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ABSTRACT A new look-up table based behavioral model for dynamic nonlinear power amplifiers is
proposed. This model labelled as hybrid look-up tables model is based on the combination of a memoryless
look-up table sub-model and a nested look-up tables one. It is demonstrated that the proposed model
circumvents the computational complexity associated with the parameters identification in analytically
defined behavioral models. Moreover, the proposed model reduces the size of the standalone nested
look-up tables model by approximately 80% while maintaining its accuracy. Furthermore, a novel slew-rate
based trimming and indexing technique to reduce the nested look-up tables model size is developed and
corroborated experimentally. Additionally, the two-box structure of the hybrid look-up tables model makes
it suitable for bandwidth scalability. Experimental validation using LTE-advanced test signals with up to
120MHz bandwidth demonstrates the ability of the proposed hybrid look-up tables model to be bandwidth
scalable with less than 0.5dB degradation in the normalized mean-squared error.

INDEX TERMS Behavioral modeling, dynamic distortion, look-up table, memory effects, nonlinear

distortions, power amplifier (PA).

I. INTRODUCTION

Radio frequency (RF) transmitters are crucial in any mod-
ern wireless system. Whether for wireless communications,
broadcasting, or satellite applications, the transmitter’s radio
frequency front-end plays a critical role in the overall oper-
ation and performance of the communication link. More
specifically, the power amplifier (PA) has the most significant
impact on key performances of the transmitter: namely the
power efficiency and the linearity. With the recent devel-
opment in wireless technologies, very high data rates are
employed to accommodate the desired quality of service.
This is implemented through the use of amplitude modulated
signals based on high order constellations and advanced mul-
tiple access techniques. The nature of these signals is at the
origin of the nonlinear behavior of power amplifiers which
causes interferences with adjacent channels due to spectrum
regrowth, as well as loss of information due to the in-band
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distortions. Hence, it is essential to model and compensate
for these nonlinear distortions in order to meet the linearity
requirements and avoid loss of information [1].

The modeling and compensation of power amplifiers
nonlinear distortions have been widely investigated over
the last decade with the continuous development of inno-
vative behavioral modeling and predistortion techniques
that aim to address the different challenges arising from
the adoption new standards [1]-[5]. Yet, throughout the
continuous evolution of behavioral modeling and predistor-
tion techniques, one objective remains unchanged: devel-
oping models that have low complexity and high accuracy.
To achieve this, several model structures have been pro-
posed in the literature including memory polynomial based
single-box [6]-[8], and multi-box models [9]-[11], Volterra
series based models [12], [13], and look-up table (LUT) based
models [14]-[16].

Volterra based models are inherently complex and require
advanced pruning techniques to reduce the number of their
coefficients [12], [13]. However, this pruning places an
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additional computational overhead on the model identifica-
tion. Memory polynomial (MP) based models achieve satis-
factory performances while being far less complex than their
Volterra counterpart due to their compact size. LUT based
models are attractive since they do not require coefficients
calculation through linear identification techniques as it is the
case in analytically defined models. Indeed, the identification
of analytically defined models often involves the inversion of
an ill-conditioned matrix having a large size [17]-[19]. How-
ever, the above-mentioned advantages of LUT based models
come at the expense of several limitations. Indeed, basic LUT
models are memoryless and therefore they cannot be used as
standalone models in modern applications in which power
amplifiers unavoidably exhibit dynamic nonlinear behavior
with strong memory effects. This issue was addressed in
prior art by using multi-dimensional, nested LUT (N-LUT)
models [14], [15]. However, these models result in a very
large size, making them unattractive. In [16], a table based
model was proposed for all-digital RF transmitters. The iden-
tification of this model requires the initialization of the LUT
using all possible combinations of the input signal for the
considered memory depth of the device under test. While
this can be feasible in all-digital transmitters, such train-
ing signals cannot be applied in the case of conventional
amplifiers driven by amplitude modulated signals as they will
unavoidably lead to an inaccurate observation of the device
under test behavior. This is mainly due to the sensitivity of
the power amplifier behavior to the characteristics of the input
signal [1].

This paper proposes a new class of power amplifiers behav-
ioral models named hybrid look-up tables (H-LUT) model
that significantly improves the performance of the conven-
tional nested LUT model. The H-LUT model employs a
combination of a memoryless LUT (M-LUT) and a nested
LUT connected in parallel. The proposed model was found
to have better accuracy for small training datasets, smaller
size, and distinctive bandwidth scalability features compared
to the N-LUT model.

In Section II, the proposed hybrid look-up tables model
is introduced, and its performances discussed. An enhanced
version of the H-LUT model which enables substantial size
reduction is then proposed and assessed in Section III.
The bandwidth scalable version of the H-LUT model is
described in Section IV along with experimental validation
data using LTE-advanced signals with bandwidths ranging
from 40 to 120MHz. Finally, the conclusions are summarized
in Section V.

Il. HYBRID LOOK-UP TABLES MODEL

A. MODEL DESCRIPTION

Two-box models have been widely used in the literature to
model dynamic nonlinear power amplifiers [1], [9]-[11]. The
main advantage of a two-box structure is that it leads to
a better trade-off, in terms of performance and complexity,
than single-box models. In two-box models, the behavior
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FIGURE 1. Block diagram of the proposed hybrid LUT model.
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of the device under test (DUT) is separated into a static
highly nonlinear function and a dynamic mildly nonlinear
function. Most importantly, in the previously reported mod-
els, the two functions are cascaded with the static nonlinear
function being placed upstream of the dynamic nonlinearity
in the Hammerstein and Hammerstein-like models, whereas
the dynamic nonlinearity precedes the static nonlinearity in
Wiener and Wiener-like models. These arrangements contrast
with the model proposed in this work where the static nonlin-
earity and the dynamic nonlinearity are arranged in a mutu-
ally exclusive setting. In fact, as shown in Figure 1, the input
signal’s sample is first fed into a comparator. Depending on
whether the power of the input sample is higher or lower
than the threshold defined in the comparator setting, the input
sample will be fed to a memoryless LUT or a nested LUT,
respectively. The rationale behind this model lies in the fact
that the nonlinear behavior exhibited by power amplifiers has
strong memory effects in the low-power region, and quasi-
memoryless behavior in the high-power region [20]. Analyt-
ically, the proposed model is defined by:

y () = ynrur (n) + ymrur (n)
= fyveur [x M1+ furor [x (0)] (D

where x (n) and y (n) are the baseband complex input and
output samples, respectively. fyryr and fy yr are the transfer
characteristics of the N-LUT and the M-LUT, respectively.
The memoryless LUT model relates the output sample,
ymrut (n), to the input sample, x (n), according to
ymrur (n) =0 if |x ()| < |x|g
ymrur (n) = furur [x (n)]

@)

if |x ()| > |xIz,

where |x|y, is the threshold value used to delimit the region
in which the memoryless LUT will be applied to calculate the
output sample from that where the nested LUT model will be
applied. fyrur [x (n)] is given by:

Surur [x )] = Gurur [Ix @)[] - x (n) 3)

where Gyt is the instantaneous complex gain of the mem-
oryless LUT which depends solely on the power, or equiva-
lently the magnitude, of the present sample, i.e. |x (n)|.
Conversely, in the nested LUT, the instantaneous complex
gain, Gnryr, s function of the power of the present sample as
well as the power levels of the M —preceding samples where
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FIGURE 2. Nested LUT implementation using two-dimensional indexing.

M is the memory depth of the DUT. Hence, the baseband
output waveform of the N-LUT model will be given by

ynLor () = fyeor [x (W] if [x (0)] < |x|gy,

: 4)
ynor ) =0 if |x (m)| > |x|p,
where
Sycor [x (n)]
= Gnror llx @], [x (n=D|, -+, [x (n=M)|]-x (n) (5)

Accordingly, the hybrid LUT model output can be for-
mulated using (6) which clearly demonstrates the mutually
exclusive nature of the two sub-functions defining the model,
and hence contrasts with conventional two-box models.

if [x (n)| < |x|py

:y (n) = ynrur (n) ©)

y () = ymror (n) if |x (0)]| > |x|gy

While the M-LUT is a simple one-dimensional LUT
indexed by |x (n)|, the N-LUT can be perceived as a
multi-dimensional LUT having (M + 1) dimensions. How-
ever, for ease of representation and without loss of gen-
erality, the N-LUT can be seen as a one-dimensional
LUT indexed by a vector made of the magnitude of
the instantaneous as well as the previous M input sam-
ples ie. [x()|,|lx(n—1],---,|x (n —M)| as described
in [14], or as a two-dimensional LUT in which the first
dimension corresponds to the present input sample mag-
nitude |x (n)|, and the second dimension is defined by
the magnitude of the M preceding input samples i.e.
x(m—=D],x(mn—=2),---,x(m—M)| [15]. This latter
version of the nested LUT is adopted in this work as depicted
in Figure 2.
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In summary, the proposed model works by exploiting
the fact that highly nonlinear behavior predominates in
the high-power region while the mildly-nonlinear memory
effects prevail in the low-power region. Hence, a threshold
value is determined to delimit each of these ranges and
apply the corresponding sub-model. In the low-power region,
the memory effects are modelled by a nested LUT imple-
mented as a 2D LUT in which the two indexing variables
are the current sample magnitude and a vector made of the
magnitude of the M preceding samples. In the high-power
region, a memoryless LUT indexed by the instantaneous input
power is used to predict the model’s output sample.

B. MODEL PERFORMANCE ASSESSMENT

The proposed model has two main advantages when com-
pared to the standalone N-LUT and M-LUT models. First,
the H-LUT model has similar performance to the N-LUT, but
has smaller size. Moreover, the H-LUT model has larger size
than the M-LUT model but leads to better performance when
the device under test has memory effects. Hence, achieving
a better trade-off between complexity and accuracy for the
behavioral modeling of nonlinear power amplifiers exhibiting
memory effects.

To assess the size reduction achieved by combining the
M-LUT along with the N-LUT, let’s consider a device under
test having a memory depth M, and being modeled by a
N-LUT model in which the input signal magnitude is quan-
tized over K values. Hence, the number of cells in the N-LUT
will be given by:

Sneyr = KM (7

However, modeling the same DUT with the same quanti-
zation level of the input signal magnitude (K) and memory
depth (M) but using the H-LUT model will require a total of
Surur cells with

SuLur = THY ! + (K — TH) ®)

where TH is the index of the quantized value of |x|7,. For
|x|l7, = 0, TH = 1 and the model is reduced to the
standard M-LUT model of size K. Conversely, for |x|p; =
max [x |(n)|], TH = K and the model is equivalent to the
conventional N-LUT model having a size of KM 1,

The percentage of the size reduction achieved by using the
H-LUT model instead of the N-LUT model can be estimated
using:

SHLUT THM+! + (K — TH) ©)
Sneur KM+l
Equation (9) can be approximated by:
S TH M+1
SuLur <_> (10)
SneLur K

This approximation allows us to estimate the size reduction
of the N-LUT when the H-LUT model is used independently
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FIGURE 3. Size reduction of the NLUT obtained when using the HLUT
model for various memory depths.

of the value of K, but as a function of the threshold ratio
defined as

TH
THR = — (11)
K

It can be shown that the error due to such approximation
is bound by %, hence making the approximation of (10)
legitimate.

Figure 3 illustrates the percentage of size reduction as a
function of the DUT memory depth and the threshold ratio
as estimated by Equation (10). As it can be seen from this
figure, for systems with memory depth M > 2, threshold
values up to THR = 60% result in size reduction larger than
80%. This clearly demonstrates the model size reduction that
can be achieved by the H-LUT model structure. However, this
comes at the expense of the need for an accurate estimation
of the threshold value. In fact, overestimating the threshold
value will limit the size reduction, while underestimation of
the threshold value will impact the accuracy of the H-LUT
model and degrade it from that of the N-LUT model.

To investigate the impact of the H-LUT model parameters,
and more specifically the selection of the threshold value,
on the modeling performance, experimental validation was
carried out. The device under test used in this work is a
Gallium Nitride (GaN) based 10W class AB power ampli-
fier operating around 2450MHz. The DUT is built using
CGH40010 transistor, from Wolfspeed, biased at 28V and
150mA. The baseband waveforms at the input and output
of the DUT were saved using a standard experimental setup
made of a vector signal generator and a vector signal ana-
lyzer [3]. In this work, the Rhode & Schwarz SMW200A and
FSW43 were used as signal generator and signal/spectrum
analyzer, respectively. Following the acquisition of the input
and output baseband waveforms, power alignment is per-
formed to de-embed the measured data to the DUT ref-
erence planes. This mainly includes compensation of the
loss introduced by the attenuator placed between the output
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of the power amplifier and the signal analyzer input port.
Then, the time-delay between the input and output wave-
forms is estimated and compensated for using conventional
cross-covariance based technique [21]. For each input signal
sample of the training dataset, the index of the corresponding
table cell is calculated using the current as well as the M pre-
ceding samples magnitudes. The value of the instantaneous
complex gain corresponding to this input vector is then calcu-
lated and stored in the corresponding LUT cell. The training
is completed once the model is initialized using all samples
of the training dataset. During the model performance assess-
ment stage, a validation dataset is used. The training dataset
represents a percentage of the validation dataset. During the
model performance assessment step, an input signal sequence
may correspond to a table cell that was not initialized during
the training step. In such case, the corresponding gain is
estimated by interpolating the gain values of the neighboring
cells [22].

The model performance is assessed using the normalized
mean squared error (NMSE) which is defined as

N
Z |ydex (n) — Yest (”)'2

N

Z [Vdes (n) |2

n=1

(12)

where yges and y, are the desired and the estimated output
waveforms, respectively. N is the number of samples in the
validation dataset.

For this test, the device under test was driven by a 2-carrier
LTE-advanced signal having a bandwidth of 40MHz. The
signal was sampled at 200MHz and had 200,000 samples
corresponding to a Ims time duration. First of all, the
N-LUT model was synthesized for various values of K and
M to determine the suitable size of the N-LUT model. Based
on these simulations, satisfactory modeling performance was
obtained with the N-LUT model when K = 256 and M = 2.
In fact, it was found that the N-LUT model having these
parameters leads to a normalized mean squared error of
—31dB when fully trained. To have a realistic benchmark
in terms of model performances, the MP model [6] and
the envelope memory polynomial (EMP) model [8] of the
DUT were derived for the same memory depth. The NMSE
achieved by the MP and the EMP models are —32.2dB and
—24.9dB, respectively. It is important to mention here that
the nature of the complex gain implemented in the N-LUT
model is similar to that of the EMP model in the sense that
the complex gain function of the DUT depends only on the
magnitude of the current as well as the preceding samples.
This contrasts with the MP model in which the output signal
is a function of the complex values of the present and past
samples.

Once the size of the N-LUT model was set, the value of the
threshold ratio was swept from 10% to 100% in steps of 10%.
For each value of the threshold ratio, the H-LUT model
performance was estimated as a function of the training data

53243



IEEE Access

A. I. Dalbah et al.: Hybrid Look-Up-Tables Based Behavioral Model for Dynamic Nonlinear Power Amplifiers

—&— THR=0

NMSE (dB)

—@— THR=20%

29 Lo —O— THR=40%
- -K- - THR=60%
--0-- THR=80%

30 [ —7— THR=100%

-31

32 L : : : : : : : :
10 20 30 40 50 60 70 80 90 100
Training Data Length (%)

FIGURE 4. Hybrid LUT model performance as a function of the threshold
ratio.

length. The training data length refers to the ratio between
the length of the dataset used to train the model and that
of the dataset used to assess the model performance. The
results of this test are reported in Figure 4. It is important
to note here that for a threshold ratio of 0, the H-LUT model
is reduced to a memoryless LUT, while for a threshold ratio
of 1, the H-LUT model is simply a standard N-LUT. As it can
be observed through the results of Figure 4, the H-LUT model
with a threshold ratio of 60% and above results in NMSE
values that are within 1dB from those of the N-LUT model.
However, as the value of the threshold ratio decreases below
60%, more noticeable NMSE degradation occurs with the
model performance getting closer to that of the memoryless
LUT.

The results of Figures 3 and 4 clearly demonstrate the supe-
riority of the proposed H-LUT model. Indeed, for a threshold
ratio around 60%, the H-LUT model leads to performance
comparable to that of the N-LUT model while achieving a
size reduction of approximately 80%. Figure 4 also shows a
limitation inherent to the N-LUT model which also appears
in the case of the H-LUT model since it includes a N-LUT
sub-model. This limitation is related to the sensitivity of the
model performance to the training data length. In fact, while
the performance of the M-LUT model remain unchanged for
training data lengths varying from 10% to 100% of the per-
formance assessment data lengths. The NMSE of the H-LUT
model improves by several dBs as the training data length is
increased. Indeed, larger training datasets will result in more
N-LUT cells being filled, which in turn will reduce the need
for interpolation during the estimation of the model’s output
signal leading to enhanced model performance [22].

1Il. DIFFERENTIAL INDEXING BASED HYBRID LOOK-UP
TABLES MODEL

In the previous section, it was demonstrated that the Hybrid
LUT based model can lead to satisfactory modeling accuracy
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while reducing the overall size of the model. Size reduction
is further pursued in this section.

One straightforward approach to reduce the size of the
LUTs in the H-LUT model would be to reduce the value of K
and / or that of M. However, either of these approaches would
unavoidably result in a loss of modeling accuracy. To reduce
the model size without affecting its accuracy, the N-LUT
sub-block was considered since it accounts for the bulk of
the overall model size in the H-LUT.

It is important to note that while the N-LUT model
is designed to accommodate all theoretically possible
combinations of the indexing vector |x (n)|, |[x (n — 1)|, - - -,
|x (n — M)|, in a physical signal with a finite bandwidth,
the variation between two consecutive samples is bound.
The slew-rate (SR) of the signal quantifies the maximum
amount of variation in the amplitude of the signal between
two consecutive samples. The slew-rate of a signal depends
on the bandwidth of the signal as well as its sampling rate.
For a signal waveform x, the slew-rate SR (x) is defined by

SR (x) = max (|x (m)[—|x (n—=1D[) (13)

—_— X
max (|x (n)|]) ne[2.N]
[1,N]

where N refers to the number of samples in the waveform
x, and K represents the number of quantization levels of the
magnitude of the signal x.

Defining an upper limit on the variation between two con-
secutive samples will directly translate into a smaller N-LUT
model size as it will remove unnecessary combinations of the
indexing vector. To better illustrate this concept, a N-LUT
model with M = 1 was considered. It is worth mentioning
here that selecting M = 1 is only for clarity purposes and
does not result in any loss of generality of the results to be
demonstrated.

A typical LTE signal having 20MHz bandwidth was used
in this study. Figure 5 shows the frequency of occurrence
of |x (n)| and |x (n — 1)|. This figure provides a valuable
insight about the signal behavior. First, it can be seen that

140
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80 ~
60 -

40

Frequency of occurrence

20

= 1
0.8
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d Maén\tude of xin)

0.2
Norma\\le

FIGURE 5. Frequency of occurrence of signal magnitudes in two
consecutive samples.
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the frequency of occurrence is low for low values and high
values of |x (n)|, confirming, as expected, the distribution
of the signal magnitude which is mainly centered around
the average value. Most importantly, Figure 5 shows that
the non-zeros frequencies of occurrence are mainly clustered
around the diagonal of the table, and that as one moves away
from the diagonal, the frequency of occurrence is reduced
to 0.

The data of Figure 5 was further processed to present,
in Figure 6, the frequency of occurrence as a function of
the variation between two consecutive samples. As seen
in Figure 6, large variations (corresponding to |SR| > 0.2K)
between two consecutive samples do not occur. Therefore,
one can reduce the size of the N-LUT without noticeable
impact on the model accuracy since the cells to be eliminated
are not used to estimate the model’s output signal.

10000
9000

8000

7000 | I : : : : L L

6000 - [ : : : : E .

5000 |t ER— -

4000 Lo

Frequency of Occurence

L ,—e,——,,eYe--

2000 |t R -

I
or-i-i-i-i,j‘i‘i-i-i-i-’

41 08 -06 -04 -02 0 02 04 06 08 1
Normalized Deviation (SR/K)

FIGURE 6. Frequency of occurrence of magnitude deviation between two
consecutive samples.

According to the results above, it is possible to estimate
the slew-rate of the signal and hence trim the N-LUT model
accordingly. However, to implement such model, two issues
need to be addressed. First, the new structure of the trimmed
N-LUT and its indexing need to be developed in order to
reduce the N-LUT size for a given slew-rate value (SR).
Second, the value of the slew-rate needs to be accurately
estimated.

To address the issue of the trimmed N-LUT implementa-
tion, an additional constraint was imposed on the indexes of
two consecutive samples as described by Equation (14):

—SR < |x(m]; — |x (n = D)|; = SR (14)

where |x (n)|; refers to the index of |x (n)|.

Hence, the N-LUT model structure depicted in Figure 2
will be changed into that of Figure 7 which shows the
trimmed-NLUT structure for a memory depth M = 1.
Figure 7 shows that the range of possible indexes for the
history term is not from 1 to K anymore but is now function
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|x(n—1)|_ =K
|x(n)|[ = : l
K-SR<k<K '
[x(n—1), =k-SR
(), = |[x(n=1), =k+SR
i — :
SR<k<K-SR |x(n—1)|l_=k—SR
|x(n—1)|i =2S8R
|x(n)|i =SR — :
|x(n—l)|l_ =1
[x(n—1) =SR+2
|x(n)|l_ =2 > :
|x(n—1)|[ =1
|x(n—1)|l_ =SR+1
|x(n)|[ =1 > :
|x(n—1)|l_ =1

FIGURE 7. Differentially indexed trimmed NLUT model structure for
memory depth M = 1.

of that of the current sample. The trimmed N-LUT structure
shown in this figure reinforces the slew-rate condition of (14)
while at the same time ensuring that

l<lx(n—m)|; <K forme[l, M] (15)

For amemory depth M = 1, combining (14) and (15) leads
to

max (L, |x ()]; = SR) <|x (n—1)|; <min (K, SR + |x (n)];)
(16)

Equation (16) can be used to relate the ranges of the indexes
for any two consecutive samples for any value of memory
depth. For the case of a memory depth of 2, the resulting
structure of the trimmed N-LUT is presented in Figure 8.

As illustrated in Figure 7 and Figure 8, the use of the
trimmed-NLUT will result in size reduction by eliminating
unnecessary cells of the N-LUT model. The size reduction
achieved using the proposed trimming process is evaluated
as function of the normalized slew-rate (SR/ K) for memory
depths of 1 and 2. These results are reported in Figure 9 which
shows the size reduction obtained following the trimming
process as a percentage of the N-LUT size before trimming.
It is worth mentioning here that in the H-LUT model where
the N-LUT is being trimmed, the total size reduction when
compared to the standalone N-LUT will be two-fold. First,
due to the use of the threshold value in the H-LUT model
(as depicted in Figure 3), and then due to the trimming of the
N-LUT sub-model (as illustrated in Figure 9).
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FIGURE 8. Differentially indexed trimmed NLUT model structure for
memory depth M = 2.
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FIGURE 9. Size reduction obtained using the trimmed NLUT model as a
function of the normalized slew-rate.

In order not to affect the accuracy of the trimmed N-LUT
model once the differential indexing is adopted, it is essen-
tial to ensure that the slew-rate of the signal is accurately
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estimated. This will guarantee that the cells removed from the
N-LUT during the trimming process do not contribute to the
estimation of the output signal, and hence the N-LUT model
will have the same accuracy before and after trimming.

Two approaches were considered for the estimation of the
slew-rate of the signal. First, SR was estimated empirically
using a wide range of LTE test signals with bandwidths vary-
ing from 20MHz all the way to 120MHz. In this approach,
the SR was calculated for each test signal using Equation (13).
The 20MHz and the 40MHz test signals were sampled at
200Msps, while the 80MHz and the 120MHz test signals
were sampled at 537.6Msps and 600Msps, respectively. All
signals had a 1ms time duration.

In the second approach, a sinusoidal test signal was used.
The frequency (fcw) of the sinusoidal function was set to the
highest frequency present in the baseband waveform of the
amplifier output signal.

Assuming that the amplifier generates intermodulation dis-
tortions up to the fifth order, the value of fcw was set to

few =2.5 x BW (17)

where BW is the bandwidth of the test signal.

The same oversampling ratio used for the LTE signals was
also applied to the sinusoidal test signal, and the slew-rate
of the sinusoidal signal was calculated using Equation (13).
Table 1 summarizes the values of the slew-rate for the various
LTE signals estimated theoretically using the sinusoidal test
signal, and empirically by calculating the maximum vari-
ation in the magnitude of two consecutive samples. This
table shows that the theoretical approach overestimates the
value of SR. This can be explained by the fact that the the-
oretical approach forces the presence of signal components
at the highest frequency of the fifth order intermodulation
distortions while these might not exist at the output of the
DUT. Table 1 also reports the relative size of the trimmed
LUT with respect to the original N-LUT for the considered
DUT when driven by the various LTE signals. The original
N-LUT was built using K = 256 and M = 2, while

TABLE 1. Estimated slew-rate for various LTE signals and corresponding
model size.

Signal UsmgSiSu:l:lsmdal Empirical Approach
Eséll?;t_ed Relative Eséllr:;ted Relative
H () - : 0
Rate Size (%) Rate Size (%)
Signal 1 ) .
(20MHz) 73 25% 57 16%
Signal 2 ) .
(40MHz) 152 72% 102 42%
Signal 3 ) .
(80MHz) 116 51% 114 50%
Signal 4 ) .
(120MHz) 152 72% 122 55%
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the trimmed N-LUT was derived by using the estimated
slew-rate values. These results confirm the noticeable size
reduction achieved by the proposed differential indexing and
the trimmed N-LUT which varied between 45% and more
than 80%. It is important to highlight here that the extent
of the size reduction achieved by the proposed trimming
technique will vary depending on the size of the original
model as well as the slew-rate of the test signal.

The next important step is to evaluate the model perfor-
mance following this size reduction in order to ascertain its
impact on the model accuracy. Figure 10 reports the NMSE of
the Hybrid LUT model before and after size reduction using
various slew-rate values for different training data lengths
and two test signals: 20 MHz and 40 MHz LTE-advanced
signals. SR was varied for both signals, while TH was set to
the value determined previously. These results confirm that
the size reduction, does not have significant impact on the
model accuracy and its ability to predict the output signal.
This is mainly because the size reduction is performed by
delimiting and removing the cells that are not needed rather
than reducing the resolution (K) or the memory depth (M).

Figure 10 shows that even though the estimated slew-rate
for the 20MHz signal was around 61, reducing it far below
that value (to as low as 25) does not lead to any significant
performance degradation of the trimmed hybrid LUT model.
Similarly, for the 40MHz signal, trimming the N-LUT model
with a slew-rate as low as 40 does not degrade the accuracy of
the model. This can be explained by the fact that the NMSE
will be negligibly affected by removing a few samples having
a low probability of occurrence. Here also, the NMSE data
reported in Figure 10 shows the dependency of the model
performance on the training data length which is commonly
observed in N-LUT based models.

These results clearly demonstrate that adopting the
trimmed N-LUT that uses the differential indexing leads to
a reduced model size while maintaining its performance.
It is important to mention here that while the results pre-
sented in this paper were obtained using LTE test signals,
the general conclusions related to the model performance are
independent of the test signal and will hold for behavioral
modeling of nonlinear power amplifiers exhibiting memory
effects. However, the amount of size reduction as well as the
NMSE degradation are expected to slightly vary under other
test conditions.

IV. BANDWIDTH SCALABLE HYBRID LUT MODEL

In modern applications, the characteristics of the signal
being transmitted change dynamically depending on several
parameters. This causes the behavior of the power ampli-
fier to change, therefore requiring an update of the behav-
ioral model. In this section, the focus is on the variation of
the transmitted signal bandwidth. Previous studies showed
that the change in the signal bandwidth mainly affects the
dynamic part of the DUT behavior and not its memoryless
nonlinearity [23], [24]. A bandwidth scalable model that takes
into account this observation has been previously reported for
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FIGURE 10. Performance assessment of the differentially indexed
trimmed NLUT model. (a) 20MHz LTE test signal, (b) 40MHz LTE test signal.

the case of twin-nonlinear two-box models [24]. It is impor-
tant to note here, that the decoupling between the memoryless
nonlinearity and the dynamic nonlinearity in the proposed
hybrid LUT model makes it inherently suitable for bandwidth
scalability. To implement this important capability, the hybrid
LUT model block diagram was modified. Figure 11 presents
the bandwidth scalable version of the hybrid LUT model in
which the N-LUT sub-model is to be updated following a
change in the signal bandwidth while the memoryless LUT
sub-model is kept unchanged.

To validate the accuracy of this model, measurements of
three LTE-advanced test signals were used. These signals
have bandwidths of 20MHz, 40MHz, and 120MHz. First,
the M-LUT sub-model was identified from the 20MHz test
signal. Then, the bandwidth scalable hybrid LUT model was
derived for the 40MHz and the 120MHz test signals. In these
scalable models, the M-LUT sub-model was kept unchanged
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FIGURE 12. Performance assessment of the bandwidth scalable hybrid
LUT model with a 40MHz test signal.
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FIGURE 13. Performance assessment of the bandwidth scalable hybrid
LUT model with a 120MHz test signal.

(set to the one identified from the 20MHz test signal), and
only the N-LUT model was updated. The scalable model
performances are reported in Figure 12 and Figure 13 for the
40MHz and the 120MHz test signals, respectively. Figure 12
shows that the NMSE of the bandwidth scalable model is
identical to that of the reference model. Herein, the refer-
ence model corresponds to a hybrid N-LUT model which is
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entirely derived from 40MHz measurements. Similar results
are also observed in Figure 13. Additionally, Figure 13 also
shows the performance of a bandwidth scalable model in
which the LUT sub-model was derived from 40MHz rather
than 20MHz measurements. As shown in this figure, deriving
the memoryless LUT from 40MHz measurements leads to
NMSE degradation that can reach up to 1.5dB while deriving
it from 20MHz measurements has a much lesser impact on the
bandwidth scalable model performance as the NMSE degra-
dation is limited to utmost 0.5dB. This can be explained by
the fact that the static nonlinearity derived from the 40MHz
signal is not accurate as it is biased by the presence of memory
effects. Therefore, it cannot be used to implement a reliable
bandwidth scalable model.

V. CONCLUSION

In this paper, an enhanced look-up tables based model was
proposed for the behavioral modeling of nonlinear power
amplifiers exhibiting memory effects. The model decouples
the static nonlinearity and the dynamic nonlinear behav-
ior of the DUT through a hybrid architecture. The exper-
imental validation of the model performance using a GaN
based power amplifier driven by LTE-advanced test signals
demonstrated its effectiveness. Indeed, when compared to
standalone nested LUT model, the proposed model achieves
similar performance with up to 80% size reduction for the
considered test conditions. Thus, alleviating the major limi-
tation of LUT based models for dynamic nonlinear systems
that is related to their excessive size. Additionally, the pro-
posed model circumvents the computationally cumbersome
process of parameters identification in analytically defined
models. Further size reduction was achieved through a newly
proposed trimming approach for the nested LUT sub-model
based on the signal’s slew-rate. An analytical approach along
with an empirical approach were used to derive the slew-
rate of the signal and their effectiveness and impact on
the model performance were validated using experimental
data. For the considered test conditions, it was found that
the proposed N-LUT trimming technique can lead to a size
reduction ranging from 45% to 80% while degrading the
model NMSE by less than 1dB. Bandwidth scalability of
the proposed hybrid-LUT model was investigated with LTE-
advanced signals having bandwidths ranging from 20MHz to
120MHz. The scalable models were benchmarked to refer-
ence models. These results confirmed the scalability feature
in the proposed hybrid-LUT model. Further enhancement
to the proposed models can be achieved by addressing the
sensitivity of the model performance (NMSE) to the training
data length.
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