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ABSTRACT Multi-sensor distributed fusion estimation algorithms based on machine learning are proposed
in this paper. Firstly, using local estimations as inputs and estimations of three classic distributed fusion
(weighted by matrices, by diagonal matrices and by scalars) as the training sets, three distributed fusion
algorithms based on BP network (BP net-based fusion weighted by matrices, by diagonal matrices and by
scalar) are proposed and the selection basis of the number of nodes in hidden layer is given. Furthermore,
by using local estimations as inputs and centralized fusion estimation as training set, another recurrent net-
based distributed fusion algorithm is proposed, in the case that neither true states nor cross-covariance
matrices is available. This method is not limited to the linear minimum variance (LMV) criterion, so its
accuracy is higher than the classical three distributed fusion algorithms. A radar tracking simulation verifies
the effectiveness of the proposed fusion networks.

INDEX TERMS Distributed fusion, machine learning, recurrent networks, BP network.

I. INTRODUCTION
With the development of sensor technology, the performance
of sensors has been continuously improved, and the number
of sensors integrated in the systems has been continuously
increased. To some extent, the number of sensors even rep-
resents the accuracy and reliability of the system. With the
increase in the number of sensors, information fusion has
become an indispensable part of information processing for
multi-sensor systems and has attracted many attentions of
scholars.

Multi-sensor fusion estimation [1] is an important branch
of information fusion and it often works at the bottom of the
fusion framework. For fusion estimation based on Kalman
filter, there are two basic fusion frameworks: centralized
fusion and distributed fusion [2]. Centralized fusion needs to
transmit measurement data to fusion center and then estimate
using the expanded measurement. It can give the globally
optimal estimation, but the large communicational and
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computational cost and the poor fault tolerance are its dis-
advantages. Distributed fusion can estimate in local node
according to the local measurements and then transmit the
local estimates to fusion center. It can only give the subopti-
mal estimation [3], [4], but due to the lower communicational
and computational cost, it is more suitable for large-scale
sensor network systems. Distributed fusion is widely used
in many system [5], [6], such as the famous Carlson federal
Kalman filter [7], [8].

Based on the LMV criterion, a optimal fusion algorithm
weighted by matrices using weighted least squares method
is proposed (i.e., Carlson’s federated Kalman filter) [7], [8].
Roy and Iltis proposed a decentralized static filter for the
linear system with correlated measurement noises [9]. Kim
proposed the multi-sensor optimal information fusion esti-
mate in the maximum likelihood sense under the assumption
of normal distribution [10]. Based on the LMV criterion,
fusion algorithm weighted by matrices, scalar and diagonal
matrices was proposed by Sun and Deng [11]–[13]. All these
distributed fusion algorithms have lower communicational
and computational cost and good fault tolerance, and are
widely used in various fields.
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Artificial Neural Network (ANN) is an algorithmic mathe-
matical model for distributed parallel information processing
which imitates the characteristics of information transmission
and reflective behavior of human brain nervous system [14].
Due to the good approximation performance of ANN, it has
been well applied in the state estimation and information
fusion [15]–[21]. Rao et al proposed various learning-based
estimators to solve the fusion estimation problem (i.e., Arti-
ficial Neural Networks (ANNs), the Nadaraya-Watson esti-
mator and the Nearest Neighbor Projective Fuser) [22]–[24].
Chowdhury proposes a neural data fusion method, which is
performed by a set of artificial neurons and synaptic weights
are used as weight estimates for optimal data fusion [20].
Liu et al. [25] and Brigham et al. [26] proposed the learning-
based nonlinear fusion algorithms, and Brigham et al studied
and compared the use of the following cages: ANNs, support
vector regression (SVR), Nadaraya-Watson (NW) estimator
and nearest neighbor (NN) projection fuser [26].

BP (Back Propagation) algorithm is first proposed by
Werbos in his doctoral thesis, which provides a practical
solution for the training and implementation of multi-layer
neural network [27]–[29]. Rumelhart et al dissect the error
back propagation algorithm of themulti-layer network, which
further promotes the BP algorithm [30]. The topological
structure of BP network includes input layer, hidden layer
and output layer which can store a certain mapping relation-
ship by learning without knowing the specific mathematical
expression of input and output beforehand. Cybenko et al
successively analyze the approximation performance of BP
network, and prove that the continuous feedforward neu-
ral networks with single hidden layer and sigmoid transfer
function can approximate any complex continuous mapping
with arbitrary precision [31]–[33]. For recurrent networks
(Hopfield, Elman, CG, BSB, CHNN,DHNN, etc.), the output
are not only related to the current input, but also related
to the previous input of the network, which makes them
have an iterative structure similar to the Kalman filtering
framework [34], [35], [40].

The main work of this paper is to construct multi-sensor
distributed fusion frameworks based on ANN and machine
learning. Firstly, using local estimations as the inputs and
estimations of three classic distributed fusion (weighted by
matrices, by diagonal matrices and by scalars) as the training
sets, three distributed fusion algorithms based on BP net-
work (BP net-based fusion weighted by matrices, by diagonal
matrices and by scalar) are proposed and the selection basis
of the number of nodes in hidden layer is given. Furthermore,
the distributed fusion algorithm based on BP network (BP
net-based distributed fusion algorithm) is analyzed, which
uses local estimations as network inputs and true states as
the training set, in the case that the true states are available
but cross-covariance matrices are not. Finally, using local
estimations as inputs and centralized fusion estimation as
training set, another recurrent net-based distributed fusion
algorithm is proposed, in the case that neither true states nor
cross-covariance matrices is available. This method is not

limited to the LMV criterion, so its accuracy is higher than
the classical three distributed fusion algorithms.
Notations:<n denotes the n-dimensional Euclidean space;

In×n is the n-dimensional identity matrix; ’E’ denotes the
mathematical expectation; Superscripts ’T’ and ’−1’ denote
the transpose and inverse, respectively; δtk is the Kronecker
delta function (i.e., δtt = 1 and δtk = 0(t 6= k)); trP
represents the trace of the matrixP; x̂(j)k|k−γ = E

{
xk |z

(j)
0∼k−γ

}
(γ = 0, · · · , k) is the estimator of xk based on the measure-

ments z(j)0∼k−γ =

{
z(j)0 , · · · , z

(j)
k−γ

}
; x̃(∗)k|k−γ = xk − x̂(∗)k|k−γ

(∗ = j, M , S, D, C) is the estimation error; P(ij)
k|k−γ =

E
{(

x̃(i)k|k−γ
∣∣∣ z(i)0∼k−γ

) (
x̃(j)k|k−γ

∣∣∣ z(j)0∼k−γ

)T}
is the estimation

error cross-covariance matrix and P(ii)
k|k−γ will be abbreviated

to P(i)
k|k−γ .

II. PROBLEM FORMULATION
Consider the discrete linear time-invariant system with mul-
tiple sensors

xk+1 = 8xk + 0wk (1)

z(j)k = H (j)xk + v
(j)
k , j = 1, · · · ,L (2)

where xk ∈ <n is the state; z(j)k ∈ <mj ( j = 1, · · · ,L) are
the measurements; wk ∈ <r is the process noise; v(j)k ∈ <mj

(j = 1, · · · ,L) are the measurements noises; 8, 0, H (j) are
time-invariant matrices with suitable dimensions.

Assumption wk , v
(j)
k (j = 1, · · · ,L) are the uncorrelated

white noise with zero mean and covariance

E
{[

wk
v(i)k

] [
wT
t

(
v(j)t
)T ]}

=

[
Q 0
0 R(i)δij

]
δkt , i, j = 1, · · · ,L (3)

Our aim is to obtain the estimation x̂k|k as close to the

xk as possible, based on the measurements
(
z(j)0 · · · z

(j)
k

)
(j = 1, · · · ,L). There are two basic structures for this
type of fusion estimation, one is centralized fusion estima-
tion framework and the other is distributed fusion estimation
framework. When we use neural networks for fusion and
estimation, the two fusion estimation frameworks are shown
in FIGURE 1 and FIGURE 2, respectively. In the paper,
we choose the distributed fusion estimation framework for
the following two reasons:

1) The centralized fusion estimation framework shown
in FIGURE 1 needs to transmit the original measurements.
Due to the limitations of transmission bandwidth and energy,
the sensors outputs are required to be simple, which makes
many sensors unavailable, such as imaging sensors. However,
the communication network in the distributed fusion estima-
tion framework only needs to transmit the interested states,
which makes the networks more efficient and fast.

2) TheKalman filter is optimal for systems (1) and (2) [38].
It means that, for distributed fusion estimation framework
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FIGURE 1. Centralized fusion estimation framework.

FIGURE 2. Distributed fusion estimation framework.

shown in FIGURE 2, there is no loss of information before
neural network and neural network only need to fuse local
estimates. However, neural network in the centralized fusion
estimation framework need to process estimation and fusion
simultaneously, which needs the neural network to have
an iterative framework (i.e., a neural network with feed-
back [39]) and more nodes in hidden layer. The complexity
of the neural network will bring troubles to construction and
training, and more computational cost to the operation of the
neural network.

III. CLASSICAL FUSION ALGORITHMS
Lemma 1 [11]: (The optimal fusion algorithm weighted by
matrices in the sense of LMV) Let x̂(j)k|k (j = 1, · · · ,L)
be unbiased estimators of xk ∈ <n based on the measure-

ments
(
z(j)0 · · · z

(j)
k

)
. Then the optimal fusion estimator x̂(M )

k|k
weighted by matrices in the sense of LMV is given by:

x̂(M )
k|k =

L∑
j=1

A(j)
k x̂

(j)
k|k (4)

where the optimal matrix weights A(j)
k are computed by[

A(1)
k , · · · ,A

(L)
k

]
=

(
eTP−1k|ke

)−1
eTP−1k|k (5)

where Pk|k is an nL× nL symmetric positive definite matrix,
and e is nL × n matrix:

Pk|k =


P(1)
k|k · · · P(1L)

k|k
...

. . .
...

P(L1)
k|k · · · P(L)

k|k

 , e =
 In...
In

 (6)

The corresponding fusion filtering error covariance matrix
P(M )
k|k is:

P(M )
k|k =

(
eTP−1k|ke

)−1
(7)

and

trP(M )
k|k ≤ trP(j)

k|k , j = 1, · · · ,L (8)

Lemma 2 [12]: (The optimal fusion algorithm weighted by
scalars in the sense of LMV) Let x̂(j)k|k (j = 1, · · · ,L) be
unbiased estimators of xk ∈ <n based on the measure-

ments
(
z(j)0 · · · z

(j)
k

)
. Then the optimal fusion estimator x̂(S)k|k

weighted by scalars in the sense of LMV is given by:

x̂(S)k|k =

L∑
j=1

a(j)k x̂
(j)
k|k (9)
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where the optimal fusion scalar weights ak = [a(1)k · · · a
(L)
k ] is

calculated by:

ak =
eT
(
P tr
k|k

)−1
eT
(
P tr
k|k

)−1
e

(10)

where P tr
k|k is the L×L positive definite matrix, and e is L×1

vectors:

P tr
k|k =


trP(1)

k|k · · · trP(1L)
k|k

...
. . .

...

trP(L1)
k|k · · · trP(L)

k|k

 , e =

 1
...

1

 (11)

The fusion filtering error covariance matrix P(S)
k|k is:

P(S)
k|k =

L∑
i

L∑
j

aiajP
(ij)
k|k (12)

and

trP(S)
k|k (t|t) ≤ trP(j)

k|k , j = 1, · · · ,L (13)

Lemma 3 [13]: (The optimal fusion algorithm weighted by
diagonal matrices in the sense of LMV) Let x̂(j)k|k (j =
1, · · · ,L) be unbiased estimators of xk ∈ <n based on

the measurements
(
z(j)0 · · · z

(j)
k

)
. Then the optimal fusion

estimator x̂(D)k|k weighted by diagonal matrices in the sense of
LMV is given by:

x̂(D)k|k =

L∑
j=1

A(j)
k x̂

(j)
k|k (14)

where the diagonal matrix weights are calculated by:

A(j)
k =


a(j)1,k|k · · · 0
...

. . .
...

0 · · · a(j)n,k|k

 (15)

The xk , x̂
(j)
k|k and x̂

(D)
k|k are rewritten as:

xk =
[
x1,k , · · · , xn,k

]T
, x̂(j)k|k =

[
x̂(j)1,k|k , · · · , x̂

(j)
n,k|k

]T
,

x̂(D)k|k =

[
x̂(D)1,k|k , · · · , x̂

(D)
n,k|k

]T
(16)

then Equation (14) can be rewritten as:

x̂(D)i,k|k =

L∑
j=1

a(j)i,k|k x̂
(j)
i,k|k , i = 1, · · · , n, j = 1, · · · ,L (17)

where ai,k|k =
[
a(1)i,k|k , · · · , a

(L)
i,k|k

]
are calculated by:

ai,k|k =
eT
(
P ii,k|k

)−1
eT
(
P ii,k|k

)−1
e
, e = [1, · · · , 1]T (18)

where P ii,k|k is the L × L positive definite matrix:

P ii,k|k =


P(1)ii,k|k · · · P(1L)ii,k|k
...

. . .
...

P(L1)ii,k|k · · · P(L)ii,k|k

 (19)

where P(kj)ii,k|k are the i× i element of P(kj)
k|k . The fusion filtering

error covarianceP(D)i,k|k = E
{(
xi,k − x̂

(D)
i,k|k

) (
xi,k − x̂

(D)
i,k|k

)T}
is:

P(D)i,k|k =

[
eT
(
P ii,k|k

)−1
e
]−1

, i = 1, · · · , n (20)

and

trP(D)
k|k =

n∑
i=1

P(D)i,k|k ≤ trP(j)
k|k , j = 1, · · · ,L (21)

Lemma 4 [3]: (Centralized fusion) The measurement func-
tion of centralized fusion is

z(C)k = H (C)xk + v
(C)
k , j = 1, · · · ,L (22)

where

z(C)k =

[
(z(1)k )

T
· · · (z(L)k )

T
]T

(23)

H (C)
= [HT

1 · · · HT
L ]

T (24)

cov(v(C)k ) = diag(R(1)
· · · R(L) ) (25)

and ’diag’ representation diagonal matrix. For the centralized
fusion system with Equations (1) and (22), using Kalman
filter, the centralized fusion filter x̂(C)k|k can be yield.

IV. FUSION ALGORITHMS BASED ON BP NETWORK
A. BP NET-BASED FUSION ALGORITHMS TRAINED BY
CLASSICAL FUSION ESTIMATIONS
The topology of BP network with single hidden layer is
shown in FIGURE 3 [36]. It can store the mapping rela-
tionship by learning without knowing the specific mathe-
matical expression of input and output beforehand. In 1989,
Cybenko et al analysis the nonlinear function approxima-
tion performance of BP neural network, and proved that
the continuous feedforward neural network with single hid-
den layer and transfer function sigmoid can be arbitrarily
accurate [31]–[33]. In this paper, based on the approximation
performance of BP network, a fusion network is proposed.
After training, the proposed fusion networks can achieve the
effects of the three classical fusion methods (weighted by
matrices, by diagonal matrices and by scalars). The selection
basis of the number of nodes and activation function in hidden
layer nodes will also be given.

As shown in FIGURE 3, xj (j = 1, · · · ,M ) are the inputs
of the input layer; w(1)

ij (i = 1, · · · , q; j = 1, · · · ,M ) are the

weights between input layer and hidden layer, and w(2)
ki (k =

1, · · · ,N ; i = 1, · · · , q) are the weights between hidden
layer and output layer, respectively; f (·) and g(·) are the
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FIGURE 3. The topology of BP network with single hidden layer.

activation functions for the hidden and output layers, respec-
tively; d(n) = [d1, d2, · · · , dN ], y(n) = [y1, y2, · · · , yN ]
are the desired and actual outputs, respectively.

Using the approximation function of BP network to realize
the classical fusion estimations involve the problems, such
as the number of hidden layer nodes and the selection of
activation functions.

First of all, noting that the fusion Equations (4), (9) and
(14) are linear, linear functions are chosen as the activation
functions. Such a choice can achieve the effects of classical
fusion estimation and reduce the computational cost of net-
work training and working. Next, some discussions about the
number of nodes in hidden layer will be given.
Theorem 1: If a BP network with single hidden layer

equivalent to the optimal fusion weighted by matrices in the
sense of LMV through training, then the number of nodes in
the hidden layer q must satisfy q ≥ n ( n is the dimension of
state).

Proof: Let x̂i(t|t) (i = 1, · · · ,L) is local optimal unbi-
ased estimates. According to the distributed fusion estimation
framework shown as FIGURE 2 and the topology of BP
network shown as FIGURE 3, the number of nodes in the
input, hidden and output layers areM (M = n× L), q and n,
respectively.

Both the activation function in hidden layer and the acti-
vation function in output layer are selected as linear transfer
functions. The performance index for the network is:

E(w) =
1
2

Q∑
γ=1

(dγ − yγ )
T(dγ − yγ )

=
1
2

Q∑
γ=1

eTγ eγ

=
1
2

Q∑
γ=1

n∑
k=1

e2γ k (26)

where w ∈ <((M+n)×q)×1 is the weight vector, Q is the
number of training patterns, and the error for the γ th input
eγ = dγ − yγ =

[
e11 · · · e1n · · · eQ1 · · · eQn

]T ( γ =
1 ∼ Q ), and vectors eγ ∈ <N×1, dγ ∈ <N×1, yγ ∈ <N×1

(N = Q× n).

Find the minimum weight vector in performance index for
the network of Equation (26) to get the system of Equations:

JTJw− JTNe = 0 (27)

where the Jacobianmatrix J ∈ <(Q×n)×U and the error vector
are defined as:

J=



∂e11
∂w1

∂e11
∂w2

· · ·
∂e11
∂wU

...
...

. . .
...

∂e1n
∂w1

∂e1n
∂w2

· · ·
∂e1n
∂wU

...
...

. . .
...

∂eQ1
∂w1

∂eQ1
∂w2

· · ·
∂eQ1
∂wU

...
...

. . .
...

∂eQn
∂w1

∂eQn
∂w2

· · ·
∂eQn
∂wU



, ē=



e11
...

e1n
...

eQ1
...

eQn


(28)

If JTJ is a non-singular matrix (Rank(JTJ) = (M+n)×q),
we can get the least squares solution of the optimal weights
w∗ for the γ th group of training as:

w∗ = (JTJ)−1JTe (29)

In order to prevent the matrix JTJ singularity in Equa-
tion (29), LM (Levenberg-Marquardt) algorithm is used here,
that is the Equation (29) is rewritten as:

w∗ = (JTJ + µI)−1JTe (30)

According to the BP network shown in Fig. 3, the output
of the kth node of output layer is:

yk =
q∑
i=1

w(2)
ki (

M∑
j=1

w(1)
ij xj + θi)+ ak (31)

where the θi is the threshold of the ith node in hidden layer,
and the ak is the threshold of the kth node in output layer.
Considering that fusion equations (4), (9) and (14) are linear
homogeneous, the thresholds θi and ak are set to zero. Then
the output yγ is:

yγ =


w(2)
11 w(2)

12 · · · w(2)
1q

w(2)
21 w(2)

22 · · · w(2)
2q

...
...

. . .
...

w(2)
k1 w(2)

k2 · · · w(2)
kq




w(1)
11 w(1)

12 · · · w(1)
1M

w(1)
21 w(1)

22 · · · w(1)
2M

...
...

. . .
...

w(1)
q1 w(1)

q2 · · · w(1)
qM



x1
x2
...

xM




= Bn×M

[ (
x̂(1)k|k

)T
· · ·

(
x̂(L)k|k

)T ]T
1×nL

(32)
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where matrix

Bn×M =


w(2)
11 · · · w(2)

1q
...

. . .
...

w(2)
k1 · · · w(2)

kq


n×q

w(1)
11 · · · w(1)

1M
...

. . .
...

w(1)
q1 · · · w(1)

qM


q×M

= �3

Rewrite the Equation (4) as:

x̂(M )
k|k =

[
A(1)
k · · · A(L)

k

]
n×nL[ (

x̂(1)k|k
)T

· · ·

(
x̂(L)k|k

)T ]T
1×nL

= An×nL

[ (
x̂(1)k|k

)T
· · ·

(
x̂(L)k|k

)T ]T
1×nL

(33)

Comparing Equations (32) and (33), if the BP network
is equivalent to the optimal fusion estimation weighted by
matrices, then there must be

An×nL = Bn×M = �3 (34)

From the full rank decomposition, when Rank(An×nL) =
n, theremust be a row full matrix� ∈ <n×q and a column full
rank matrix 3 ∈ <q×M to make Equation (34) be founded,
that is, q ≥ n. The proof is completed.
Remark 1: From Theorem 1, it can be seen that if BP

network with single hidden layer is used to achieve optimal
fusionweightedmatrices, the number of nodes q in the hidden
layer is at least n. When q < n, the BP network will cause a
part of states of the system to fail to achieve optimal fusion
weighted by matrices. When q > n, some of the weight
combinations in BP network are linearly related, which will
increase the complexity of the network but have no effect.
Theorem1 can improve the efficiency and reduce the unnec-
essary hidden nodes of the BP network.

Similar to Theorem 1, we can get the following deduction.
Deduction 1: If a BP network with single hidden layer

equivalent to the optimal fusion weighted by diagonal matri-
ces in the sense of LMV through training, then the number
of nodes in the hidden layer q must satisfy q ≥ n ( n is the
dimension of state).
Remark 2: The accuracies of the three classical fusion

algorithms are fusion weighted by matrices, by diagonal
matrices and by scalars, respectively, from high to low. How-
ever, the minimum number of nodes in the hidden layer of
the BP network has not changed, and it’s just that some of
the weights in the BP network are reduced to zero. That is
to say, there is no difference in the efficiency of the three
fusion algorithms based on BP network (BP net-based fusion
weighted by matrices, by diagonal matrices and by scalar),
but the accuracies and the training sets are different.

B. BP NET-BASED FUSION ALGORITHM TRAINED
BY TRUE STATE
For BP net-based fusion algorithms trained by classical fusion
algorithms, the process and measurement noise covariance
matrices are needed to obtain the local estimations for BP net-
work inputs, and cross-covariance matrices are also needed
to obtain the fusion estimations for BP network training.
However, in many cases the cross-covariance matrices are
not easy to obtain or even impossible [39], which makes the
training set of the BP network cannot be obtained and the
network cannot complete the training. In this case, the true
state can be use as the training set. Training BP networks with
true state is widely used in various multi-sensor information
fusion systems. However, there is on basis for the choice
of activation functions and the number of nodes in hidden
layer [20]–[26]. The following theoremwill give some results
about the BP net-based fusion algorithm trained by true state.
Theorem 2: If process noise wk and measurement noises

v(j)k (j = 1, · · · ,L) are linearly related, the fusion BP network
can reach the true state through training when the linear
functions are selected as the activation functions.

Proof: The inputs of the fusion BP network are the
local Klaman filters x̂(j)k|k (j = 1, · · · ,L ), which are linear
combination of the initial state x0, process noises w0 ∼ wk
and measurement noises v(j)0 ∼ v(j)k , that is

x̂(j)k|k = L(j)k
(
x0, w0 · · ·wk , v

(j)
0 · · · v

(j)
k

)
(35)

where L(j)k (·) represents linear transformation. The state xk is
a linear combination of the initial state x0 and process noises
w0 ∼ wk , that is

xk = L(x)k
(
x0, w0 · · ·wk

)
(36)

where L(x)k (·) represents linear transformation. Then the out-
put yγ in Equation (32) can be rewritten as:

yγ = L′k
(
x̂(1)k|k , · · · , x̂

(L)
k|k

)
= L′′k (x0, w0 · · ·wk ,

v(1)0 · · · v
(1)
k , · · · , v

(L)
0 · · · v

(L)
k ) (37)

where L′k (·) and L′′k (·) represent linear transformations.
Considering that the measurement noises are random, L(x)k
and L′′k can be equivalent only when v(j)k (j = 1, · · · ,L)
can be linearly represented bywk . Considering that the inputs
of the BP network are linear Kalman filters, so the activa-
tion functions of BP network should be linear. The proof is
completed.
Deduction 2: If process noise wk and measurement noises

v(j)k (j = 1, · · · ,L) have defined nonlinear relationships,
the fusion BP network can be approximated to the true state
when the nonlinear functions are selected as the activation
functions.
Remark 3: If process noise wk and measurement noises

v(j)k (j = 1, · · · ,L) are independent, the fusion BP network
can not get a set of fixed weights. That is to say, when the
measurement noise v(j)k (j = 1, · · · ,L) which are used to
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generate the training set are different, the weights obtained
by the training set are different.

C. RECURRENT NET-BASED FUSION ALGORITHM
TRAINED BY CENTRALIZED FUSION ESTIMATIONS
For BP net-based fusion algorithms trained by classical fusion
algorithms, many prior probabilities need to be known.

For BP net-based fusion algorithm trained by true state,
the true state need to be known, and for differentmeasurement
noises, the weights of the network are different. Considering
the limitations of the above two training methods, in order
to learn the optimal result, we choose the training set as the
centralized fusion result (centralized fusion is considered a
global optimal estimate because there is no information loss).
Theorem 3: The recurrent network can approach the cen-

tralized fusion through training when the linear functions are
selected as the activation functions.

Proof: The centralized fusion estimation x̂(C)k|k is a linear
combination of the initial state x0 and process noises w0 ∼
wk and measurement noises v(1)0 · · · v

(1)
k , · · · , v(L)0 · · · v

(L)
k ,

that is

x̂(C)k|k = L(C)k (x0, w0 · · ·wk , v
(1)
0 · · · v

(1)
k , · · · , v

(L)
0 · · · v

(L)
k )

(38)

where L(C)k (·) represents linear transformation. A linear
recurrent network output yγ is also a linear combination of
inputs (here the inputs are x̂(j)k|k (j = 1, · · · ,L)), so it can be
written as:

yγ = L′k
(
x̂(1)k|k , · · · , x̂

(L)
k|k

)
= L′′k (x0, w0 · · ·wk ,

v(1)0 · · · v
(1)
k , · · · , v

(L)
0 · · · v

(L)
k ) (39)

In theory, linear networks can learn this relationship, and
considering the similarity of network structure, recurrent net-
work is chosen here. The proof is completed.
Remark 4: Because centralized fusion is not limited to the

minimum variance criterion and no information loss, its accu-
racy is higher than the classical three distributed fusion algo-
rithms. The accuracy of the recurrent network obtained by
learning centralized fusion is also higher than other networks.

V. SIMULATION EXAMPLE
We consider a tracking system with three sensors.

xk+1 = 8xk + 0wk (40)

y(j)k = H (j)
k xk + v

(j)
k , j = 1, 2, 3 (41)

where xk =
[
xk ẋk yk ẏk

]T, xk ,ẋk , yk , ẏk are position and
velocity on the x−axes and y−axes at time k . y(j)k (j = 1, 2, 3)
are the measurements, and

8 =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 ,0 =

0.5T 2 0
T 0
0 0.5T 2

0 T



FIGURE 4. The AMSE of BP net-based matrix fusion.

FIGURE 5. The AMSE of BP net-based diagonal matrix fusion.

H j =

[
1 0 0 0
0 0 1 0

]
, j = 1, 2, 3 (42)

where T is the sampling period. wk and v(j)k are indepen-
dent Gaussian white noises with zero mean and variances
Qw and R(j), respectively. In the simulation, T = 0.1s,
Qw = 1m2/s4, R(1)

= diag(0.332m2/s4, 0.382m2/s4) R(2)
=

diag(0.352m2/s4, 0.282m2/s4), R(3)
= diag(0.312m2/s4,

0.222m2/s4) ; the initial value x0 =
[
0m 0m 0m 0m

]T,
P0 = I4 . The estimation performance is accumulated mean
square error (AMSE) in position at time k [41]–[43]:

AMSE =
k∑
t=0

1
N

N∑
i=1

(
(x it − x̂

i
t|t )

2
+ (yit − ŷ

i
t|t )

2
)

(43)

where (x it , yit ) and (x̂ it|t , ŷit|t ) are the true and estimated
positions of the ith Monte Carlo experiment at time t .

First of all, according to Theorem 1, setting f (·) and g(·)
are linear, θi = 0 and ak = 0 respectively. Then applying
Lemma 1, Lemma 2, Lemma 3 and Lemma 4, respectively,
we obtain the estimator x̂(M )

k|k weighted by matrices (the fusion

38180 VOLUME 8, 2020



Z. Peng et al.: Research on Distributed Fusion Estimation Based on Machine Learning

TABLE 1. The optimal fusion matrices.

TABLE 2. The network weight matrices of BP net-based fusion network with 2 hidden Layer nodes.

TABLE 3. The network weight matrices of BP net-based fusion network with 4 hidden Layer nodes.

TABLE 4. The network weight matrices of BP net-based fusion network with 8 hidden Layer nodes.

TABLE 5. The network weight matrices of Elman net-based fusion network with 4 hidden Layer nodes.

TABLE 6. The network weight matrices of Elman net-based fusion network with 8 hidden Layer nodes.

TABLE 7. The network weight matrices of BP net-based fusion network with 4 hidden Layer nodes.
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TABLE 8. The network weight matrices of BP net-based fusion network with 4 hidden layer nodes.

FIGURE 6. The AMSE of BP net-based scalar fusion.

FIGURE 7. The AMSEs of three BP net-based fusions and Elman
net-based fusion.

matrices, please see TABLE 1), the x̂(S)k|k weighted by scalars,

the estimator x̂(D)k|k weighted by diagonal matrices, and cen-

tralized fusion estimator x̂(C)k|k . Then, using local estimation

x̂(j)k|k (j = 1, 2, 3) as BP network inputs, and three weighted
fusion estimations as training sets, three fusion networks are
built. The AMSE of the fusion estimations are shown in
FIGURE 4-6, where x̂BP−αβk|k , α means the fusion method (M
means matrix fusion, S means scalars fusion and D means
diagonal matrix fusion), and β means the number of hidden
layer nodes. In simulation, 50 Monte Carlo experiments are

FIGURE 8. The track trajectories of BP net-based fusion and Elman
net-based fusion.

performed for 600-step test. From FIGURE 4-6, the accura-
cies of the BP networks with 2 hidden nodes are lowest in
position (Because there are fewer than 4 nodes in the hidden
layer, the fusion coefficients of the velocity state components
are not learned, please see TABLE 2). The accuracies of
the BP networks with 4 hidden nodes and 8 hidden nodes
are the same and the network weight matrices are almost
the same as the three classical fusion methods (Please see
TABLES 3-4), and it verifies Theorem 1. From FIGURE 7,
we can see that the accuracies of the three BP net-based fusion
algorithm from high to low are x̂BP−M4

k|k , x̂BP−D4k|k and x̂BP−S4k|k ,
respectively.

Based on recurrent network Elman, another fusion algo-
rithm trained by centralized fusion estimations (Elman net-
Based fusion algorithm) is proposed and simulated. Here,
an Elman network with 4 hidden layer nodes (x̂Elman−C4k|k ) is
chosen for simulation. From FIGURE 7, we can see that the
accuracy of x̂Elman−C4k|k is higher than x̂BP−M4

k|k , x̂BP−D4k|k and
x̂BP−S4k|k , and it verifies Theorem 3. In addition, it can be seen
from TABLE 5-6 that the weights of Elman net-based fusion
network are convergent, and the weights remain basically
unchanged as the number of nodes in the hidden layer of
the network increases. The track trajectories of various fusion
algorithms are shown in FIGURE 8.

The network weight matrices of the distributed fusion
algorithm based on BP network by using local estima-
tions as inputs and true states as training set are given in
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TABLES 7 and 8. From the two tables, due to the different
training sets, the network weights have changed significantly,
and the network has non-convergence for different training
sets. It verifies Theorem 2.

VI. CONCLUSION
Two types of multi-sensor distributed fusion frameworks
based on ANN and machine learning are proposed. One
is based on BP network, and the other is based on Elman
network. The main works are the following:

(1) Using local estimations as the inputs and estimations
of three classic distributed fusions as the training sets, three
distributed fusion algorithms based on BP network are pro-
posed. In addition, the selection basis of the number of nodes
in hidden layer is given. The basis can improve the efficiency
and reduce the unnecessary hidden nodes of the network.
For these fusion algorithms, the process and measurement
noise covariance matrices and cross-covariance matrices are
needed, which will increase the limitations of the algorithm.

(2) The BP net-based fusion algorithm which uses local
estimations as inputs and true states as training set is ana-
lyzed. The unavailability of the true states and the instability
of weights for different training sets are the limitations of the
algorithm.

(3) By using local estimations as inputs and centralized
fusion estimation as training set, Elman net-based distributed
fusion algorithm is proposed, in the case that neither true
states nor cross-covariance matrices is available. This method
is not limited to the minimum variance criterion, so its
accuracy is higher than the classical three distributed fusion
algorithms.
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