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ABSTRACT Indoor localization of smartphones has received much attention recently and the smartphone
localization is essential to a wide range of applications in office buildings, nursing homes, parking lots, and
other public places. Existing solutions relying on inertial sensors or received signal strength suffer from large
location errors and poor stability. We observe an opportunity in the recent trend of increasing numbers of
wireless transmitters installed in indoor spaces to design a precise and robust indoor localization solution.
We can extract fine-grained channel state information from wireless transmitters for indoor fingerprint
localization. However, the accuracy of localization relying on a single physical quantity is limited and
difficult to self-correct. This study proposes an integrated channel state information (CSI) and magnetic
field strength (MFS) localization method (CSMS) that achieves sub-meter accuracy for smartphones.
CSMS constructs an integrated fingerprint map of CSI and MFS and proposes the Local Dynamic Time
Warping algorithm for geomagnetic tracking and the Multi-Module Data k-Nearest Neighbor algorithm
for fusion fingerprint dynamic weighted comparison. By doing so, CSMS outputs enhanced accuracy with
low cost, while overcoming the respective drawbacks of each individual sub-system. We conduct extensive
experiments in two scenarios to validate the performance of CSMS. The results of experimental show
that the mean distance error in both scenarios is less than 0.5m which is significantly superior to existing
smartphone-based indoor positioning methods.

INDEX TERMS Indoor localization, smartphone, magnetic fields, channel state information.

I. INTRODUCTION
Accurate indoor localization is a key enabler for many appli-
cations on the horizon, such as positioning and navigation in
parking lots, real-time monitoring of the elderly in nursing
homes, and hazard warnings in construction sites. Due to the
ubiquity of indoor localization requirements, the high cost of
deployment may lead to it difficult to popularize while the
diversity of indoor scene requires the indoor localization to
be reliable and easy to expand.

Existing methods to achieve sub-meter localization, such
as ZigBee [1] and Ultra-wide Band (UWB) [2], require addi-
tional relatively expensive hardware facilities. RFID-based
localization [3] has a small coverage and poor stability.
Ultrasonic localization [4] attenuates obviously and easy to
occur scattering in indoor scenes. None of these methods is
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available on smartphones. Localization based onMFS [5] and
CSI [6], [7] has better universality in practical application,
but the localization accuracy of these methods is not high.
As we all know, the magnetic field is susceptible to external
interference, and pure magnetic field localization has the
possibility of failure. As a fine-grained value of the physical
layer, CSI [8] can better reflect the multipath effect in the
environment. However, with the increase of the localization
range, the localization accuracy of CSI significantly declines.
Besides, currently, computers are widely utilized to collect
CSI data with poor mobility.

Nowadays, wireless transmitters are ubiquitous in all areas
of the society, such as office buildings, museums and shop-
ping malls. In most cases, we can receive multiple Wi-Fi
signals [9], [10] in the same location, and the location of
signal source usually does not change. At the same time,
due to the interference of the reinforced concrete structure
of the building to the geomagnetic field in the indoor scenes,
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the magnetic field in local area presents a unique distribution,
and very stable [5]. We believe that CSI extracted frommulti-
ple Wi-Fi signals can be utilized together with magnetic field
strength as fingerprint for localization to improve accuracy.

However, translating this initial idea into a specific local-
ization system presents a number of challenges. First,
the platform of data collection is different [11], [12]. The
magnetic field sensor can obtain magnetic field strength data
on the smartphone, while CSI usually needs to be collected by
computer. Second, in the case of multiple APs [8], the amount
of data increases exponentially, so does the computational
complexity of the corresponding fingerprint location algo-
rithm. Thirdly, what the magnetic field sensor picks up is
the three-dimensional magnetic field strength [5], [13]. In the
localization process, it is necessary to calculate the pitching
angle, heading angle and roll angle of the phone in real
time, which will inevitably cause errors in the experimental
data and affect the localization accuracy. Finally, the most
important thing is how to make the CSI and MFS play their
respective advantages in the combination process to achieve
organic fusion.

In order to solve the above challenges, we designed CSMS,
which organically integrated the advantages of CSI and MFS
for localization, and can only rely on several existing Wi-Fi
hardware to achieve sub-meter level localization on smart-
phone. According to [14], we extracted 242 CSI subcarriers
from Nexus 5 smartphone at 80M bandwidth, which is much
larger than the 30 subcarriers obtained by Intel 5300 wireless
network card at 20MHz bandwidth. For purpose of reduce
the computation complexity, we analyzed the subcarriers
separately and screened out 37 optimal subcarriers. Then
we extracted the corresponding characteristic values for each
subcarrier and applied dynamic weights to CSI data of dif-
ferent AP during the localization. For the three-dimensional
magnetic field strength, for purpose of reduce the error gen-
erated by the calculation angle, we only utilized the value of
magnetic field strength in CSMS, regardless of the direction
[15], [16]. However, the value of MFS is not unique and the
error of single point localization is large. In order to solve
this problem, we applied continuous magnetic field strength
sequence to construct geomagnetic fingerprint, which not
only has better uniqueness, but also can more intuitively
reflect the distribution of indoor magnetic field. Furthermore,
in order to integrate CSI and MFS more organically, we pro-
posed Local Dynamic Time Warping (L-DTW) algorithm to
match geomagnetic waveform for tracking and then applied
dynamic weights to CSI data of multiple APs according to the
tracking results and reduced the localization range. Finally,
we matched the fused fingerprint to obtain the localization
coordinates according to the proposed Multi-Module Data
k-Nearest Neighbor (M-KNN) algorithm.

We conduct extensive experiments in multiple scenarios
to validate the performance of CSMS. The results of exper-
imental show that the mean distance error in both scenarios
is less than 0.5m which is significantly superior to existing
smartphone-based indoor positioning methods.

The main contributions of this work are summarized as
follows:

• To the best of our knowledge, it is the first time to
propose an indoor localization method combining CSI
and MFS based on smartphone. This method overcomes
their respective drawbacks and yields great performance
that is not achievable by any single sub module alone.

• In view of the long-term stability of geomagnetic sig-
nals on the same path indoors, we propose the Local
Dynamic Time Warping algorithm for geomagnetic
tracking. In addition, according to the tracking location,
we propose the Multi-Module Data k-Nearest Neigh-
bor algorithm for fusion fingerprint dynamic weighted
comparison.

• We collected extensive data in two scenarios and
screened out the optimal subcarriers for experiment. The
results of experimental show that the accuracy of CSMS
is significantly superior to existing smartphone-based
indoor positioning methods.

The remainder of this paper is structured as follows.
We present the preliminaries in Section 2, which include
the characteristics of geomagnetic localization and the basic
principle of CSI, followed by detailed presentation about the
architecture of CSMS and related algorithms in Section 3.
We implement and evaluate CSMS in Section 4 and conclude
this work in Section 5.

II. PRELIMINARIES
A. GEOMAGNETIC LOCALIZATION
Geomagnetic field is the basic physical field of the earth. Any
position of the near-earth space has magnetic field strength,
and its strength and direction vary with different longitude,
latitude and height [15]. Meanwhile, according to magnetic
field theory, magnetic materials have an effect on magnetic
fields. Nowadays, most buildings are reinforced concrete
structures, which bend the geomagnetic field in local space,
but are stable in time and have certain uniqueness. Therefore,
the magnetic field strength can be applied to indoor position-
ing [17], [18]. It can be seen from [5] that the strength of
indoor geomagnetic field is very stable with time, and the
influence of moving objects on the magnetic field is very
limited.

In order to verify the influence of device diversity on
geomagnetic localization, we exerted three different smart-
phones to obtain geomagnetic information on the same path.
As shown in Fig.1, for different devices, geomagnetic infor-
mation collected in the same scene has the same trend.

B. CHANNEL STATE INFORMATION (CSI)
With the application of such technologies as orthogonal fre-
quency division multiplexing (OFDM) and multiple-input
multiple-output (MIMO) in IEEE 802.11a/n [19] proto-
col, the channel characteristics between Wi-Fi transceiver
devices can be stored as CSI. As a quantitative representation
of channel frequency response, CSI can reflect scattering,
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FIGURE 1. Device diversity.

environmental attenuation, power attenuation and other prop-
erties in the physical environment.

OFDM [20] is an efficient digital multi-carrier modula-
tion scheme for broadband wireless communication, widely
applied in IEEE 802.11a/g/n and WiMAX [21], [22]. It is the
core technology of standards such as 3GPP LTE [23]. OFDM
divides the channel into several orthogonal sub-channels,
and the received signals transmitted through the multipath
channel can be represented as:

Y = HX + N (1)

where Y represents the signal vectors of the receiver and X
represents the signal vectors of transmitter. H is the channel
information matrix, N is the noise vector, and CSI of each
subcarrier can be estimated as:

Ĥ =
Y
X

(2)

where Ĥ represents the channel frequency response (CFR) of
each sub-channel. According to the driver of the underlying
hardware device at the receiving end, CSI is divided into
multiple subcarrier groups, so the matrix H of CSI can be
represented as:

H = [H1,H2, · · ·HN ] (3)

where N is the number of subcarrier groups divided
according to the driver. When the channel bandwidth is
[20, 40, 80, 160]MHz, N is [56, 114, 242, 484] respectively.
Hi is CSI on each subcarrier and is expressed as:

Hi = |Hi| ej sin(LHj) (4)

where Hi represents the amplitude and 6 Hi represents the
phase of the ith subcarrier.

C. EXTRACTING CSI
Since CSI describes link-layer information, ordinary Wi-Fi
hardware will not normally output this information. There-
fore, in order to obtain CSI, the following two methods are
usually utilized:
(i) Construction of software-defined radio hardware plat-

form (SDR platform) [11]. This method requires a high
cost and is not convenient for large-scale promotion.

(ii) By installing the Intel 5300 wireless network card and
modifying the drive firmware [12]. Most researchers
collect CSI in this way. The limitation of this method
is that it can only be applied on computers, and it is
difficult to obtain CSI of multiple APs in a short time.

In this study, we utilized the Nexus5 smartphone [14] to
collect 242 subcarriers in the 80MHz bandwidth of 44 chan-
nel, which is much larger than the 30 subcarriers that Intel
5300 wireless network card can only pick up at 20MHz
bandwidth.

As illustrated in Fig.2, n and m represent the number of
subcarriers and data packets respectively.

FIGURE 2. Acquisition of channel state information.

III. SYSTEM OVERVIEW
In this section, we first present the system architecture of
CSMS, and then introduce the related methodologies in
detail.

A. ARCHITECTURE
This study proposes CSMS, an indoor localization method
integrating CSI and geomagnetic field strength (GMFS).
As illustrated in Fig.3, CSMS consists of a training phase
and a localization phase. During the training phase, GMFS
and CSI of multiple APs are collected to construct fusion
fingerprint map, and geomagnetic data from multiple indoor
paths are picked up to construct the geomagnetic fingerprint
map. In the localization phase, firstly, the initial positioning
coordinates are obtained according to M-KNN algorithm,
and then L-DTW algorithm is applied to match the geomag-
netic sequence during the movement for tracking. Finally,
according to the tracking location, utilize M-KNN algorithm
to dynamically weight multi-module data and narrow the
positioning range for fingerprint comparison to obtain more
accurate localization results.

Various related algorithms proposed in this study will be
described in detail below.

B. CONSTRUCTION OF FUSION FINGERPRINT MAP
CSMS utilize Nexus 5 smartphones to collect CSI. Com-
pared with the previous Intel 5300 wireless card, which could
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FIGURE 3. Architecture of CSMS.

only obtain 30 subcarriers, the Nexus 5 smartphone can not
only acquire 242 subcarriers, but also more conveniently and
flexibly.

The magnetic field sensor of the smartphone can collect
the three-dimensional magnetic field strength of the current
position [24], [25], but the magnetic field data measured at
different orientations cannot be matched directly due to the
different coordinate systems, so the transformation should be
carried out according to the following equations:

Matx =

 1 0 0
0 cosα − sinα
0 sinα cosα

 (5)

Maty =

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 (6)

Matz =

 cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 (7)

 Tx
Ty
Tz

 = Maty ·Matx ·Matz

Mx
My
Mz

 (8)

where α, β, γ represent the rotation angles about the X ,
Y and Z axes respectively, which can be calculated based
on the data of the acceleration sensor. Matx ,M aty,M atz
represent the rotation matrix respectively and Mx ,My,Mz
represent the three-dimensional magnetic field strength

obtained by the mobile phone sensor. Tx ,Ty,Tz represent the
three-dimensional magnetic field strength after conversion.

The steps to build the fusion fingerprint library are as
follows:
(1) Select k reference points in indoor scenes, and collect

CSI data of nAPs at each reference point. Save the data
as FgCSI (k, n):

FgCSI (k, n) =

 fgC11 . . . fgC1n
...

. . .
...

fgCk1 · · · fgCkn

 (9)

where fgCij represents the CSI data that collects from
j-th AP at i-th reference point.

(2) At each reference point, collects three-dimensional
magnetic field strength data at m different orientations.
Save as FgMFS(k,m):

FgMFS(k,m) =

 fgM11 . . . fgM1m
...

. . .
...

fgMk1 · · · fgMkn

 (10)

where fgMij represents the three-dimensional magnetic
field strength and corresponding rotation angle that
collects from j-th orientation at i-th reference point.

(3) Screen out the optimal subcarriers from each group
of CSI data. Then filter and extract the characteristic
values as CSI fingerprint. For each three-dimensional
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magnetic field strength data (Mx My Mz )T . Accord-
ing to the corresponding rotation angle (α β γ ),
Eq.8 is exerted to calculate the three-dimensional
magnetic field strength after the coordinate transfor-
mation ( Tx Ty Tz )T . Then, the converted data at dif-
ferent orientations of the same location are averaged
as the geomagnetic fingerprint characteristics of the
location.

(4) According to the calculation, CSI and geomagnetic
fingerprint characteristics of all reference points are
saved as a fused fingerprint map FgF(k, n+ 1):

FgF(k, n+ 1) =

 fgfu11 . . . fgfu1n+1
...

. . .
...

fgfuk1 . . . fgfukn+1

 (11)

where fgfui1 to fgfuin represent the CSI fingerprint char-
acteristic data of n APs at i-th reference point. fgfuin+1
represents the geomagnetic fingerprint characteristic
data at i-th reference point.

C. MULTI-MODULE DATA K-NEAREST NEIGHBOR(M-KNN)
In this study, we proposed M-KNN algorithm, which is
based on the principle of KNN algorithm and can match
multi-module data by weighted fusion. The steps of M-KNN
are described in detail in algorithm.1.

D. CONSTRUCTION OF GEOMAGNETIC FINGERPRINTS
The magnetic field sensor of the smartphone can collect
the three-dimensional magnetic field strength of the current
position. If the geomagnetic fingerprint is constructed based
on the three-dimensional magnetic field strength, the pitch
angle, heading angle, and roll angle of the smartphone need
to be calculated in real time. These calculation processes will
inevitably cause errors in the experimental data and affect
the positioning accuracy. In order to reduce the above errors,
this study only employs the strength of the geomagnetic field,
regardless of the direction.

The magnetic field strength is calculated from Eq.15,
where is the magnetic field strength at any point,Mx ,My and
Mz are the three-dimensional magnetic field strengths in the
smartphone coordinate system respectively.

M =
√
M2
x +M2

y +M2
z (12)

Due to the non-uniqueness of the magnetic field strength
value, there is a large error in the single-point position-
ing. Therefore, this study adopts fast continuous acquisition
method to construct indoor geomagnetic fingerprint map. The
map is composed of geomagnetic sequences collected on
multiple paths in the room continuously, which can reflect
the distribution of the indoor magnetic field and has good
uniqueness.

Fig.4 shows the acquisition of geomagnetic information on
a path indoors continuously.

Algorithm 1Multi-Module Data k-Nearest Neighbor
Input: CSI collected from n APs: mat1,mat2, · · ·matn,

Three-dimensional magnetic field strength after conver-
sion: matn+1, The coordinates tracked by the geomag-
netic field: (x0, y0);

Output: Positioning coordinate (x1, y1);
1: for i = 1 : n do
2: Calculate the distance to i-th AP disti based on the

position coordinates (x0, y0);
3: if (x0, y0)! = (−1,−1) then
4: According to the dynamic weight formula P =
−0.015 × dist + 0.95 proposed by us, the weight Pi
corresponding to the i-th AP is calculated;

5: else
6: The corresponding weight of i-th AP is 1;
7: end if
8: end for
9: Take the Hadamard product of (P1,P2, · · ·Pn, 1) and

(mat1,mat2, · · ·matn+1);
10: finger1 (1, n+ 1) = (P1,P2, · · ·Pn, 1) ∗

(mat1,mat2, · · ·matn+1);
11: if (x0, y0)! = (−1,−1) then
12: Take the reference point within 5 meters from (x0, y0)

as the sub-fingerprint map FingerF1 (k, n+ 1);
13: else
14: Take the original fingerprint map as

FingerF1 (k, n+ 1);
15: end if
16: count = size(FingerF1);
17: for j = 1 : count do
18: Calculate the Euclidean distance Dj from

finger1 (1, n+ 1) to the j-th element of
FingerF1 (k, n+ 1);

19: end for
20: Sort (D1,D2, · · ·Dcount ) from small to large;
21: SequenceD = Sort(D1,D2, · · ·Dcount );
22: Take the reference point coordinate corresponding to the

first element in SequenceD as the positioning coordinate
(x1, y1);

23: return (x1, y1);

FIGURE 4. Acquisition of geomagnetic data.

E. LOCAL DYNAMIC TIME WARPING (L-DTW)
When the traditional DTW algorithm [26], [27] matches
two time series, it can only calculate the similarity between
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the two sequences from the start to the end, and cannot
perform local matching. Therefore, in order to match the
MFS sequence locally, this study proposes L-DTW algorithm
according to the characteristics of geomagnetic information.
By improving the DTW algorithm, L-DTW achieves local
matching of time series with different lengths.

Algorithm.2 introduces the L-DTW algorithm in detail.

Algorithm 2 Local Dynamic Time Warping
Input: Test fingerprint sequence X (n) = x1, x2, · · · xn and

reference fingerprint sequence Y (m) = y1, y2, · · · ym;
Output: The similarity SIMXY of the final local match (the

smaller the value, the more similar) and the final position
ENDY matched on sequence Y (m);

1: n = size(X );
2: m = size(Y );
3: sqrty =

⌊√
m
⌋
;

4: Starting from the first point y1 of Y , find K initial posi-
tions p1, p2, · · · pk on Y spaced by sqrty:

5: P (k) = p1, p2, · · · pk ;
6: Construct n∗mmatrix d (n,m), where d (i, j) =

∣∣xi − yj∣∣;
7: SIMXY = realmax;
8: for i = i : k do
9: Take the i-th position pi from P(k).

10: Construct n ∗ m matrix D (n,m), and assign the first
row and the pi column of d (n,m) to D (n,m):

11: D(1, :) = d(1, :);
12: D(:, pi) = d(:, pi);
13: for j = pi + 1 : pi + 2n do
14: for s = 2 : n do
15: D(s, j) = min(D(s − 1, j),D(s − 1, j −

1),D(s, j− 1))+ d(s, j)
16: end for
17: end for
18: Compare the minimum D(n,min) = minD in

D(n, pi : pi + 2n) with SIMXY ;
19: if minD < SIMXY then
20: SIMXY = minD;
21: ENDY = min;
22: end if
23: end for
24: return (SIMXY ,ENDY );

IV. PERFORMANCE EVALUATION
In this section, we introduce our experimental scenarios and
verify the feasibility of geomagnetic tracking firstly. After-
wards, we will show the performance of CSMS by comparing
with other two CSI-based fingerprint localization methods.

A. EXPERIMENTAL SCENARIOS
In the experiment, two TL-WDR5610 routers manufactured
by TP-LINK as the Access Points (APs). A Nexus 5 smart-
phone served as the receiver object, which equipped with a
BCM4339 Wi-Fi chip. The two different scenarios for the
experiment are as follows:

FIGURE 5. Research laboratory.

FIGURE 6. Rectangular corridor.

(i) Research Laboratory
First, we experiment in an 8m × 20m research labo-
ratory covering by two APs as shown in Fig.5. Two
APs were fixed at the opposite ends of the experimental
scenario and 3 × 13 reference points were selected to
collect CSI, among which every two adjacent reference
points were 1.2 meters apart.

(ii) Rectangular Corridor
Second, we conducted experiments in a rectangular
corridor with multiple offices, which is 2.4m × 30m
covering corridors, rooms and classrooms as shown
in Fig.6. In this scenario, there were also two APs were
fixed at the opposite ends and 2 × 21 reference points
were selected to collect CSI.

In each experimental scenario, we chose multiple straight
paths for picking up geomagnetic data.

B. GEOMAGNETIC TRACKING
In order to verify the feasibility of L-DTW algorithm for
geomagnetic tracking, we divide the experiment into train-
ing phase and tracking phase. Geomagnetic fingerprints are
created in the training phase, and during the tracking phase,
we build a test data set to test the performance of L-DTW.

1) TRAINING PHASE
In this phase, we utilized the method of fast continuous
acquisition to obtain MFS sequences. For each path selected,
we collected three round trips at a constant speed. Then in
the experiment, we found the positioning accuracy was not
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high due to the low sampling frequency of the geomagnetic
sensor of Nexus 5 smartphone. To solve this problem, we first
performed outlier processing on the data, then Fourier inter-
polation was be exerted to expand the data and the expanded
data was employed to construct a geomagnetic fingerprint
map.

2) TRACKING PHASE
In the tracking phase, we collected four sets of geomagnetic
sequences with the path length of 3m, 4m, 5m and 6m on
the indoor linear path respectively, and recorded the cor-
responding start and end positions of each sequence. Then
performed outlier processing and data expansion. Finally,
we built a test data set based on the processed data for testing
the performance of geomagnetic tracking.

We utilized the L-DTW algorithm to match the geomag-
netic sequence in the test set with the fingerprint sequence
in the geomagnetic fingerprint map successively. Then,
according to the matching results, we applied the KNN
algorithm [28] to find the path with the best matching sim-
ilarity for each test sequence. Moreover, according to the last
position matched in the path fingerprint sequence, the indoor
tracking position of the test sequence is determined.

As we can see from Tab.1, the experimental results show
that the longer the path length of the geomagnetic sequence
in the test set, the higher the positioning accuracy. When the
acquisition path length is 6 meters, the average positioning
error of this method is 1.1887 meters.

TABLE 1. Error analysis of geomagnetic tracking.

Fig.7 shows the CDF of the positioning errors at the acqui-
sition paths of 3m, 4m, 5m and 6m. We can see that the
accuracy of the positioning error within 1.5 meters for the

FIGURE 7. Tracking accuracy of L-DTW.

four types of data is relatively close, all of which are about
0.72. As the acquisition path length increases, the maximum
positioning error decreases gradually. With a collection path
length of 6 meters, the positioning accuracy within 2.5 meters
of the positioning error can reach 0.94.

C. CSMS LOCALIZATION
The experiment of CSMS consists of Calibration Phase and
Positioning Phase. In the Calibration Phase, we process the
multi-module data and build a fusion fingerprint map. In the
Positioning Phase, we utilize the M-KNN algorithm for
fusion fingerprint dynamic weighted comparison.

1) CALIBRATION PHASE
In this phase, we collected CSI and MFS data through smart-
phone to build a fusion fingerprint map. Through analyzing
CSI, we found that different subcarriers were affected differ-
ently by environmental changes. In order to make the local-
ization results more accurate, we analyzed 242 subcarriers
separately, from which we screened out 37 optimal subcar-
riers that were significantly affected by the environment, and
employed these subcarriers for experiments.

Based on the reference points selected in two experimental
scenarios, as shown in Fig.8, we first collected 3000 CSI data
packets from two APs at any reference point at 44-channel
and 80M bandwidth, each packet contains 242 subcarriers.
Then we screened out the 37 optimal subcarriers as illustrated
in Fig.9 and get two 3000 * 37 CSI matrices. Furthermore,
hampel filter was exerted to remove outliers for each column
of the matrix, and then kalman filter is performed, as shown
in Fig.10. Finally, Fig.11 shows that we calculated the aver-
age value and the values of 1/4, 1/2, and 3/4 quantiles for each
column of the filtered matrix to obtain two 4 * 37 character-
istic values matrices fingerfui1 and fingerfui2.

FIGURE 8. The 242 subcarriers collected at two reference points.

FIGURE 9. The 37 optimal subcarriers of two reference points.

For any reference point, we collected three-dimensional
magnetic field strength data from six different orientations,
and then removed the outliers and averaged each of the
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FIGURE 10. The 37 optimal subcarriers after filtering.

FIGURE 11. Characteristic values extracted from 37 optimal subcarriers.

three-axis data separately. Next, we combined the rotation
angle corresponding to each orientation and calculated the
three-dimensional magnetic field strength after coordinate
conversion by Eq.8. Then we averaged the data converted
from six different orientations to obtain the geomagnetic
fingerprint feature matrix fingerfui3.
Finally, we utilized the feature matrix of all reference

points to build a multi-module fusion fingerprint database
FgF(k, 3):

FgF(k, 3) =

 fgfu11 . . . fgfu13
...

. . .
...

fgfuk1 . . . fgfuk3

 (13)

where k represents the number of reference points.

2) POSITIONING PHASE
For location estimation phase, we collected multiple sets
of MFS and CSI data at the start and end positions of the
6m test geomagnetic sequence in Section IV-B to form the
experimental test data set. For the CSI of each start and end
point in the data set, we performed corresponding filtering
and screened out the 37 optimal subcarriers to obtain two
37-column start-point test matricesmatA0 andmatB0 and two
37-column end-point test matrices matA1 and matB1. For the
MFS in the data set, we calculated the transformed three-axis
magnetic field strength according to the corresponding rota-
tion angle, and obtained the starting and ending test matrices
matC0 and matC1.
According to the M-KNN algorithm, we matched the

starting point test matrix (matA0,matB0,matC0) with each
row of the fingerprint database FingerF(k, 3) to find the
corresponding positioning coordinate matrix CD0. Then we
correspondingly narrow the range that needs to be matched
in the geomagnetic fingerprint map, and use the L-DTW
algorithm to find the end position CD1 of each 6m sequence.
Finally, we take the coordinates in CD1 as input and use the
M-KNN algorithm to perform weighted matching on the data
to find the final localization result.

3) PERFORMANCE EVALUATION
In our experiments, we compared the performance of CSMS
with the CSI-based fingerprint localization of single AP and
the CSI-based fingerprint localization of double APs. Fig.12
shows the cumulative distribution function (CDF) of posi-
tioning errors in the laboratory. There are 39 points in the
laboratory for fingerprint collection. As we can see, the posi-
tioning error of CSMS methods is much smaller than the
other two methods and the accuracy of CSMS within 2m can
reach 99%.

FIGURE 12. CDF of localization error in the laboratory.

Unlike the first scenario that 2 APs and smartphone are
placed in the airtight room, we also conducted experiments in
the hallway. Fig.13 illustrates the cumulative distribution of
localization errors across 42 positions in the corridor. We can
easily observe that the accuracy within 3m by single AP is
much smaller than the other two methods and the positioning
accuracy of the three methods above 4m is similar. However,
the positioning accuracy of CSMS method is still slightly
higher.

FIGURE 13. CDF of localization error in the corridor.

We evaluate the accuracy of CSMS method and compare it
with two other fingerprint-positioning methods, Well-known
CSI-based positioning. Fig.14 presents the accuracy of three
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FIGURE 14. Accuracy of three positioning methods.

different methods in two environments. As shown in the
figure, the positioning accuracy of CSMS is higher than the
other two methods in both scenarios and the accuracy of
CSMS in the laboratory can reach 96.86%, which is 3.73%
higher than the double APs case. In addition, we compare
the mean distance error of three methods in two scenarios.
As illustrated in Fig.15, the mean distance error of CSMS
in the laboratory is significantly smaller than the other two
methods, which can reach 0.097m and it can reach 0.381m
even in the corridor. We can find that the CSMS method
reflects a preferable property since the organic integration of
CSI andMFS is beneficial to improve the accuracy of location
fingerprinting.

FIGURE 15. Mean distance error of three positioning methods.

V. CONCLUSION
In this paper, we present CSMS, a smartphone-based
sub-meter accuracy indoor localizationmethod that integrates
CSI and MFS. By fusing data from multiple sub modules,
CSMS successfully overcomes their respective drawbacks
and yields great performance that is not achievable by any
single sub module alone. We conduct extensive experiments
in multiple scenarios to validate the performance of CSMS.
The results of experimental show that the mean distance error
in both scenarios is less than 0.5m which is significantly

superior to existing smartphone-based indoor positioning
methods.
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