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ABSTRACT This paper proposes a new computational model to predict the earth pressure balance (EPB)
shield performance during tunnelling. The proposed model integrates an improved particle swarm opti-
mization (PSO) with adaptive neurofuzzy inference system (ANFIS) based on the fuzzy C-mean (FCM)
clustering method. In particular, the proposed model uses shield operational parameters as inputs and
computes the advance rate as the output. Prior to modeling, critical operational parameters are identified
through principle component analysis (PCA). The hybrid model is applied to the prediction of the shield
performance in the tunnel section of Guangzhou Metro Line 9 in China. The prediction results indicate
that the improved PSO-ANFIS model shows high accuracy in predicting the EPB shield performance in
terms of the multiobjective fitness function [i.e. root mean square error (RMSE) = 0.07, coefficient of
determination (R2) = 0.88, variance account (VA) = 0.84 for testing datasets, respectively]. The good
agreement between the actual measurements and predicted values demonstrates that the proposed model is
promising for predicting the EPB shield tunnel performance with good accuracy.

INDEX TERMS Earth pressure balance shield, principle component analysis, improved PSO-ANFIS, fuzzy
C-mean, advance rate.

I. INTRODUCTION
With the progress of manufacturing technology, larger and
increasingly complex tunnel projects are being constructed
in many Chinese cities [1]–[4]. In tunnel excavation projects,
one of the main aims is to optimise the performance of
the drilling system. Therefore, accurate performance of the
tunnel boring machine (TBM) can be employed to reduce
the risks associated with high costs and time consumed
during the tunnelling process [5]. Conversely, overestimat-
ing can be a negative effect for the utilization of project
resources [6]. Thus, if the tunnelling process is addressed in
an appropriate manner, the risks related to tunnelling projects
will be decreased considerably [7]–[12]. In general, the

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

TBM performance can be represented by the penetration rate
and advance rate. The penetration rate is the linear distance
between the excavation faces per unit time when the machine
is in production. The advance rate is the rate of the machine
face advancing forward, including both the production time
and downtime [13]. As the advance rate determines the total
construction time and the overall cost of a tunnelling project,
one of the most essential efforts in tunnel construction design
is to estimate the advance rate.

The performance analysis of the TBMand the development
of accurate prediction models have been the ultimate goal and
are still under development in several studies. In most of the
previous studies, both empirical and theoretical approaches
were developed for predicting the TBM performance. Typical
input parameters can be categorised as follows: i) geological
conditions [e.g. uniaxial compression strength (UCS) and
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geological strength index (GSI)], and ii) operational parame-
ters [e.g. thrust force (TF), cutterhead torque (CT), and tunnel
diameter (D)] [14]–[17]. Owing to large uncertainties in geo-
logical environments and construction processes, empirical
and theoretical approaches cannot display the nonlinear and
dynamic behaviour of the TBM performance. By utilizing a
large amount of field data, artificial intelligence (AI) models
may overcome this limitation.

AI-based models emerged two decades ago to serve as an
acceptable solution to several geotechnical problems; many
comprehensive reviews have summarised the effectiveness of
using AI models in widespread applications. To estimate the
TBM performance, some AI models have been developed,
including artificial neural networks (ANN) [18]–[20], fuzzy
logic (FL) [21], and adaptive neurofuzzy inference systems
(ANFIS) [22], [37]. ANN and non-linear multiple regression
models have been used for estimating tunnel boring machine
performance as a function of rock properties. However, to
date, studies have mostly used only geological data in the
prediction of TBM performance. Yin et al. [20] conducted
a comparative study for identifying the soil parameters using
different optimisation techniques such as genetic algorithms,
particle swarm optimization, simulated annealing, differen-
tial evolution, and the artificial bee colony. Results showed
that the differential evolution had the highest search ability
but the slowest convergence speed.

On the other hand, the dynamic features of construction
make the tunnelling process a nonlinear problem with large
uncertainties, which challenges construction management
andmakes accurate predictions difficult. In this respect, ANN
and FL can be used to address such challenges. However,
there has been an argument as to whether AI models can
yield reasonable solutions with robustness when addressing
nonlinear problems with uncertainties [23], [24]. The other
argument is that AI models may give distorted and/or inad-
equate explanations for problems owing to problems with
the local minima and inferior generalization. As a result,
hybridmodels have been developed by incorporating the opti-
mization algorithms with AI-based models. Salimi et al. [11]
discussed the applicability of artificial intelligence to design
sewage transfer system. The obtained results illustrated that
the ANFIS had better performance for estimating water ham-
mer phenomenon in the UPVC pipes while the PSO-ANFIS
was found to be more suitable in metal pipes. Azad et al. [8]
performed a comparative study for optimizing the perfor-
mance of ANFIS model in simulating monthly rainfall mag-
nitudes using different algorithms such as genetic algorithms,
particle swarm optimization, differential evolution, and the
artificial bee colony. The results showed that the hybrid
models had better accuracy than the simple ANFIS model in
escaping local optima [15]. So far, the basic idea of the hybrid
approaches is to address the shortcomings of single approach
and generate the effect of synergy in prediction, which have
become the predominant approaches in recent years. For
example, Elbaz et al. [25] proposed a hybrid model of a mul-
tiobjective genetic algorithm with ANFIS for predicting the

shield performance, demonstrating better prediction accuracy
than that from the traditional ANFIS technique. In spite of
available hybrid optimization techniques, attempts to propose
new ones are still ongoing.

This study aims to propose a hybrid multiobjective opti-
misation model for the prediction of shield machine perfor-
mance during the tunnelling process. The proposed model is
constructed using a fuzzy rule-based system optimised by an
improved PSO algorithm, which simultaneously adjusts both
antecedent and consequent variables. Principal component
analysis is applied to examine the effect of different parame-
ters on the advancement rate of the shield machine. To eval-
uate the performance of the proposed model, the prediction
results are compared with the results of the ANFIS-FCM
model.

The remaining content is organised as follows. Section II
presents the AI technique and the proposed model. To verify
the effectiveness of the proposed model, it is applied for
predicting the tunnelling performance of a tunnel section
in Guangzhou. Section III presents the real-time field
monitoring data. Section IV describes a shield tunnelling
performance database and presents the principal component
analysis. Section V presents prediction results with a techni-
cal discussion. The last section concludes the study.

FIGURE 1. Structure of ANFIS model with two input parameters.

II. ARTIFICIAL-INTELLIGENCE BASED MODELING
A. ANFIS MODEL
ANFIS, developed by Jang [26], is a multilayer adaptive
network-based fuzzy inference that maps relations between
inputs and outputs. ANFIS is useful for solving com-
plex problems with large uncertainties by creating a fuzzy
inference system (FIS) with adjusted parameters of the mem-
bership function (MF). In particular, it uses neuro-adaptive
learning methods to adjust membership function parame-
ters until reaching the optimal solution. In this way, ANFIS
combines the reasoning capacities of fuzzy logic principles
with the learning capabilities of the ANN system to solve
complicated and nonlinear issues. Fig. 1 shows the ANFIS
architecture, with two input parameters (x, y) and one out-
put parameter (f ), using the Takagi-Sugeno fuzzy inference
system.

The following content briefly describes the five layers of
the ANFIS model. Further details of ANFIS can be found in
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other literature such as [26]. In Layer 1, each node (i) has
an MF of a linguistic variable. The output of each node is
calculated according to the following equation:

Q1
i = µAi (x) =

1

1+
[(

x−vi
σi

)2]bi (1)

where x is the input value of node i, Ai is the linguistic
variable associated with this node, and σi, νi, and bi are
function parameters with bi > 0. The parameters in this layer
are defined as premise parameters.

In Layer 2, every node computes the firing strength for each
rule by multiplying the received signals:

Q2
i = wi = µAi(x)µBi(y), i = 1, 2 (2)

In Layer 3, every node computes the ratio of the ith rule’s
firing strength to its sum for all rules. The outputs are nor-
malized firing strengths.

Q3
i = wi =

wi
w1 + w2

, i = 1, 2 (3)

Layer 4 contains the adaptive node:

Q4
i = wifi = wi(pix + qiy+ ri), i = 1, 2 (4)

where wi is the output of layer 3; pi, qi, and ri are the
consequent parameters.

Layer 5 calculates the summation of all input signals as the
overall output:

Q5
i = overall output =

∑
i
wifi =

∑
i wifi∑
i wi

(5)

B. FUZZY C-MEANS CLUSTERING
By assigning a set of data into groups, fast and robust data
clustering is essential to extract beneficial structures from
large data. Fuzzy C-means (FCM) clustering is a power-
ful algorithm for clustering overlapped datasets. In FCM,
the grade of a data point belonging to a cluster is identified
by a membership. The membership shows a large value for
data near the cluster centre and a small value for data far away
from the cluster centre. FCMdivides the selection of n vectors
xi (i = 1, 2, . . . , n) into fuzzy sets and determines the cluster
centre for each set to minimise the fitness function.

The FCM clustering method works in the following proce-
dure. Given n data points (x1, x2, x3, . . . , xn), the centre of the
ith cluster is randomly chosen as ci (i = 1, 2, . . . ,C), where
C is the total number of clusters (C ≤ n).
The membership matrix U can be calculated as follows:

µij =
1

C∑
k=1

( dijdkj )
2

m−1

(6)

where dij = ||ci − xj|| is the Euclidean distance between the
ith cluster centre and the jth data point, µij is the coefficient
of membership matrix U , and m is the fuzziness index.

The objective function can be computed as follows:

J (U , c1, . . . , c2) =
c∑
i=1

Ji =
c∑
i=1

.

n∑
j=1

µmij d
2
ij (7)

Finally, a novel c fuzzy cluster centre Ci (i = 1, 2, . . . ,C)
can be calculated by utilizing the following equation:

Ci =

n∑
j=1
µmij xj

n∑
j=1
µmij

(8)

C. IMPROVED PSO
The PSO algorithm initialises a set of particles randomly scat-
tered in the space of the objective function. Then, it updates
generations to find the optima of all possible solutions
(so-called particles). Each particle is defined by two positions
and velocity values based on the two best fitness values: pbest
and gbest. pbest is the best fitness solution of each particle
fulfilled so far, whereas gbest is the global best solution
gained by any particle in the population tracking by PSO.
According to pbest and gbest values, all particles update their
velocities and positions until the optimal solution is reached.
As an optimization method, PSO is easy to understand and
implement. It is computationally efficient and maintains the
diversity of the swarm.

Assuming the position x ti = (x ti1, x
t
i2, . . . , x

t
in) and the

velocity vti = (vti1, v
t
i2, . . . , v

t
in) of the i

th particle in the t th

iteration, the particle optimises its location in the (t + 1)th

iteration by utilizing the following equation [27]:

vt+1i = w. vti + c1.r1.
(
pti − x

t
i
)
+ c2.r2.

(
gt − x ti

)
(9)

with − vmax ≤ v
t+1
i ≤ vmax

x t+1i =

(
x ti + v

t+1
i

)
(10)

where pti is the best location of particle i
th in iteration t th, gt is

the global best location up to the t th iteration, r1 and r2 are
random values in the range of [0, 1], w is the inertia weight
where 0 ≤ w ≤ 1, and parameters c1, and c2 are the cognitive
acceleration rate and social coefficient, respectively.

Inertia weight w greatly influences the contribution rate of
the velocity from the previous step to the velocity at the next
step. A traditional strategy of improving the inertia weight is
applied as follows:

w = wfinal + (winitial − wfinal)(1−
T

Gmax
) if gt 6= x ti

w = wfinal if gt = x ti (11)

where T is the iteration number, T ∈ [0,Gmax]; Gmax is the
maximum number of iterations; winitial is the initial inertia
weight; and wfinal is the development value at the maximum
iteration.

Because the feature vector usually has high dimensions,
PSO particles may easily be trapped in local optima rather
than reach global optima [28]. Therefore, Clerc [29] added
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a constriction factor k into PSO to verify the best convergence
as follows:

vt+1i = k
[
vti + c1r1(p

t
i − x

t
i )+ c2r2(g

t
− x ti )

]
(12)

A rule of thumb is that the constriction factor should be
a convex function in precocious iterations to avoid the early
convergence to local minima, and a concave function in late
iterations to change slowly until reaching a global optimum.
Based on this rule, the constriction factor function is built as
follows [30]:

k =
cos ((π/Gmax)× T )+ 2.5

4
(13)

Because the inertia weight influences the degree of the
particle velocity and the constriction factor affects the con-
vergence performance of PSO, the following content explains
the improvement of synchronously using the inertia weight
and the constriction factor.

The improved PSO has both the inertia weight and con-
striction factor varying synchronously. Integrating equations
(12) and (13), we get the following equation:

vt+1i =

(
cos(π × T/Gmax)+ 2.5

4

)
×
[
w×vti+c1.r1.

(
pti−x

t
i
)
+c2.r2.

(
gt−x ti

)]
(14)

After a number of iterations, the particlemay be close to the
global optima; the inertia weight becomes smaller to allow the
particle to retain its original speed and search for the optima
in a smaller range. If the particle does not reach the accurate
minima, then the inertia weight becomes greater to retain its
original velocity for the global optima search.

Derivation details of this approach can be found in
Lu et al. [44]. By solving these derivations, we can get the
equation

w ≥
c1 + c2

2
−

1
k

(15)

According to this equation, the inertia weight w should be no
less than the maximum value of the right-hand side. On the
right-hand side of Eq. (15),−1/k reaches themaximum value
of −1/[(cos(π/Gmax × 0) + 2.5)/4] when T = 0, based on
Eq. (13). Therefore, the inertia weight wfinal = (c1+ c2)/2−
1/[(cos(π/Gmax × 0) + 2.5]/4]. When the values of c1 and
c2 are equal to 2, then wfinal = 2− (1/(3.5/4)) t 0.857.

As the inertia weight w ranges from [0, 1], this study sets
the initial value of the inertia weight winitial = 1. Thus, the
inertia weights can be presented as follows:

w = 0.857+ (1− 0.857)
(
1−

T
Gmax

)
if gti 6= x ti

w = 0.857 if gti = x ti (16)

D. STOPPING CRITERIA
Stopping criteria are specified as the conditions required to
terminate the iterative search algorithm when there is no
obvious improvement over the number of iterations. As usual,
termination criteria include the expected value of accuracy

and the maximum iteration number. To determine the appro-
priate number of iterations, a useful approach suggested by
Zielinski and Rainier [24], which is based on comparing the
results of various iteration numbers, is applied. In this work,
the maximum number of iterations is set as a termination
criterion. To determine an appropriate iteration number, we
conducted trial computations by varying the population size
of the improved PSO model based on the root mean square
error (RMSE) [49].

To control the overfitting, a global validation strategy was
implemented according to the definition by Mitchell [45].
We assume that c∗j and c

∗
ι

j are the best-performing candidate
groups found by computing the error rate ε for every element
of P(c) in the optimization set (op) and in the validation set
(ν), respectively. P(c) represents the powerset of classifiers
c = {c1, c2, . . . , cn} determining the population of all poten-
tial candidates cj. The ranking error of the optimization set
is denoted by ε(v, c∗j ), and the ranking error of the validation
set is denoted by ε(v, c∗

ι

j ). c
∗
j is considered as overfitting on

op if there is an alternate candidate c∗
ι

j ∈ P(c) that can be
found such that ε(v, c∗j ) > ε(v, c∗

ι

j ). In this way, overfitting is
defined as

Overfitting = ε(v, c∗j )− ε(v, c
∗
ι

j ) (17)

E. HYBRID MODEL OF IMPROVED PSO-ANFIS
In order to predict the tunnelling performance with good
accuracy, this study introduces an improved PSO-ANFIS
model. In this hybrid model, the aforementioned improved
PSO helps to tune and achieve the optimal values of ANFIS
parameters through training. Fig. 2 shows a flowchart of the
improved PSO-ANFIS model.

The improved PSO-ANFIS model works using the follow-
ing procedure. Initially, all datasets are reprocessed for the
training model, including the operational shield parameters
and the corresponding advance rate. With postprocessed data,
the initial ANFISmethod is producedwith all parameters ran-
domly initialised. To achieve accurate prediction, the ANFIS
model needs to be supported by an appropriate number of
clusters. The initial ANFIS method utilises the FCM clus-
tering approach to optimise the result by extracting a set of
rules that model the datasets and form the FIS. Then, premise
parameters (σi, νi, bi) and consequent parameters (pi, qi, ri)
of the ANFIS method are extracted in this step to estimate the
dimensions of every particle for setting up the PSO algorithm
in the next step.

The corresponding parameters for each MF are extracted
iteratively to form a vector. In this vector, the parameters
constitute the variables to be optimised by PSO; therefore,
the length of every particle in PSO can be determined. Once
the PSO parameters are specified, the initial population is
generated. After initializing all particles, the improved PSO
updates the velocity and the position of each particle in the
swarm until a convergence is obtained to get the optimal
values of the variables. The objective function of each particle
is computed, and the best new values are updated accordingly.
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FIGURE 2. Workflow of improved PSO-ANFIS model.

The last step assigns these optimal values as antecedent and
consequent parameters to the final ANFIS model.

III. PROJECT DESCRIPTION
As one type of TBM, an earth pressure balance (EPB) shield
machine is suitable for digging tunnels in unstable ground
such as clay, silt, and sand. In EPB shield tunnelling, there
are an increasing number of computational models for pre-
dicting the cutting rate [31], torque and thrust [32], and
advance speed [11], [25]. However, no studies have inte-
grated improved PSO with ANFIS to predict the EPB shield
performance.

This study completes this work by applying the proposed
model of improved PSO-ANFIS to a field tunnelling project
in Guangzhou, China [33], [34]. In the Guangzhou metro
tunnels, an EPB shield machine with a diameter of 6.25 m
was used to excavate the tunnel section between Maanshan
Park Station and Liantang Station for Guangzhou Metro Line
No. 9 [35], [36]. This case study is selected to verify the
applicability of the proposedmodel. Also, this case represents
a new project in the urban area of Guangzhou city, which
needs to be carefully considered based on the existing infras-
tructures. The main specifications of the utilised machine are
summarised in Table 1.

Fig. 3 shows a plan view of the construction site. The tunnel
alignment is approximately 1280 m in length, with a burial

TABLE 1. Main features of utilised machine.

FIGURE 3. Location map of study area.

depth varying from 7.0 to 10.0 m, as shown in Fig. 4. This
study collects inputs of operational parameters and geological
conditions from the monitoring and testing results along the
tunnel alignment.

The advancement of the shield machine usually encoun-
tered silt clay soil at the studied section. The properties are
listed in Table 2.

Field investigations showed that the void ratio ranges
between 0.7 and 0.85, and the maximum cohesion value is
40 kPa. The silty clay soils have a plasticity of over 10 and
a uniaxial compressive strength (UCS) of less than 2. The
soils have a consistency index of less than 1.0, categorised as
low-plasticity clay (CL) according to Casagrande’s plasticity
chart. In a standard penetration test (SPT), N values of the
soils are over 10.

IV. DATA PREPROCESSING
In this project, the EPB shield machine has a built-in data
acquisition system in which the actual data are collected
by the sensors of every subsystem. The collected data are
stored in the shield machine computer and transferred to the
laboratory server over a fibre-optic network. This system is
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FIGURE 4. Longitudinal profile of guangzhou tunnel alignment.

TABLE 2. Geotechnical properties of encountered soil during tunnelling.

provided to simplify data collection during the tunnelling
process and serves as a decision-making tool for tunnel engi-
neers. Prior to the data analysis, raw data from the shield
tunnelling are preprocessed based on the dimensional data.
It is noteworthy that the data acquisition system records a
wide diversity of shield operating data related to the tunnel
performance, including the thrust force, cutterhead torque,
and soil and grouting pressure. To adjust the dimensions of
the monitoring data for the selection of shield parameter data,
the following two criteria are adopted:
(1) The monitoring data should have meaningful values

and be collected in the daily reports. Engineers refer
to the daily reports to analyse the shield performance
during the tunnelling process.

(2) The shield tunnelling parameters are examined and
selected by tunnel experts so that the selected
parameters can reflect the actual relationship of the
shield tunnelling performance between different tunnel
parameters.

Operation data usually include a certain amount of outliers,
which affect the quality of the data [48]. Zhao et al. find
that the K-nearest neighbour (KNN)-based outlier detec-
tion method is appropriate for detecting the outliers from
a large amount of data [47]. Inappropriate raw databases
were screened as outliers based on the K-nearest neigh-
bour algorithm proposed by [46]. This study adopted the
distance-based method of the KNN technique summarised
in Algorithm 1 to detect outliers. The reason is that the
operating data usually include a certain number of outliers,

Algorithm 1 K-Nearest-Neighbour-Based Model [43]

Input: sample set {xn}Nn=1 ⊂ RM , and outlier percentage
s% = 6%;

Output: A list of outliers;
1: For sample x1 ,. . . , xN in the process; do
2: Find the nearest neighbour K by setting ND(xn,K ) of

the sample xn, the set of K points ∈ {xn}Nn=1 are the
nearest points to xn based on the metric D;

3: Calculate the outlier score T for the neighbour K of
xn:

T (xn,K ) =
∑

y∈ND(xn ,K ) D(xn,y)
K ;

4: end for
5: Sort the samples {xn}Nn=1 in the ascending order of
{T (xn,K )}Nn=1, and then choose the last outlier sam-
ples s%.

6: Return

which normally affect the quality of the data [48]. In this
manner, a total of 200 operating datasets were selected for
the prediction of tunnel performance.

A. SHIELD TUNNELLING PERFORMANCE DATABASE
Following the aforementioned data preprocessing, this study
established databases of the shield tunnelling performance,
focusing on shield machine specifications and operational
parameters. The shield machine specifications were col-
lected from manufacturer’s documents. Operational parame-
ters were directly extracted from a built-in data acquisition
system in the EBP shield machine. In total, there are nine
parameters: cutterhead torque (CT), thrust force (TF), soil
pressure (SP), rotational speed of the screw rate (SC), cutter-
head rotation speed (CR), grouting pressure (GP), grouting
amount (GA), excavation depth (H), and advance rate (AR).
Among them, AR is closely interrelated with the other eight
parameters.

Fig. 5 presents frequency histograms of eight EPB shield-
tunnelling parameters of the selected 200 datasets. Most
of the operating parameters have wide distributions, which
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FIGURE 5. Histograms of different operating parameters in database.

result from frequent changes of the machine status dur-
ing construction. Table 3 displays statistics of the nine
parameters.

TABLE 3. Statistics of nine parameters in database.

B. PRINCIPLE COMPONENT ANALYSIS
Principle component analysis (PCA) is a conventional multi-
variate statistical approach used for classification and regres-
sion in various fields of study [37]–[39]. PCA can be applied
to decrease the complex data form of forecasting variables
to a lower dimension. During the analysis, the PCA can
provide a few linear collections of the parameters that can
be adjusted to summarize the data without losing much
information. This method uses the orthogonal transformation
to transform observations of possibly correlated variables
to linearly uncorrelated variables. It reduces the dimension-
ality and keeps the informational value of the input data
intact. PCA has been widely used for selecting independent
variables and eliminating duplicate or highly associated vari-
ables. Fig. 6 shows a two-variable dataset, originally mea-
sured in the X-Y coordinate system.

In another coordinate system, the U axis refers to the
principal direction of this dataset, and the V axis refers to

FIGURE 6. Principle components for data representation [38].

the second most important direction. Usually, the V axis is
orthogonal to the U axis; therefore, the covariance between
the U andV variables is equal to zero. That means that all data
are decorrelated by transforming from (X, Y) coordinates
to (U, V) coordinates though an orthogonal transformation.
PCA computes new variables as a linear combination of the
original variables by calculating the covariance/correlation
matrix of the data. When the variation of a dataset is caused
by a natural property or a random experimental error, the vari-
ables are likely to follow normal distributions.

Linear transmutation transforms the input data into a set
of components that are arranged according to their variance.
The first principal component is the direction along which the
data has the most variance. PCA projects the input data on a
k-dimension eigenspace of k eigenvectors that are computed
from a covariance matrix 6 of the data N = [N1, . . . ,Nn].
Ni is ith d-dimension data sample, and N refers to the number
of samples. PCA chooses k , with k < d , eigenvectors having
the largest eigenvalues that represent the main components
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of the dataset. The selected eigenvectors are projected in a
matrix and arranged into columns, where the first column
corresponds to the largest eigenvalue. Eventually, PCA com-
putes and determines the feature vector v from the data in the
matrix [37].

Given the inputs of several parameters, this study uses PCA
to identify critical input parameters that have the greatest
impact on the advance rate (Fig. 7). This figure shows that the
three inputs of CT, SC, and CR (i.e. the cases of 2, 3, and 4)
are the most critical parameters, with the highest variance
ratio of 93%. Therefore, CT, SC, and CR are selected as input
parameters for developing the predictive model in this study,
and the advance rate is considered as a function of these three
parameters.

FIGURE 7. Principle components analysis for some parameters in this
study.

V. RESULTS AND DISCUSSION
As previouslymentioned regarding PCA, this study uses three
input parameters (CT, SC, and CR) to predict AR within
the hybrid improved PSO-ANFIS model. Additionally,
an ANFIS model is established to compare the predic-
tion accuracy of the hybrid model. For general computa-
tion procedures of the ANFIS-based FCM model and the
PSO-ANFIS model, please refer to section II. Both ANFIS
and PSO-ANFIS are implemented in MATLAB. This study
has a total of 200 datasets, randomly divided into two subsets,
of which 80% of the datasets are the training set and the other
20% are the testing set, following the recommendation of
Swingler [40].

A. ANFIS-FCM MODEL
In the ANFIS model, all datasets are normalised to sim-
plify the computational procedure using the following
equation [41]:

Xn =
(X − Xmin)
(Xmax − Xmin)

(18)

where X and Xn are the measured and normalised data,
respectively; Xmin and Xmax are the minimum and maximum
data of X , respectively.

The ANFIS model in MATLAB requires users to deter-
mine the number and the type of membership functions
(MFs). As there is no explicit method or formula to predict the
necessary MF numbers [42], this study estimates the number
of MFs by trial and error. The best estimates are obtained
when using three Gaussian MFs. Table 4 lists the employed
parameters in the developed model.

TABLE 4. Main parameters of ANFIS and improved PSO-ANFIS models.

The Takagi-Sugeno method is applied as FIS owing to its
high accuracy and good computational effectiveness in devel-
oping a systematic approach for constructing fuzzy rules from
the input-output dataset. MATLAB with the genfis3 function
is implemented to construct the initial FIS structure of the
model. More ANFIS settings based on the FCM clustering
are listed in Table 4.

To improve the model accuracy, four different cases were
designed to evaluate the impact of using different numbers
of clusters in the FIS function on the computational results
with ANFIS. The four cases use 5, 7, 10, and 14 clusters,
respectively.

Table 5 presents the computational results from different
cases for the training set and the testing set in terms of the
coefficient of determination (R2), root mean square error
(RMSE), and variance account (VA).
The variations in the statistics can quantify the impact

of changing the cluster number on the network result for
the ANFIS model. Small variations of R2, RMSE, and VA
indicate that the number of clusters in the ANFIS model
only slightly affects the prediction accuracy. Among the four
cases, the third case of the ANFISmodel using 10 clusters has
the best prediction accuracy. Therefore, the following ANFIS
model uses 10 clusters in the FIS function to predict the tunnel
performance.

Fig. 8 shows the correlations between the measured and
predicted advance rates for the training set and the testing set.
This figure shows a better correlation in the training set than
in the testing set for the ANFIS model.
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TABLE 5. Statistical analysis of different ANFIS models.

FIGURE 8. Comparison between measured and predicted AR from
ANFIS-FCM model: (a) training set and (b) testing set.

FIGURE 9. Comparison between measured and predicted AR from
ANFIS-FCM model.

FIGURE 10. Absolute and relative error plots of ANFIS-FCM model.

In Fig. 9, it can be seen that the predicted values of
the advance rate are relatively close to the measured val-
ues. In addition, the absolute and relative error indicators
in Fig. 10 show that the predicted data can successfully
follow the measured data with small discrepancies in the
range of ±25%.

B. IMPROVED PSO-ANFIS MODEL
To develop the ANFIS model, the improved PSO is used to
obtain optimum parameters for the ANFIS model. In this
study, a Gaussian is applied as membership functions (MFs),
as suggested by several researchers [14], [25]. In this
hybrid model, PSO helps to establish closer relationships
between the input and output. To determine the optimal
PSO parameters, a trial-and-error approach is applied to

FIGURE 11. Convergence behaviour of improved PSO used to train ANFIS
model.

find the maximum iteration numbers c1 and c2 [48]. These
three parameters are eventually 300, 2, and 2, respectively
(Table 4). As indicated in Fig. 11, the PSO algorithm
converged the optimal fitness function after approximately
55 iterations, and then it settled at a constant level. This shows
that PSO reached the optimal solution and that the search
operation could be stopped.

The network performance results with the improved
PSO-ANFIS model with different population sizes are dis-
played in Table 6. From this table, it can be concluded that
the improved PSO-ANFISmodel with a population size equal
to 100 leads to the best prediction capacity. In the present
study, the architecture of the fourth model (No. 4) was cho-
sen as the best model to predict the tunnel performance,
as shown in Table 6. In this study, the convergence speed of
proposed model is considered [16]. Results showed that the
300 iterations required about 20 minutes to train the system.
Otherwise, the computational volume of the proposed model
is satisfied to achieve the accuracy from the predicted results.

TABLE 6. Comparison of analysis results from improved PSO-ANFIS
model by varying the population size.

The comparison results in the estimation of the advance
rate for the improved PSO-ANFIS model in the training set
and the testing set are displayed in Fig. 12.

Scattered data in both plots are close to the line of equality
(shown as a dashed line), demonstrating the good accuracy
of the improved PSO-ANFIS model. To give a visual sense
for the improved PSO-ANFIS model, Fig. 13 has been added
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FIGURE 12. Comparison between measured AR and predicted AR from
improved PSO-ANFIS model: (a) training set and (b) testing set.

FIGURE 13. Comparison between measured AR and predicted AR from
improved PSO-ANFIS model.

FIGURE 14. Absolute error and relative error of improved PSO-ANFIS
model.

to show the relation between the measured and predicted AR
for all databases. From Fig. 13, it can be seen that the AR
predicted values are close to the measured values for almost
all of the data. For more clarification, the absolute and relative
errors of the outputs for the improved PSO-ANFIS model are
plotted against the advance rate measured data, as depicted
in Fig. 14.

The relative error of AR varies around zero, mostly in a
smaller range (±15%) than the range (±25%) of the ANFIS-
FCM model. This indicates that the improved PSO-ANFIS
model has better accuracy in the prediction of tunnel boring
machine performance when compared to the ANFIS-FCM
model.

C. DISCUSSION
Applying computational techniques such as AI to the pre-
diction of tunnelling performance has become increasingly
popular. Previous studies on the prediction of TBM per-
formance have mostly performed structural analyses under
static load conditions far from actual working conditions [3].
Furthermore, predicting the TBM performance is a nonlinear

and multivariable complex problem that cannot be accurately
predicted using simple models.

In this respect, this study presented a hybrid multiob-
jective optimization technique to enhance the performance
of TBM based mainly on dynamic operational factors. The
dynamic operational factors, unlike the geological conditions,
are controllable and thus can be manipulated by changing
the machine orientation functions and optimal subsystems.
Theoretically, the perfect prediction model is expected to
have RMSE = 0, R2 = 1, and VA = 1. A small value of
the RMSE and great values of the coefficient of determination
R2 and VA indicate a good prediction accuracy of the model.
To assess the performance of the proposed model, this study
uses a multiobjective fitness function with the objective of
decreasing the RMSE and increasing the coefficient of deter-
mination R2 with a VA.

Minimize Fit = Z1 × RMSE − Z2 × R2 + Z3 × VA (19)

RMSE =

√∑
(xmea − xpre)2

n
(20)

R2 = 1−

n∑
i=1

(xmea − xpre)2

n∑
i=1

(xmea − xm)2
(21)

VA =
[
1−

var(xmea − xpre)
var(xmea)

]
(22)

where xmea, xpre, and xm are the measured, predicted, and
mean of the x values, respectively; and n is the total number of
datasets. Z1, Z2, and Z3 ∈ [0, 1], satisfying Z1+Z2+Z3 = 1.
To reach the optimal model, the values of Z1, Z2, and Z3 are
determined as 0.4, 0.31, and 0.29, respectively.

To understand the impact of the input parameters (CT, SC,
and CR) on the response (AR) more fully, three-dimensional
surface graphs are studied. Fig. 15 shows a surface graph
of the improved PSO-ANFIS model to predict the advance-
ment rate along with two input parameters while holding
the third input parameter constant. As expected, the AR
mainly follows a linear increasing trend with an increase
in the SC, CT, and CR. However, there is a sharp decrease
and a sudden increase in a local region (0.4 < SC < 0.6,
0 < CT < 0.2). The fluctuations of AR values in the local
region probably indicate either a sudden instability at the
tunnel face or sudden changes in the geological features of
this local region. This was validated by the TBM operator
based on our discussion with him. The operator said that
he clearly noticed sudden changes in local regions when
operating the TBM machine. For instance, when finding
an obvious variation of the extracted soil from the screw
conveyor system or when the amount of soil extracted from
the machine was very different from the estimated quantity,
the TBM machine performed differently, presenting imme-
diate changes in the operation parameters. Therefore, while
the developed AI-based models should always find a good
trade-off between the complexity of the model and the data
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FIGURE 15. Surface graph of AR related to different parameters.

FIGURE 16. Comparison of performance indices for ANFIS-FCM, improved
PSO-ANFIS, GA-ANFIS: (a) training set and (b) testing set.

dimensionality, we should also consider how to address the
challenge of representing unexpected operations when oper-
ating the machine under different field conditions.

It can clearly be realised that the variation of the AR with
CT, SC, and CR is found to be intuitive and in agreement
with previous research. For instance, a similar model for
the prediction of shield machine performance was developed
by the author and his colleagues [12], [25] based on data
from the Ma-Lian section of Guangzhou Metro Line No. 9.
Their model integrates a genetic algorithm (GA) with the
adaptive neurofuzzy inference system (ANFIS) based on a
multiobjective fitness function. The results of their model
are compared with the improved PSO-ANFIS, as shown
in Fig. 16. This figure displays the assessment results from the
ANFIS-FCM, improved PSO-ANFIS, and proposed model
by [25]. Because of a smaller RMSE and greater values of
R2 and VA, the improved PSO-ANFIS model outperforms the
GA-ANFIS and ANFIS-FCM models. The above analyses
elucidate that the proposed model of PSO-ANFIS can predict
the advance rate and represent their statistical features with
reasonable accuracy.

In practical applications, the EPB shield machine can use
shield parameters such as CT, CR, and SC as inputs to
predict the shield tunnelling performance. It is noteworthy
to mention that the proposed model can provide initial esti-
mations of shield performance, especially for estimating the
advance rate of the shield machine at the project planning
stage. With the advance rate determined from the proposed

model, project durations can be estimated, thus facilitating
time allocations when developing construction plans. Briefly,
the improved model in this research is expected to provide
insightful suggestions to support engineers in the prediction
of shield-tunnelling advancement, and can be used as intel-
ligent selection to achieve an acceptable prediction for TBM
performance.

VI. CONCLUSION
This study presented an AI-based model to predict the
shield machine performance during the tunnelling process.
In this regard, the most influential parameters were identi-
fied through PCA, and an improved PSO-ANFIS model was
established to predict the advance rate of the EPB shield
tunnelling. The proposedmodel was applied to a case study of
the Guangzhou Metro Line 9 tunnelling project. For valida-
tion, prediction results from the improved PSO-ANFISmodel
were compared with the prediction results from an ANFIS-
FCM model. Major conclusions were obtained as follows:
• The improved PSO-ANFIS model can predict the shield

performance in terms of the advance rate, in good agree-
ment with the measured advance rate for both the train-
ing and testing sets. The improved PSO-ANFIS model
uses computation parameters tailored to the studied tun-
nel section for predicting the advance rate. Based on a
multiobjective fitness function, the values of R2, RMSE,
and VA of 0.88, 0.07, and 0.84 for the testing datasets
indicate that the proposed model is accurate.

• The proposed model demonstrates better prediction
accuracy than the ANFIS and GA-ANFIS [25] models
based on a multiobjective fitness function. Prediction
results from this study can facilitate decision-makers in
predicting the project duration and construction cost of
EPB shield tunnels. This supports efficient construction
management, particularly when developing construction
plans.

• The absolute error of the improved PSO-ANFIS method
was in an adequate range of±15%, whereas the ANFIS-
FCM showed a wider error range of±0.25. This demon-
strated the precise prediction of the improved model in
the prediction of tunnel boring machine performance.
Therefore, the improved model can be utilised to guide
construction practices in a more meaningful way.

• The proposed model is general and can be used for
analysing different tunnelling systems in other types of
geological conditions. To improve the robustness, more
tunnelling data should be collected for calibration and
validation of the proposed model.

REFERENCES
[1] H.-M. Lyu, S.-L. Shen, J. Yang, and Z.-Y. Yin, ‘‘Inundation analysis of

metro systems with the storm water management model incorporated
into a geographical information system: A case study in Shanghai,’’
Hydrol. Earth Syst. Sci., vol. 23, no. 10, pp. 4293–4307, Oct. 2019,
doi: 10.5194/hess-23-4293-2019.

[2] H.-M. Lyu, S.-L. Shen, A. Zhou, and J. Yang, ‘‘Risk assessment of
mega-city infrastructures related to land subsidence using improved
trapezoidal FAHP,’’ Sci. Total Environ., Nov. 2019, Art. no. 135310,
doi: 10.1016/j.scitotenv.2019.135310.

VOLUME 8, 2020 39669

http://dx.doi.org/10.5194/hess-23-4293-2019
http://dx.doi.org/10.1016/j.scitotenv.2019.135310


K. Elbaz et al.: Prediction Model of Shield Performance During Tunneling via Incorporating Improved PSO Into ANFIS

[3] W. Sun, M. Shi, C. Zhang, J. Zhao, and X. Song, ‘‘Dynamic load predic-
tion of tunnel boringmachine (TBM) based on heterogeneous in-situ data,’’
Automat. Construct., vol. 92, pp. 23–34, Aug. 2018.

[4] X.-X. Liu, S.-L. Shen, Y.-S. Xu, and Z.-Y. Yin, ‘‘Analytical approach
for time-dependent groundwater inflow into shield tunnel face in con-
fined aquifer,’’ Int. J. Numer. Anal. Methods Geomech., vol. 42, no. 4,
pp. 655–673, Dec. 2017.

[5] K. Elbaz, J. S. Shen, A. Arulrajah, and S. Horpibulsuk, ‘‘Geohazards
induced by anthropic activities of geoconstruction: A review of
recent failure cases,’’ Arabian J. Geosci., vol. 9, no. 18, Nov. 2016,
doi: 10.1007/s12517-016-2740-z.

[6] H.-M. Lyu, S.-L. Shen, A. Zhou, and J. Yang, ‘‘Perspectives for flood
risk assessment and management for mega-city metro system,’’
Tunnelling Underground Space Technol., vol. 84, pp. 31–44,
Feb. 2019.

[7] H. M. Lyu, W. J. Sun, S. L. Shen, and A. N. Zhou, ‘‘Risk assessment using
a new consulting process in fuzzy AHP,’’ J. Construct. Eng. Manage.,
vol. 146, no. 3, 2020, Art. no. 04019112, doi: 10.1061/(ASCE)CO.1943-
7862.0001757.

[8] A. Azad, M. Manoochehri, H. Kashi, S. Farzin, H. Karami, V. Nourani,
and J. Shiri, ‘‘Comparative evaluation of intelligent algorithms to
improve adaptive neuro-fuzzy inference system performance in pre-
cipitation modelling,’’ J. Hydrol., vol. 571, pp. 214–224, Apr. 2019,
doi: 10.1016/j.jhydrol.2019.01.062.

[9] S.-L. Shen, Y.-X. Wu, and A. Misra, ‘‘Calculation of head
difference at two sides of a cut-off barrier during excavation
dewatering,’’ Comput. Geotechnics, vol. 91, pp. 192–202, Nov. 2017,
doi: 10.1016/j.compgeo.2017.07.014.

[10] D.-J. Ren, S.-L. Shen, A. Arulrajah, and H.-N. Wu, ‘‘Evaluation of ground
loss ratio with moving trajectories induced in double-O-tube (DOT)
tunnelling,’’ Can. Geotech. J., vol. 55, no. 6, pp. 894–902, Jun. 2018,
doi: 10.1139/cgj-2017-0355.

[11] A. Salimi, H. Karami, S. Farzin, M. Hassanvand, A. Azad, and O. Kisi,
‘‘Design of water supply system from rivers using artificial intelligence
to model water hammer,’’ ISH J. Hydraulic Eng., pp. 1–10, Apr. 2018,
doi: 10.1080/09715010.2018.1465366.

[12] N. Zhang, S.-L. Shen, A. Zhou, and Y.-S. Xu, ‘‘Investigation on
performance of neural networks using quadratic relative error
cost function,’’ IEEE Access, vol. 7, pp. 106642–106652, 2019,
doi: 10.1109/ACCESS.2019.2930520.

[13] A. C. Adoko, C. Gokceoglu, and S. Yagiz, ‘‘Bayesian prediction of
TBM penetration rate in rock mass,’’ Eng. Geol., vol. 226, pp. 245–256,
Aug. 2017.

[14] M. Hasanipanah, A. Shahnazar, H. Arab, S. B. Golzar, and M. Amiri,
‘‘Developing a new hybrid-AI model to predict blast-induced backbreak,’’
Eng. Comput., vol. 33, pp. 349–359, Aug. 2016, doi: 10.1007/s00366-016-
0477-7.

[15] A. Azad, H. Kashi, S. Farzin, V. P. Singh, O. Kisi, H. Karami, and
H. Sanikhani, ‘‘Novel approaches for air temperature prediction: A com-
parison of four hybrid evolutionary fuzzy models,’’ Meteorol. Appl.,
vol. 27, no. 1, p. e1817, Jul. 2019, doi: 10.1002/met.1817.

[16] O. Kisi, A. Azad, H. Kashi, A. Saeedian, S. A. A. Hashemi, and
S. Ghorbani, ‘‘Modeling groundwater quality parameters using
hybrid neuro-fuzzy methods,’’ Water Resour. Manage., vol. 33, no. 2,
pp. 847–861, Dec. 2018.

[17] X. Xie, Q. Wang, Z. Huang, and Y. Qi, ‘‘Parametric analysis of mixshield
tunnelling inmixed ground containingmudstone and protection of adjacent
buildings: Case study in Nanning metro,’’ Eur. J. Environ. Civil Eng.,
vol. 22, pp. s130–s148, May 2017.

[18] S. Yagiz, C. Gokceoglu, E. Sezer, and S. Iplikci, ‘‘Application of two
non-linear prediction tools to the estimation of tunnel boring machine
performance,’’ Eng. Appl. Artif. Intell., vol. 22, nos. 4–5, pp. 808–814,
Jun. 2009.

[19] S. Mahdevari and S. R. Torabi, ‘‘Prediction of tunnel convergence using
artificial neural networks,’’ Tunnelling Underground Space Technol.,
vol. 28, pp. 218–228, Mar. 2012.

[20] Z.-Y. Yin, Y.-F. Jin, J. S. Shen, and P.-Y. Hicher, ‘‘Optimization techniques
for identifying soil parameters in geotechnical engineering: Comparative
study and enhancement,’’ Int. J. Numer. Anal. Methods Geomech., vol. 42,
no. 1, pp. 70–94, Jul. 2017.

[21] O. Acaroglu, ‘‘Prediction of thrust and torque requirements of TBMs with
fuzzy logic models,’’ Tunnelling Underground Space Technol., vol. 26,
no. 2, pp. 267–275, Mar. 2011.

[22] D. Bouayad and F. Emeriault, ‘‘Modeling the relationship between ground
surface settlements induced by shield tunneling and the operational and
geological parameters based on the hybrid PCA/ANFIS method,’’ Tun-
nelling Underground Space Technol., vol. 68, pp. 142–152, Sep. 2017.

[23] R.-E. Precup and H. Hellendoorn, ‘‘A survey on industrial applications of
fuzzy control,’’ Comput. Ind., vol. 62, no. 3, pp. 213–226, Apr. 2011.

[24] K. Zielinski and R. Laur, ‘‘Stopping criteria for a constrained single-
objective particle swarm optimization algorithm,’’ Informatica, vol. 31,
no. 1, pp. 51–59, 2007.

[25] K. Elbaz, S. L. Shen, A. Zhou, D. J. Yuan, and Y. S. Xu, ‘‘Optimization
of EPB shield performance with adaptive neuro-fuzzy inference sys-
tem and genetic algorithm,’’ Appl. Sci., vol. 9, no. 4, p. 780, 2019,
doi: 10.3390/app9040780.

[26] J. S. R. Jang, ‘‘ANFIS: Adaptive-network-based fuzzy inference sys-
tem,’’ IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665–685,
May/Jun. 1993.

[27] R. Eberhart and J. Kennedy, ‘‘A new optimizer using particle swarm the-
ory,’’ inProc.MHS. Proc. 6th Int. Symp.MicroMach. Hum. Sci., Oct. 1995,
pp. 39–43.

[28] D. L., Z. T., W. L., and X. O., ‘‘A particle swarm optimization algorithm
base on new information point,’’ Int. J. Digit. Content Technol. its Appl.,
vol. 6, no. 21, pp. 524–531, Nov. 2012.

[29] M. Clerc, ‘‘The swarm and the queen: Towards a deterministic and adaptive
particle swarm optimization,’’ in Proc. Congr. Evol. Comput., vol. 3,
Jul. 1999, pp. 1951–1957.

[30] L. D. S. Coelho, ‘‘A quantum particle swarm optimizer with chaotic muta-
tion operator,’’ Chaos, Solitons Fractals, vol. 37, no. 5, pp. 1409–1418,
Sep. 2008.

[31] D.-J. Ren, S.-L. Shen, A. Arulrajah, and W.-C. Cheng, ‘‘Prediction model
of TBM disc cutter wear during tunnelling in heterogeneous ground,’’
Rock Mech. Rock Eng., vol. 51, no. 11, pp. 3599–3611, Jul. 2018,
doi: 10.1007/s00603-018-1549-3.

[32] U. Ates, N. Bilgin, and H. Copur, ‘‘Estimating torque, thrust and other
design parameters of different type TBMs with some criticism to TBMs
used in Turkish tunneling projects,’’ Tunnelling Underground Space Tech-
nol., vol. 40, pp. 46–63, Feb. 2014.

[33] Q.-L. Cui, H.-N. Wu, S.-L. Shen, Y.-S. Xu, and G.-L. Ye, ‘‘Chinese karst
geology and measures to prevent geohazards during shield tunnelling in
karst region with caves,’’ Natural Hazards, vol. 77, no. 1, pp. 129–152,
Jan. 2015.

[34] H.-M. Lyu, W.-J. Sun, S.-L. Shen, and A. Arulrajah, ‘‘Flood risk assess-
ment in metro systems of mega-cities using a GIS-based modeling
approach,’’ Sci. Total Environ., vol. 626, pp. 1012–1025, Jun. 2018.

[35] K. Elbaz, S. L. Shen, W. C. Cheng, and A. Arulrajah, ‘‘Cutter-disc con-
sumption during earth pressure balance tunnelling in mixed strata,’’
Proc. Inst. Civil Eng.-Geotech. Eng., vol. 171, no. 3, pp. 363–376, 2018,
doi: 10.1680/jgeen.17.00117.

[36] K. Elbaz, S.-L. Shen, Y. Tan, and W.-C. Cheng, ‘‘Investigation into per-
formance of deep excavation in sand covered karst: A case report,’’ Soils
Found., vol. 58, no. 4, pp. 1042–1058, Aug. 2018.

[37] F. A. Mousa, R. A. El-Khoribi, and M. E. Shoman, ‘‘A novel brain com-
puter interface based on principle component analysis,’’ Procedia Comput.
Sci., vol. 82, pp. 49–56, 2016, doi: 10.1016/j.procs.2016.04.008.

[38] A. Salimi, J. Rostami, C. Moormann, and A. Delisio, ‘‘Application of non-
linear regression analysis and artificial intelligence algorithms for perfor-
mance prediction of hard rock TBMs,’’ Tunnelling Underground Space
Technol., vol. 58, pp. 236–246, Sep. 2016.

[39] W. Chen, W. Xiong, J. Du, and J. Cheng, ‘‘Scale registration based on
descriptor analysis and B-spline matching,’’ in Proc. TENCON Region
Conf., Nov. 2017, pp. 1451–1456.

[40] K. Swingler, Applying Neural Networks: A Practical Guide, vol. 442.
New York, NY, USA: Academic, 1996.

[41] H. Khamesi, S. R. Torabi, H. Mirzaei-Nasirabad, and Z. Ghadiri,
‘‘Improving the performance of intelligent back analysis for tunneling
using optimized fuzzy systems: Case study of the Karaj subway line 2 in
iran,’’ J. Comput. Civil Eng., vol. 29, no. 6, Nov. 2015, Art. no. 05014010.

[42] M. Rezakazemi, A. Ghafarinazari, S. Shirazian, and A. Khoshsima,
‘‘Numerical modeling and optimization of wastewater treatment using
porous polymeric membranes,’’ Polym. Eng. Sci., vol. 53, no. 6,
pp. 1272–1278, 2013.

[43] V. Hautamaki, I. Karkkainen, and P. Franti, ‘‘Outlier detection using
k-nearest neighbour graph,’’ in Proc. 17th Int. Conf. Pattern Recog-
nit. (ICPR), Aug. 2004, pp. 430–433.

39670 VOLUME 8, 2020

http://dx.doi.org/10.1007/s12517-016-2740-z
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001757
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001757
http://dx.doi.org/10.1016/j.jhydrol.2019.01.062
http://dx.doi.org/10.1016/j.compgeo.2017.07.014
http://dx.doi.org/10.1139/cgj-2017-0355
http://dx.doi.org/10.1080/09715010.2018.1465366
http://dx.doi.org/10.1109/ACCESS.2019.2930520
http://dx.doi.org/10.1007/s00366-016-0477-7
http://dx.doi.org/10.1007/s00366-016-0477-7
http://dx.doi.org/10.1002/met.1817
http://dx.doi.org/10.3390/app9040780
http://dx.doi.org/10.1007/s00603-018-1549-3
http://dx.doi.org/10.1680/jgeen.17.00117
http://dx.doi.org/10.1016/j.procs.2016.04.008


K. Elbaz et al.: Prediction Model of Shield Performance During Tunneling via Incorporating Improved PSO Into ANFIS

[44] Y. Lu, M. Liang, Z. Ye, and L. Cao, ‘‘Improved particle swarm optimiza-
tion algorithm and its application in text feature selection,’’Appl. Soft Com-
put., vol. 35, pp. 629–636, Oct. 2015, doi: 10.1016/j.asoc.2015.07.005.

[45] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
1997, pp. 52–79.

[46] S. Ramaswamy, R. Rastogi, and K. Shim, ‘‘Efficient algorithms for min-
ing outliers from large data sets,’’ ACM SIGMOD Rec., vol. 29, no. 2,
pp. 427–438, Jun. 2000.

[47] J. Zhao, M. Shi, G. Hu, X. Song, C. Zhang, D. Tao, and W. Wu, ‘‘A
data-driven framework for tunnel geological-type prediction based on
TBM operating data,’’ IEEE Access, vol. 7, pp. 66703–66713, 2019,
doi: 10.1109/ACCESS.2019.2917756.

[48] Y. Chen, D. Miao, and H. Zhang, ‘‘Neighborhood outlier detection,’’
Expert Syst. Appl., vol. 37, no. 12, pp. 8745–8749, Dec. 2010.

[49] A. Shahnazar, H. Nikafshan Rad, M. Hasanipanah, M. M. Tahir,
D. Jahed Armaghani, and M. Ghoroqi, ‘‘A new developed approach
for the prediction of ground vibration using a hybrid PSO-optimized
ANFIS-based model,’’ Environ. Earth Sci., vol. 76, no. 15, pp. 1–17,
Aug. 2017, doi: 10.1007/s12665-017-6864-6.

KHALID ELBAZ received the Ph.D. degree from
the Department of Civil Engineering, School of
Naval Architecture, Ocean and Civil Engineering,
Shanghai Jiao Tong University, in 2019. He is
currently a Research Associate with the School
of Civil and Environmental Engineering, Shantou
University.

His researches focus on developing and apply-
ing soft computing techniques, and heuristic opti-
mization algorithms to solve and adjust issues

related to tunnelling and deep excavation in the field. He has developed
several computational models to help engineers in both planning and con-
struction stages of shield tunnelling and assess the risk of the adjacent
infrastructures.

SHUI-LONG SHEN received the B.Sc. degree in
underground space technology from Tongji Uni-
versity, in 1986, the M.Phil. degree in structural
engineering from Tongji University, in 1989, and
the Ph.D. degree in geotechnical engineering from
Saga University, Japan, in 1998.

He worked with the Institute of Lowland Tech-
nology (ILT) as a Lecturer from 1998 to 2001.
He served as an Associate Editor of Lowland
Technology International, an International Jour-

nal. From 2001 to 2003, he worked with the National Institute for Envi-
ronmental Studies, Tsukuba, the Science City, Japan. In 2003, he joined
the Department of Civil Engineering (DCE), Shanghai Jiao Tong University
(SJTU) as a Faculty Member. In 2019, he joined the College of Engineer-
ing, Shantou University as the Dean. He has been keeping collaboration
with other international organization, e.g., Saga University, Virginia Tech,
The University of Kansas, The University of Hong Kong, the Suranaree
University of Technology, Thailand, the Ecole Centrale de Nantes France,
the Swinburne University of Technology, and RMIT University, Australia as
a Guest/Visiting/Adjunct Professor.

Dr. Shen also serves as an Editor/Editorial Board Member of four Interna-
tional Journals, e.g., the Canadian Geotechnical Journal, Geotextiles and
Geomembranes, Computers and Geotechnics (ELSEVEIR), Marine Geo-
resources and Geotechnology (Taylor and Francis), Lowland Technology
International, and Geotechnical Engineering—SEAGS and domestic jour-
nals, e.g., the Chinese Journal of Geotechnical Engineering.

WEN-JUAN SUN received the Ph.D. degree in
civil engineering from Virginia Polytechnic Insti-
tute and State University, in 2014. She has been
in civil engineering with Lehigh University as a
Research Associate since 2016. She has published
more than 50 refereed articles in top-tier tech-
nical journals and international conferences. Her
research focuses on developing and applying com-
putational models to solve engineering problems
for supporting sustainable and resilient infrastruc-

tures. At system-level, she has developed computational models to assess the
risk and resilience of critical infrastructures, with considerations of different
types of interdependencies and large uncertainties in terms of rigorous mod-
els. At fine levels, she has developed physics-based computational models to
analyze failuremechanisms of infrastructurematerials at multiple scales. She
has also been serving as amember in theObjective Resilience Committee and
the Nano-mechanics andMicro-mechanics Committee, American Society of
Civil Engineers (ASCE). She has been serving as a Reviewer for more than
ten journals.

ZHEN-YU YIN received the B.Sc. degree in civil
engineering from Zhejiang University, in 1997,
and the M.Sc. and Ph.D. degrees from the Ecole
Centrale de Nantes, France, in 2003 and 2006,
respectively.

Followed by 5 years, he was an Engineering
Consultancywith the Zhejiang JiahuaArchitecture
Design Institute. Then, he has been working as
Postdoctoral Researcher with the Helsinki Uni-
versity of Technology, Finland; the University of

Strathclyde, Glasgow, U.K.; the Ecole Centrale de Nantes; and the Uni-
versity of Massachusetts at Amherst (Umass), Amherst, USA. In 2010, he
joined Shanghai Jiao Tong University as Special Researcher and received
the Professor of Exceptional Rank of Shanghai Dong-Fang Scholar. In 2013,
he joined the Ecole Centrale de Nantes as an Associate Professor before
moving to Hong Kong. He has been an Associate Professor of geotechnical
engineering with The Hong Kong Polytechnic University, since 2018. He has
published more than 100 articles in peer reviewed international journals.
Since 2012, he has been a member of the Granular Materials Committee,
American Society of Civil Engineers.

ANNAN ZHOU received the Ph.D. degree in
geotechnical engineering from the University of
Newcastle, in 2011, with an Australian Endeavor
Scholarship. After his graduation, he joined RMIT
as a tenured Lecturer in geotechnical engineering
and was promoted to a Senior Lecturer in 2014 and
an Associate Professor in 2018.

He has published more than 70 refereed journal
articles with more than 1400 citations. He has
successfully supervised 2 M.Sc. and 4 Ph.D. to

their completion. The major research area of includes constitutive/numerical
modelling of multiphase porous media and advanced laboratory testing on
unsaturated soils. From 2014 to 2016, hewas elected to be a RMITUniversity
Research Committee Board Member to represent the ECR academics over
the University. The quality of his publications has been recognized by
being awarded several international awards like the ISSMGE ECR Interna-
tional Best Paper Award, in 2015, and the CGJ Editor’s Choice, in 2016.
He received the ARC DECRA Fellowship, in 2012, the AGS Hugh Trollope
Medal, in 2014, the CGJ Outstanding Reviewer, in 2016, and the ISSMGE
Bright Spark Lecturer Award, in 2018. As a Chief Investigator, he has secured
several competitive research grants more than 1.5 millon, including ARC
DE, DP, and LP. Since 2015, he has been serving as an Editorial Board
Member for Canadian Geotechnical Journal (NRC), Underground Space
(Elsevier), and Advance in Civil Engineering (Hindawi). He also is invited as
an External Reviewer for several national grants (like ARC, ISF, and NSFC)
and numerous flagship journals (like Scientific Reports, Geotechnique, and
Computers and Geotechnics).

VOLUME 8, 2020 39671

http://dx.doi.org/10.1016/j.asoc.2015.07.005
http://dx.doi.org/10.1109/ACCESS.2019.2917756
http://dx.doi.org/10.1007/s12665-017-6864-6

