing, storage, and transmis-
sion. With the image compression and reconstruction of the
information process, only the amount of data downloaded to
the ground cannot reflect the service capability. To evaluate
the information capacity of RSSNs, both the data volume and
the quality of the images received by users should be taken
into account. To this end, we define a metric, called effective
data volume, to indicate the amount of valid information of a
reconstructed image.
Definition 2 (Effective Data Volume): Consider an image

which has been compressed under the ith level. After being
reconstructed, the effective data volume of this image is

ed = rd · (1− dsi), (3)

where rd is the data volume of the reconstructed image. �
Thus, to measure the capability that RSSNs provide effec-

tive information to the users, the definition of information
capacity is given as follows:
Definition 3 (Information Capacity): The information

capacity of N is the maximum sum amount of the effective
data that DPC can provide to the users per unit time, i.e.,

Cin =
maxp∈P

∑
omj∈OM rdj(p) · (1− dsclj(p))

T
, (4)

where P denotes the set of all the feasible mission plans,
which is determined by the given RSSN and mission set
OM. rdj(p) denotes the amount of data of omj that can be
reconstructed by the DPC under mission plan p, and clj(p)
denotes the compression level chosen by mission omj under
mission plan p. �

III. ANALYTICAL FRAMEWORK OF RSSNs
In this section, we propose a graphical model which charac-
terizes the cooperative and interactive relationships among
multiple resources (including observation, computational,
storage and transmission resources) during the service pro-
cess of RSSNs. Then, the problem of solving the infor-
mation capacity of RSSNs can be formulated into the
multi-commodity flow problem under the resource conflict
constraint in the graphical model.
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A. MICROSCOPIC TIME-EXPANDED GRAPH
It is challenging to develop analytical frameworks of RSSNs
due to the dynamic characters and the intertwined effect of the
heterogeneous resources (e.g., observation, computational,
storage and communication resources) on the information
traversing process. Although the time-space graph models
(e.g., time expanded graph (TEG) [27] and its extended
visions [28], [29]) can be employed tomodel the dynamic and
intertwined properties of resources, the effect of computa-
tional resource is still not taken into account. An intuitive way
to tackle this problem is to modify the above graph models:
when the compression condition is satisfied, reduce the value
of flows after they passing by the vertices representing satel-
lites with onboard computational resource. Nevertheless, this
method breaks the flow conservation condition of the graph
model, which would lead to that the classical network flow
theory fails to be employed during the analysis of informa-
tion capacity. Therefore, a more sophisticated graph model
which not only incorporates the the effect of computational
resource, but also retains the analytical characteristics of
the traditional time-expanded graph is required. To this end,
we further extend traditional time-expanded graph, wherein
the main modifications is given as follows:

FIGURE 3. The design principle of microscopic time-expanded graph of
RSSNs.

• To model the onboard compression process, we rep-
resent remote sensing satellites in a more microscopic
way. To be specific, each remote sensing satellite is
decomposed into three parts (as shown in Fig. 3(a)):
imager, compression unit and storage-transmitter part,

and each part is represented by a vertex in the graphical
model.

• To guarantee the flow conservation condition, we add a
virtual vertex (i.e., vr in Fig. 3(b)) into the graph model,
which connects to the vertices representing compression
unit by virtual arcs. With the aid of these virtual vertex
and virtual arcs, the data compression process can be
modeled by a flow splitting process.

Since this extended graph model represents satellite nodes
from a more microscopic point of view compared to the
traditional time expanded graph, we refer it to as micro-
scopic time-expanded graph (MTEG). Fig. 3(b) illustrates
the MTEG of the example RSSN in Fig. 1. The MTEG
of N , denoted by GK (V,A), is a directed graph composed
of K layers. To construct the MTEG, we first divide the
planning horizon [0,T ) into K slots, each with duration τ .
Then, a snapshot is extracted from each slot to form the
corresponding layer inMTEG, which represents the topology
during the slot. Note that although used to model dynamic
networks, MTEG are static graphs, i.e., all the arcs therein are
static. In other words, with MTEG, RSSN with consecutive
topology evolution can be approximated into a network of
which the topology is static during each slot and only changes
at slot transitions.

There are two kinds of vertices in GK : ordinary vertices
and virtual vertices, i.e, V = Vo

⋃
Vv. The ordinary vertices

correspond to the temporal replicas of the observation targets,
imagers, compression units, storage-transmitter parts, ground
stations and DPC in N , i.e.,

Vo = Vob
⋃

Vim
⋃

Vps
⋃

Vst
⋃

Vgs
⋃

Vdc, (5)

where Vob = {obki |1 ≤ i ≤ |OB|, 1 ≤ k ≤ K }, Vim =
{imki |1 ≤ i ≤ |OS|, 1 ≤ k ≤ K }, Vps = {pski |1 ≤ i ≤
|OS|, 1 ≤ k ≤ K }, Vst = {stki |1 ≤ i ≤ |OS|, 1 ≤ k ≤ K },
Vgs = {1 ≤ i ≤ |GS|, 1 ≤ k ≤ K }, Vdc = {dck |1 ≤ k ≤
K }. The virtual vertices vr is a virtual sink of the redundant
information which is reduced by compression.

There are four kinds of arcs in GK : observation arcs,
link arcs, storage arcs and process arcs (represented by the
green, blue, red and yellow lines in Fig. 3(b), respectively).
The observation arcs model the opportunities for remote
sensing satellites to acquire mission data from observation
targets, i.e.,

Aob= {(obki , im
k
j )|

obi is in the coverage of osj in the kth slot}. (6)

The capacity of observation arc (obki , im
k
j ) ∈ Aob, is the

maximum amount of data can be acquired by remote sensing
satellite osj from observation target obi in the kth slot, i.e.,

C(obki , im
k
j ) = rim · τ, (7)

where rim is the data acquisition rate of remote sensing satel-
lites. The link arcs represent the communication opportunities
between remote sensing satellites and ground stations and the
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links from ground stations to DPC, i.e.,

Al = Aog
⋃

Agd , (8)

where

Aog = {(stki , gs
k
j )|osi locates in the coverage of gsj

in the kth slot, oski ∈ Vos, gs
k
j ∈ Vgs}, (9)

and

Agd = {(gski , dc
k )|gski ∈ Vgs, dc

k
∈ Vdc}. (10)

The capacity of link arc (stki , gs
k
j ) ∈ Aog is the maximum

amount of data that can be transmitted by link (sti, gsj) in
kth slot, i.e.,

C(stki , gs
k
j ) =

∫ kτ

(k−1)τ
rij(t)dt, (11)

where rij(t) is the data rate of link (sti, gsj). In addition, since
ground stations and DPC are connected by high speed wired
links, we set the capacity of arc (gski , dc

k ) ∈ Agd to be infinity.
The storage arcs model the storage capability of satellites,
ground stations, and DPC. The storage arc set is defined as

As = {(vki , v
k+1
i )|vki ∈ Vst

⋃
Vgs

⋃
Vdc, 1 ≤ k ≤ K − 1}.

(12)

The capacity of data storage arc (vki , v
k+1
i ), is the storage

capacity of vi, i.e.,

C(vki , v
k+1
i ) = sg(vi), (13)

where sg(vi) is the storage capacity of vi. In addition,
as ground stations and DPC are always equipped with mass
storage, the storage capacity of them are assumed to be
infinity.

The processing arcs represent the compress capability of
the onboard image compress unit. According to the relation-
ship with the compression vertices (i.e., pski in MTEG), there
are three kind of processing arcs. The set of processing arcs
is denoted by

Ap = Aip
⋃

Apt
⋃

Apv, (14)

where arcs in Aip = {(imki , ps
k
i )|1 ≤ i ≤ |OS|, 1 ≤ k ≤ K }

models the connections for raw image data passing from the
onboard imager to compression unit. The capacity of process
arc (imki , ps

k
i ) ∈ Aip is set to be the maximum amount of raw

image data that can be processed by the compression unit in
a slot, i.e.,

C(imki , ps
k
i ) = Rp · τ, (15)

where Rp is the processing rate of the compression unit. Arcs
in Apt = {(pski , st

k
i )|1 ≤ i ≤ |OS|, 1 ≤ k ≤ K } model

the process that compressed data flow to the storage and
transceiver parts from the onboard compression units. Arcs
in Apv = {(pski , vr )|1 ≤ i ≤ |OS|, 1 ≤ k ≤ K } represent
the virtual process that redundant information reduced by

compression unit moving to the virtual vertex. The capacity
of the processing arcs in Apt

⋃
Apv are set to be infinite.

Through the compression vertices, virtual vertex and pro-
cessing arcs, the MTEG can model the image compressing
process by a flow splitting process. That is the flow from the
imager vertices splits into two parts after passing by a com-
pression vertex. The first part passes through the arcs in Apt ,
which represents the effective data retained by compression
process. The second part goes to the virtual vertex through
the arcs in Apv, which represents the redundant information
reduced by compression process. By this way, the MTEG
can not only model the the effect of computational resource,
but also keeps the flow conservation condition of the network
flow theory.
Thus, the MTEG can model the intertwined effect of

the observation, computational, storage and communication
resources on the mission complete processes of RSSNs.More
specifically, the flows in the MTEG represent mission com-
plete processes (i.e., how the observation, computational,
storage and communication resource are scheduled to com-
plete the mission) in N . Take the flow f in Fig. 3(b) as an
example, it represents that the remote sensing satellite os1
acquires x bits raw image data from observation target ob2
by imager im1, and compresses the raw image under the
ith level during [0, τ ). After compression, ϕi−1

ϕi
x bits are

reduced. Then, the remaining x/ϕi bits data are stored in
os1 in [τ, 2τ ), and finally delivered to dc via gs1 in [2τ, 3τ ).
Therefore, the mission scheduling problem in N can be for-
mulated into the multi-commodity flow problem in MTEG.

B. PROBLEM FORMULATION
As we can observe from the definition, the information
capacity of RSSNs can be obtained by solving the mission
plan which maximize the amount effective data outputted
by the DPC. Based on the correspondence between mission
complete process and the flows of METG, we can formulate
the problem into a multi-community flows problem. More
specifically, we firstly represent the mission execution pro-
cess (i.e., information acquisition, processing, storage and
transmission process) for each mission as the flows in the
MTEG. For each mission omn, to guarantee the execution
process satisfy the tolerable delay requirement dyn, the corre-
sponding flows should pass by nomore than ddyn/τe layers of
MTEG. Therefore, the set of alternative executing processes
of mission omn are modeled by the set of flows

Fn = {f |obkn → {vr, dc
l
}|0 ≤ l-k ≤ ddyn/τe − 1} (16)

where obkn → {vr, dcl} denotes the flow originated from
obkn and destined to vr and dcl in MTEG. Note that flow
obkn → {vr, dc

l
} has two destination vertex, we refer vr as

virtual destination and dcbten/τc as original destination. Let
F =

⋃
1≤n≤|OM | Fn denote the set of flows representing the

alternative mission executing processes of all the missions.
We introduce a set of boolean vectors yn = (y1n, y

2
n, . . . y

Q
n )

to indicate the compression level used by mission omn.
More specifically, if the ith compression level is employed
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by mission omn, then yin = 1; otherwise, yin = 0. The
compression ratio selected by omn can be expressed as yn9T ,
where 9 = (ϕ1, ϕ2, . . . , ϕQ). Let x(f ) denote the value of
flow f . The objective is to maximize the sum effective data
volume can be provided by DPC per unit time, which is
expressed as

1
T
max

∑
1≤n≤|OM |

∑
f ∈Fn

yn · (1 − DS)T · x(f ), (17)

where DS = (ds1, ds2, . . . dsm). Let x(vki , v
k
j , fn) > 0 denote

the amount of flow fn on arc (vki , v
k
j ). Hereinafter, we intro-

duce the constraints on the flows in F .
Conservation Condition of Flows:Aswe have discussed in

the previous subsection, with the introduction of virtual ver-
tex intoMTEG, the flows corresponding to mission execution
process satisfy the flow conversation condition, i.e.,∑

(vlj ,v
k
i )∈A

x(vlj, v
k
i , f )−

∑
(vki ,v

l
j )∈A

x(vki , v
l
j, f )

=


−x(f ), vki = s(f )
0, vki 6= s(f ), d(f ), vr
yn3T

· x(f ), vki = d(f )
(1− yn3T ) · x(f ), vki = vr

∀f ∈ Fn, 1 ≤ n ≤ |OM |, ∀vki ∈ Vo (18)

where 3 = (ϕ−11 , ϕ−12 , . . . , ϕ−1Q ), and s(f ) and d(f ) denote
the source and original destination vertex of flow f , respec-
tively. The flow conversation constraint restricts that through
the compression process, 1− yn3T of the raw image data are
reduced, only yn3T of the raw image data are required to be
delivered to the DPC.
Capacity Constraints:∑

f ∈F
x(vki , v

l
j, f ) ≤ C(v

k
i , v

l
j), ∀(vki , v

l
j) ∈ A (19)

The capacity constraint models the effects of the capacity of
observation, processing, transmission and storage resources
on the mission execution process.
Resource Conflict Constraints: There exist conflicts

among the schedules of the same resource (or different
resources), on account of the limited service capability of
antenna/imager and the restriction of satellite platform atti-
tude. For example, because of using single access antenna,
a remote sensing satellite can only communicate with only
one ground station at one slot, even if there are multiple
ground stations in its coverage range. In order to model this
kind of conflicts, we introduce a set of boolean variables
δ(stki , gs

k
j ), whose value is 1 if link (sti, gsj) is active at the

kth slot and 0 otherwise. Then, the conflicts of communica-
tion resource can be formulated as∑

(stki ,gs
k
j )∈Aog

δ(stki , gs
k
j ) ≤ 1, ∀stki ∈ Vst , (20)

and ∑
(stki ,gs

k
j )∈Aog

δ(stki , gs
k
j ) ≤ 1, ∀gskj ∈ Vgs. (21)

Similarly, to model the conflicts among observation resource,
we introduce a set of boolean variables δ(obki , im

k
j ), whose

value is 1 if imager imj points at obi at the kth slot, and
0 otherwise. Then, we have∑

(obki ,im
k
j )∈Aob

δ(obki , im
k
j ) ≤ 1, ∀obki ∈ Vob. (22)

Moreover, there also exist conflicts between the schedule of
communication and observation resource, when they require
different platform attitude of the same remote sensing satel-
lite. Therefore, we have

δ(obki , im
k
j )+

∑
(stkj ,gs

k
l )∈ξL (ob

k
i ,im

k
j )

δ(stkj , gs
k
l ) ≤ 1,

∀(obki , im
k
j ) ∈ Aob, (23)

and

δ(stki , gs
k
j )+

∑
(obkl ,im

k
i )∈ξO(st

k
i ,gs

k
j )

δ(obkl , im
k
i ) ≤ 1,

∀(stki , gs
k
j ) ∈ Aog, (24)

where ξL(obki , im
k
j ) denotes the set of communication

resources conflict with (obki , im
k
j ), and ξO(st

k
i , gs

k
j ) denotes

the set of observation resources conflict with (stki , gs
k
j ).

Sets ξL(obki , im
k
j ) and ξO(stki , gs

k
j ) are obtained by com-

puting the attitude required by the scheduling of observa-
tion/transmission resource with the orbit of satellites and
the location of targets/ground stations. Since no data are
transmitted by non-active links, in METG flows only pass the
link arcs which represent active links in corresponding time
slots, i.e.,∑
f∈F

x(stki , gs
k
j, f )≤δ(st

k
i , gs

k
j )C(st

k
i , gs

k
j ),

∀(stki , gs
k
j )∈Aog. (25)

Similarly, for the observation arcs we have∑
f∈F

x(obki, im
k
j, f )≤δ(ob

k
i, im

k
j )C(ob

k
i, im

k
j ),

∀(obki, im
k
j )∈Aob. (26)

Compression Constraints: For each mission omn, only one
compression level can be selected, i.e.,∑

1≤i≤Q

yin = 1, ∀1 ≤ n ≤ |OM |. (27)

To guarantee the requirement of image quality, the selected
compression ratio of omn should satisfy

yn9T
≤ crn, ∀1 ≤ n ≤ |OM |. (28)
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After being acquired, the raw images of mission omn are
compressed at the compression unit with ratio yn9T . In other
words, f ∈ Fn should satisfied

x(imks(f )m , psks(f )m , f )

= yn9T x(psks(f )m , stks(f )m , f )

∀f ∈ Fn, 1 ≤ n ≤ |OM |, 1 ≤ m ≤ |OS|, (29)

where ks(f ) is the layer index of s(f ) in the MTEG.
Above all, considering all the constraints and the objec-

tive previously described, the problem of maximizing sum
effective data volume obtained by DPC per unit time can be
written as:

P1 :
1
T

max
∑

1≤n≤|OM |

∑
f ∈Fn

(1 − DS)yTn · x(f )

s.t. constraints in Eq. (18)− Eq. (29)

In P1, x(f ) and x(vki , v
k
j , f ) are continuous variables, and

yin and δ(stki , gs
k
j ) are integer variables. Besides, the con-

straints in Eq. (18) and Eq. (29) is non-linear. Therefore,
P1 is an MINLP (mixed integer non-linear programming)
problem [30], which is NP-hard in general [31].

It should be noted that although the RSSN model consid-
ered in this work is relatively simple, which only includes
remote sensing satellites, ground stations and data processing
center, the MTEG and the analytical framework based it are
convenient to be extended to handle more complicated net-
works. For example, by adding vertices representing commu-
nication satellites (or data relay satellites) and drawing arcs
for these vertices according to visible relationship, theMTEG
can be extended to incorporate communication satellite net-
work (or data relay system).

IV. GRAPH-BASED PROBLEM ANALYSIS AND SOLUTION
The hardness to solve problem P1 optimally mainly comes
from two folds. One is the product terms which leads to
P1 nolinear, and the other is the large amount of integer
variables. In this section, we firstly decompose problem
P1 into two sub-problems of the MTEG graphical model,
i.e., flow optimization problem and arc scheduling problem.
Then, we develop algorithms to solve the two sub-problems,
respectively. At last, a graph-based algorithm is proposed to
calculate information capacity by solving the two subprob-
lems iteratively.

A. PROBLEM ANALYSIS AND DECOMPOSITION
Observed from the perspective of both mission completion
procedure in RSSN and the flows in MTEG, the variables of
problem P1 can be divided into three parts:
• Compression level indication variables y: boolean vari-
ables, which indicates the compression level selected for
each mission. InMTEG, yin determines the splitting ratio
of mission flows.

• Mission flow variables x: continuous variables. x(f ) rep-
resents the amount data which can be provided to users
for part f ofmission omi (f ∈ Fi). x(vki , v

k
j , fn) represents

the amount of data handled by resource (vki , v
k
j ). From

the perspective of METG graphical model, x(f ) is the
value of mission flow f , and x(vki , v

k
j , f ) represents the

value of f in each arc.
• Observation and communication resource schedul-
ing variables δ: boolean variables, which indicates
the schedule of observation resource and communi-
cation resource in each slot. In MTEG, δ(imki , st

k
j )

and δ(stki , gs
k
j ) indicates their corresponding observa-

tion arcs and communication arcs are active or not,
respectively.

In problem P1, the compression level indication variable y
are coupled with mission flow variable x by the product term
in the optimization objective and the constraints in Eq. (18)
and Eq. (29). As we can observe from Eq. (18) and Eq. (29),
if the value of x is fixed, the value of y is also determined.
Moreover, from the perspective of MTEG graphical model,
compression level indication variable y and mission flow
variables x jointly determine the value of flows. In com-
parison, observation and communication resource scheduling
variables δ determines whether an observation arcs or com-
munication arcs is active or not. Inspired by this observation,
we decompose P1 into two subproblems in MTEG to reduce
its computation complexity:
1) Flow optimization problem (FOP): solve x and y by

optimizing the flows (i.e., the flow splitting ratio at the
computation vertex, the flow value and the value on
each arc) in MTEG with given arc schedule.

2) Arc scheduling problem (ASP): solve δ by scheduling
the observation arcs and communication arcs without
conflict in MTEG.

With the decomposition, P1 can be solved by alternatively
solving the two subproblems. Algorithms are developed to
solve flow optimization problem and arc scheduling problem
in the following two subsections, respectively.

B. TRANSFORMATION AND SOLUTION OF FLOW
OPTIMIZATION PROBLEM
Given an arc schedule, the flow optimization problem (FOP)
can be obtained by fixing the observation and communication
resource scheduling variables δ in problem P1, which can be
expressed as follows.

FOP :
1
T

max
∑

1≤n≤|OM |

∑
f ∈Fn

(1− DS)yTn · x(f )

s.t. Eq. (18),Eq. (19),Eq. (25)− Eq. (29)

δ = δ0

It can be observed that the obtained problem is still an
MINLP, because of the integer variables y and the product
terms in the objective and constraints. Note that, the only
integer variables y are resulted from the discrete selection
of compression ratios. With the development of onboard
image compression technology, the number of compression
ratios can be supported onboard increases gradually. When
the adjustment of onboard compression compression ratio
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tends to be continuous, the integer variable y can be approx-
imated by continuous variable. Therefore, to solve the flow
optimization problem with high speed and low complexity,
we first relax the integer compression level indication vari-
ables. In this case, yin can be considered as the selection
weight of compression ratios, and the selected compression
ratio can be approximated by yn9

T . Thus, FOP can be trans-
ferred into an LP (Linear Programming) problem through
replacing the product term. Specifically, we consider the
transformation

x̂ in(f ) = x(f ) · yin. (30)

Based on this transformation, the objective can be reformu-
lated into

1
T
max

∑
1≤n≤|OM |

∑
f ∈Fn

x̂n(f ) · (1− DS)T ,

where vector x̂n(f ) = (x̂1n (f ), x̂
2
n (f ), . . . , x̂

Q
n (f )). Combining

Eq. (30) and Eq. (27), we have the following transformation

x(f ) = x(f ) ·
∑

1≤i≤Q

yin =
∑

1≤i≤Q

x̂ in(f ) (31)

By substitute Eq. (30) and Eq. (31) into Eq. (18), the flow
conservation constraint can be reformulated as∑
(vlj ,v

k
i )∈A

x(vlj, v
k
i , f )−

∑
(vki ,v

l
j )∈A

x(vki , v
l
j, f )

=


−

∑
1≤i≤Q

x̂ in(f ), vki = s(f )

0, vki 6= s(f ), d(f ), vr
x̂n(f )3T , vki = d(f )∑

1≤i≤Q
x̂ in(f )− x̂n(f )3

T , vki = vr

∀f ∈ Fn, 1 ≤ n ≤ |OM |, ∀vki ∈ Vo (32)

Similarly, the constraint in Eq.(29) can be reformulated as

x̂n(f )3T
= x(psks(f )m , stks(f )m , f )

∀f ∈ Fn, 1 ≤ n ≤ |OM |, 1 ≤ m ≤ |OS| (33)

In summary, by means of the transformation in Eq. (30)
and Eq. (31), we can reformulate flow optimization
problem as

FOLP :
1
T

max
∑

1≤n≤|OM |

∑
f ∈Fn

x̂n(f ) · (1−DS)T

s.t. Eq. (32),Eq. (19),Eq. (25)−Eq. (28),Eq. (33)

δ = δ0

It can be observed that the reformulation of the flow opti-
mization problem, referred to as FOLP, is an LP (Linear Pro-
gram) problem, which can be solved with polynomial time.
Based on the results x̂ in(f ) of FOLP, the relaxed compression
level indication variables ỹ can be obtained by following
expression.

ỹn =
x̂n(f )∑

1≤i≤Q x̂
i
n(f )

, ∀1 ≤ n ≤ |OM | (34)

Then, the compression level of each mission can be deter-
mined by rounding the sum of compression levels weighted
by ỹ, i.e.,

r = round(
∑

1≤i≤Q

ỹin · i), ∀1 ≤ n ≤ |OM | (35)

At last, we solve FOP with fixed y to obtain mission flow
variables x and information capacity Cin. Algorithm 1 sum-
marizes the detailed procedure of solving the flow optimiza-
tion problem.

Algorithm 1 Solution of Flow Optimization Problem
1: Input: MTEG GK (V,A), OM , δ0.
2: Onput: x, y, Cin.
3: Construct FOLP with δ0;
4: Solve FOLP;
5: for 1 ≤ n ≤ |OM | do
6: ỹn =

ˆxn(f )∑
1≤i≤Q x̂

i
n(f )

;

7: r ← round(
∑

1≤i≤Q ỹ
i
n · i);

8: yin← 1, i = r ;
9: yin← 0,∀i 6= r ;
10: end for
11: Solve FOP with fixed y;

C. GRAPH-BASED SOLUTION OF ARC
SCHEDULING PROBLEM
1) CONFLICT GRAPH FOR OBSERVATION AND
COMMUNICATION RESOURCES
As we have discussed in Section III.B, the schedule of dif-
ferent observation and/or communication resources may con-
flict with each other due to the limited service capability of
antenna/imager and the restriction of satellite platform atti-
tude. To provide a conflict-free schedule in MTEG, we pro-
pose conflict graph, denoted by CG, to model the conflict
relationship among different resources.

Fig. 4 depicts the conflict graph of the observation and
communication resources shown in Fig. 3(b). Each node
in conflict graph represents a possible resource schedule
which corresponds to an arc in MTEG. For example, node
nd(ob11, im

1
1) in Fig. 4 represents the schedule that the obser-

vation resource of satellite os1 (i.e., im1) observes ob1 in the
1st slot, which corresponds to arc (ob11, im

1
1) in Fig. 3(b).

The edges in conflict graph represent the conflicts between
the resource schedules. In other words, if there two resource
schedules conflicts with each other, there exist an edge
between the two nodes corresponding to them inCG. Accord-
ing to the source of conflicts, the edges of conflict graph can
be divided into two categories:
• Resource service restriction edges: represent the con-
flicts caused by the limitation on the number services
supported by observation and communication resources
at the same time. For example, edge nd(st11 , gs

1
1) ↔

nd(st11 , gs
1
2) represents the conflict that in the 1st slot
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FIGURE 4. Conflict Graph for observation and communication resources.

satellite os1 can only communicate with one ground
station of gs1 and gs2.

• Platform attitude restriction edges: represent the con-
flicts resulted in the different requirement of platform
attitude to a satellite. For example, edge nd(ob32, im

3
1)↔

nd(st31 , gs
3
2) represents the conflicts that in the 3rd slot

satellite os1 can either observe ob2 or communicate with
ground station gs2, due to the different platform attitude
requirement of os1.

Similar to MTEG, the conflict graph is a layered graph.
Moreover, the layers of conflict graph are independent with
each other, because the edges only connect nodes in the same
layer. The resource schedules contained in an independent
set4 of conflict graph are conflict-free, since there exists
no edge between the nodes of an independent set in CG.
Therefore, through sequentially finding independent sets for
each layer of the conflict graph, an conflict-free schedule of
observation and communication arcs can be obtained.

2) INITIALIZATION OF OBSERVATION AND
COMMUNICATION ARC SCHEDULE
An IASC (Initial Arc Schedule Construction) algorithm is
proposed to construct a conflict-free schedule of observation
and communication arcs through conflict graph at the begin-
ning of alternatively solving FOP and ASP problem. In order
to accelerate the convergence speed, an effective initial arc
schedule should be constructed to obtain a good solution
for the following flow optimization problem. To achieve this
goal, we strike a balance between the scheduled observation
and communication resources to avoid wasting the scheduled
resources. To this end, the main idea of IASC algorithm is to
set weight for the nodes according to the ratio of the capacity
scheduled observation and communication arcs, and then find
the maximum weight independent set in the conflict graph
layer by layer.

Algorithm 2 details the complete procedure of IOCAS
algorithm, which consists of two stages. In the first stage,

4The independent set in graph G is a set of nodes such that there is no two
nodes are adjacent in G [32].

the compression level r is initialized as follows.

r = arg max
1≤i≤Q

{(1− dsi)ϕi} (36)

Then, we search for the observation and communication
resources which have opportunities to complete a mission,
and set the weights of them in the conflict graph to 1.

In the second stage, the arc schedule is solved through
conflict graph layer by layer. For each layer, we firstly set the
weight of the nodes corresponding to observation arcs to ρ,
which is expressed as

ρ =
cc · ϕr
co

, (37)

wherein co and cc are the sum capacity of the scheduled
observation and communication arcs, respectively. Weight
ρ is designed to strike a balance between the scheduled
observation and communication resources so that achieve a
high resource utilization. For example, when co > cc · ϕr ,
the capacity of scheduled observation resources is larger
than amount of effective data the scheduled communication
resources can transmit even with the help of data compres-
sion. This means part of observation resources in the pre-
ceding layers cannot be fully utilized. In this case, weight
of observation arcs are set to ρ < 1 to reduce the ratio
of scheduled observation resources in the succeeding layers.
Secondly, we solve the maximum independent set5 of current
layer. After all the layers have been traversed, we obtain
the independent set of conflict graph IS by combining the
independent sets of each layer and thus obtain the observation
and communication resource scheduling variables.

3) UTILIZATION ORIENTED ARC SCHEDULING
A UOASU (Utilization Oriented Arc Schedule Update) algo-
rithm is proposed to improve the arc schedule based on
the solution of flow optimization problem. As shown in
Algorithm 3, we firstly search the set of scheduled resources
with low utilization, denoted by ALU . Then, for each arc
in ALU (without loss of generality, denoted by (vki , v

k
j )),

the weight of nodes in the same layer of CG are reset to
improve the opportunities of other resources to be scheduled.
More specifically, for the node corresponding to arc in ALU ,

its weight is reset to its utilization, i.e.,
x0(vki ,v

k
j )

C(vki ,v
k
j )
. For the other

nodes, the new weight is expressed as

w(vkm, v
k
n) = α

x0(vki , v
k
j )

C(vki , v
k
j )
+

(
1− α · δ0(vkm, v

k
n)
)
$,

∀(vkm, v
k
n) ∈ Aob

⋃
Aog, m 6= i, n 6= j (38)

wherein 0 < α < 1 and $ ∼ U (0, 1) is a uniformly
distributed random variable in (0,1). After the weights of all

5Note that the size of each layer in conflict graph is small because
of the limited number of satellites in RSSNs. Therefore, in spite of the
maximumweight independent set is NP-complete [33], we can solve it within
limited time through either enumerative methods (e.g. branch-and-bound
algorithms [34]) or approximation heuristic algorithm [35].
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Algorithm 2 Initial Arc Schedule Construction
1: Input: conflict graph CG, OM .
2: Onput: δ.
3: Initialize: ρ = 1, w = 0, δ = 0, co = 0, cc = 0.
4: r ← arg max

1≤i≤Q
{(1− dsi)ϕi};

5: for 1 ≤ n ≤ |OM | do
6: for each (obkn, im

k
i ) ∈ A do

7: if ∃(st li , gs
l
j) ∈ A and l − k ≤ dyn

τ
then

8: w(obkn, im
k
i )← 1;

9: w(st li , gs
l
j)← 1, ∀(st li , gs

l
j) ∈ A and l − k ≤ dyn

τ
;

10: end if
11: end for
12: end for
13: for 1 ≤ k ≤ K do
14: w(obkj , im

k
i )← w(obkj , im

k
i ) · ρ, ∀(ob

k
j , im

k
i ) ∈ A;

15: find maximum weight independent set of CGk ;
16: co← co +

∑
(obki ,im

k
j )∈Ink

C(obki , im
k
j );

17: cc← cc +
∑

(stki ,gs
k
j )∈Ink

C(stki , gs
k
j );

18: ρ ←
cc·ϕr
co

;
19: end for
20: IS = ∪1≤k≤K ISk ;
21: δ(vki , v

k
j )← 1, ∀(vki , v

k
j ) ∈ IS

Algorithm 3 Utilization Oriented Arc Schedule Update
1: Input: CG, OM , x0, δ0.
2: Onput: δ.
3: Initialize: w = 0, δ = δ0.

4: ALU ← {(vki , v
k
j )|(v

k
i , v

k
j ) ∈ Aob

⋃
Aog,

x0(vki ,v
k
j )

C(vki ,v
k
j )
< UT }

5: for each (vki , v
k
j ) ∈ ALU do

6: w(vki , v
k
j )←

x0(vki ,v
k
j )

C(vki ,v
k
j )

7: w(vkm, v
k
n) ←

1
2δ0(v

k
m, v

k
n) +

(
1− 1

2δ0(v
k
m, v

k
n)
)
$ ,

∀(vkm, v
k
n) ∈ Aob

⋃
Aog, m 6= i, n 6= j;

8: find the maximum weighted independent set of the
k-th layer of CG, and then update corresponding arc
scheduling variables in δ;

9: end for

nodes in the k-th layer being reset, we find the maximum
weighted independent set of the k-th layer of CG, and then
update corresponding arc scheduling variables in δ.

D. GRAPH-BASED INFORMATION CAPACITY
SOLVING ALGORITHM

Based on the decomposition of P1 and the algorithms to its
subproblems, a graph-based algorithm is proposed to solving
the information capacity. The outline of GBICS (graph-based
information capacity solving) algorithm is illustrated in
Algorithm 4. It firstly initialize a conflict-free schedule of
observation and communication arcs by IASC algorithm.
Then, we can obtain a initialized solution of P1 through SFOP

Algorithm 4 Graph-Based Information Capacity Solving
1: Input: MTEG GK (V,A), Mission demand OM .
2: Onput: Information Capacity Cin.
3: Initialize: t = 1.
4: δ0← IASC (GK (V,A),OM).
5: (C0

in, x0, y0)← SFOP (GK (V,A),OM , δ0)
6: while t < MT do
7: δ← UOASU (GK (V,A),OM , x0, δ0);
8: (Cin, x, y)← SFOP (GK (V,A),OM , δ);
9: if Cin > C0

in then
10: (C0

in, x0, y0, δ0)← (Cin, x, y, δ);
11: else
12: generate a random number$ ∼ U (0, 1);

13: if e
Cin−C

0
in

βt ·MR > $ then
14: (C0

in, x0, y0, δ0)← (Cin, x, y, δ);
15: end if
16: end if
17: t ← t + 1;
18: end while

algorithm. Afterwards, the flow optimization problem and
arc scheduling problem are solved iteratively by UOSAU
algorithm and SFOP algorithm, respectively. More specifi-
cally, in each iteration, if the new solution is better than the
current one, it is accepted. Otherwise, the new solution is

accepted with probability e
Cin−C

0
in

βt ·MR as illustrated in line 12-14
of Algorithm 4, wherein 0 < β < 1 and MR � 1. It should
be noted that the probability decreases with the difference
between the new solution and current one Cin − C0

in and
iteration number t . When t is small, the acceptance prob-
ability is large to avoid being stuck in a local optimum at
early iterations. When t get large, the acceptance probability
become small to accelerate convergence.

V. SIMULATIONS
In this section, simulation results are presented to vali-
date our analysis and investigate information capacity of
RSSNs. We conduct a baseline scenario which consists
of 20 remote sensing satellites, 6 ground stations and one
data processing center. The remote sensing satellites locate
in four sun-synchronous orbits at a height of 619.6km and
with inclination 97.86◦. The pitching and rolling angle of
remote sensing satellites can vary among range [−45◦, 45◦]
and [−30◦, 30◦], respectively. Each remote sensing satel-
lite is equipped with an imager, a image compressing unit,
a transceiver and a storage. The swath and resolution of the
imager is 60km and 2m, respectively. The data quantization
of the raw images is with 10bit. The image compressing
unit can supports 4 compression ratios, which are 4:4, 4:3,
4:2, 4:1. The transmission rate of the transceiver is 50Mbps.
The storage capacity is 100Gbit. The six ground stations
locate at Beijing (40◦N, 116◦E), Sanya (18◦N, 109.5◦E),
Kashi (39.5◦N, 76◦E),White Sands (34◦N, 105◦W), Santiago
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FIGURE 5. The information/communication capacity varying with
observation capability.

(33.5◦S, 70.5◦W), and Fracati (41.5◦N, 12.5◦E), respectively.
The antennas of ground stations are with minimum elevation
angle of 10◦. There are 80 missions, of which the observation
targets are uniformly distributed on the earth’s surface. The
tolerable delay of the missions are varying from 30min to two
hours. The planning horizon is from 11 Jun 2019 04:00:00 to
12 Jun 2019 04:00:00. The length of a time slot is set to
1 minute.6

A. INFORMATION CAPACITY WITH VARYING CAPABILITY
OF DIFFERENT RESOURCES
In this subsection, we investigate the impacts of different
resources on information capacity, and show the difference
between information capacity and traditional communica-
tion capacity [12]. To evaluate the impact of observation
resource on information capacity, we varying the resolution
of the imagers from 10m to 1m and show the information
capacity when tolerable delay is 0.5h, 1h and 2h in Fig. 5.
As expected, the communication capacity is not varying
with the capability of observation resource, because it does
not take into account the information acquisition process.
In comparison, the information capacity is non-decreasing
with the capability of observation resource. To be specific,
when the tolerable delay is small, the information capacity is
near linearly increasing with the data acquisition rate. This
is because due to the small tolerable delay, only the data
acquired from the observation targets near ground stations
have opportunities to be downloaded, which results in the
underutilization of downloading links. In this case, the larger
data acquisition rate is, the more data can be download.When
the tolerable delay is large, the growth of information capacity
become slow with the capability of observation resource until
stagnation. This is because in this case the data from much
more observation targets can be delivered through store-
carry-forward paradigm. Therefore, when the data acquisition
rate is too large, the information capacity is restricted by the
capacity of other resources.

6In practical application, the principle of deciding the value of τ is to strike
a balance between the accuracy of the model and computational complex.

FIGURE 6. The information/communication capacity varying with
computational capability.

Fig. 6 depicts the relationship of information (and commu-
nication) capacity with varying capability of computational
resource. As can be observed, the communication capacity
is not varying with the capability of computational resource,
since it does not consider the information processing process.
When the tolerable delay is small, the information capacity
increases slowly with the compression ratio. This is because
with the small tolerable delay, the transmission and storage
capability is large enough for most images without com-
pression. When the tolerable delay is large, the growth of
information capacity is nearly linear with the compression
ratio. In this case, the amount of acquired data is much
larger than the transmission capacity. Therefore, the larger
the compression ratio is, the more effective information can
be downloaded.

FIGURE 7. The information/communication capacity varying with
communication capability.

To evaluate the impact of communication resource on net-
work capacity, we varying the transmission rate from 20Mbps
to 70Mbps and plot the communication capacity and the
information capacity when tolerable delay is 0.5h, 1h and 2h
in Fig. 7. As expected, the communication capacity increases
linearly with the capability of communication resource.
In comparison, the information capacity has near-liner growth
with the capability of communication resource at first, and
then tends to become nonlinear saturation, because of the
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limitation of other resources. More specifically, when the
tolerable delay is small, the information capacity hardly
changes with the transmission rate. This is because due to
the small tolerable delay, only the data acquired from the
observation targets near ground stations have opportunities
to be downloaded, thus the downloading capacity is always
larger than the amount of acquired data. When the tolerable
delay is large, the information capacity has near-liner growth
with the capability of communication resource for a longer
period, and then tends to saturation. This is because in this
case large amount of acquired data can be delivered via store-
carry-forward paradigm, thus large downloading capability
is required. Therefore, the larger the transmission rate is,
the more effective information can be downloaded.

FIGURE 8. The information/communication capacity varying with storage
capability.

At last, we investigate the impact of storage resource
on information capacity, and show the difference between
information capacity and traditional communication capacity.
Fig. 8 depicts the information capacity and communication
capacity when the storage capacity varies from 30Gbit to
180Gbit. As can be observed, the communication capac-
ity is not varying with the capability of storage resource,
since it does not consider the impact of storage resources.
In comparison, the information capacity is non-decreasing
with the capability of storage resource. To be specific, when
the tolerable delay is small, the information capacity tends to
become saturation after a short period of near-linear growth.
This is because in this case only the data acquired from the
observation targets near ground stations have opportunities
to be downloaded, thus the required storage capacity is very
limited. When the tolerable delay is large, the information
capacity has near-liner growth with the capability of com-
munication resource for a longer period, and then tends to
saturation. This is because in this case large amount of data
can be delivered via store-carry-forward paradigm, thus large
amount of storage capacity is required.

B. INFORMATION CAPACITY WITH VARYING NETWORK
ARCHITECTURAL PARAMETERS
In this subsection, we investigate the impacts of different
network architectural parameters (e.g., the orbital parameters

of the satellites and the distribution of the ground stations)
on information capacity, and show the difference between
information capacity and traditional communication capacity.
Four new simulation scenarios are conducted by changing
one parameter of the baseline scenario (referred to as S0).
Note that to investigate the impact of different parameter
separately, each new scenario has only one parameter dif-
ferent from S0. Here, for the sake of brevity, for each new
scenario we only list the parameter different from the baseline
scenario.
• S1: The altitude of remote sensing satellites is 500km.
• S2: The altitude of remote sensing satellites is 1000km.
• S3: The six ground stations locate at Beijing (40◦N,
116◦E), Sanya (18◦N, 109.5◦E), Kashi (39.5◦N, 76◦E),
Weinan (34.5◦N, 109.5◦E), Xiamen (25.5◦N, 118◦E),
Jiamusi (46.5◦N, 130◦E).

• S4: The six ground stations locate at Kiruna (68◦N,
20◦E), Fairbank (65◦N, 148◦W), Jiamusi (46.5◦N,
130◦E), Huanghe (79◦N, 12◦E), Helsinki (60◦N, 25◦E),
Ushuaia (55◦S, 68.5◦W).

Hereinafter, we compare the simulation results and explore
the influence of satellite altitude and development of ground
stations on the network capacity.

FIGURE 9. The information/communication capacity varying with
different altitude of remote sensing satellites.

Fig. 9 illustrates the influence of varying altitude of remote
sensing satellites on both communication and information
capacity. It can be observed that both capacity increase
with altitude. This is because the length of visible windows
between the satellites and ground stations/observation targets
increases with the altitude of remote sensing satellites. More-
over, the variation of communication capacity with altitude
is more obvious than that of information capacity especially
when tolerant delay is large. This is because the communi-
cation capacity increases linearly with the communication
windows. In comparison, although high altitude brings more
observation and transmission opportunities, the information
capacity still be limited by the contention among resource
scheduling and the amount of storage and computational
resource, especially with large tolerant delay.

Fig. 10 illustrates the influence of different ground sta-
tion deployment on both communication and information
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FIGURE 10. The information/communication capacity varying different
ground station deployment.

capacity. In scenario S3, we deploy ground stations only
on China mainland. In scenario S0, we deploy the ground
stations globally and choose the locations with lower latitude.
In scenario S4, we deploy the ground stations globally and
choose the locations with higher latitude. As can be seen from
Fig. 10, the global deployment performs better than the local
deployment, and the deployment at higher latitudes performs
better than the deployment at lower latitudes. This is because
the global deployment can avoid the overlap of the coverage
areas of the ground stations. Moreover, because the remote
sensing satellites fly on near-polar orbits, the visible time
for a ground station increases with the latitude of the ground
station. Therefore, both global and high latitude deployment
of ground stations can bring more downloading opportunities
for remote sensing satellites.

VI. CONCLUSION
In this paper, we explore the information capacity of RSSNs.
We first propose the formal definition of information capac-
ity. Then, we extend traditional time-expanded graph by
modeling remote sensing satellites in a microscopic level
and adding virtual arcs and virtual vertex. A new graph
model called microscopic time-expanded graph (MTEG)
is developed, which characterizes the intertwined impact
of the observation, computational, storage and transmis-
sion resources on the service process. Base on this graph
model, we develop a mathematical framework to compute
the information capacity. Owing to the NP-completeness
of the formulated problem, we decompose it into a flow
optimization problem and an arc scheduling problem of the
MTEG model, and then propose a Graph-based Information
Capacity Solving (GICS) algorithm to efficiently solve the
problem. Finally, extensive simulation results are provided
to validate the effectiveness and necessity of analysis of
information capacity in RSSNs. The impacts of different
kinds of resources and network architectural parameters on
the information capacity are evaluated.
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