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ABSTRACT A discrete particle swarm optimization algorithm with adaptive inertia weight (DPSO-AIW)
is proposed to solve the multiobjective Flexible Job-shop Scheduling Problem. The algorithm uses a
two-layer coding structure to encode the chromosomes, namely operation sequence (OS) and machine
assignment (MA). The initial population combined random selection of OS and the global selection based on
operation (GSO) ofMA. In order to obtain the Pareto optimal solution, non-dominated fronts are obtained by
rapid non-dominated sorting. In the evolution process, the discrete particle swarm optimization algorithm
is used to directly solve the values of the next generation chromosomes in the discrete domain, and the
population diversity is enhanced by adaptively adjusting the variation of the inertia weight ω, and the
Pareto optimal solution obtained in the process is stored in the Pareto optimal solution set (POS). Finally,
numerical simulation based on two sets of international standard instances and comparisons with some
existing algorithms are carried out. The comparative results demonstrate the effectiveness and practicability
of the proposed DPSO-AIW in solving the multiobjective Flexible Job-shop Scheduling Problem.

INDEX TERMS Discrete particle swarm optimization, global selection based on operation, multiobjective
FJSP, Pareto optimality.

I. INTRODUCTION
Flexible Job-shop Scheduling Problem (FJSP) is an extension
of the Job-shop Scheduling Problem (JSP). FJSP allows mul-
tiple operations of different jobs to be processed on different
machines, which changes the uniqueness of the equipment,
and selecting the processing machine according to the load
conditions of such resources as machines, etc., and thus the
flexibility of processing is enhanced and more in line with the
actual enterprise. Therefore, theoretical research on FJSP has
great significance for solving the actual workshop problem
of the combination optimization type of the enterprise. In the
actual production process, production cost, processing time
and customer satisfaction are all issues to be considered in
the production scheduling optimization problem. A single
scheduling target is difficult to reflect the real situation of
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the scheduling workshop. Nowadays, many scholars have
also shifted their research direction to solving multiobjective
FJSP. Chen et al. [1] proposed amultiobjective FJSP problem
based on NSGA-II with closed relative variation. Ju et al. [2]
proposed an improvedNSGA for FJSP. In the paper, the adap-
tive mutation operator and elite retention strategy were
introduced. The simulation experiment shows that the non-
dominated sorting method can get the Pareto optimal solu-
tion quickly and correctly by dividing the whole population
into three parts. Piroozfard et al. [3] proposed an improved
multiobjective evolutionary algorithm for solving the newly
extended dual-objective problem. Li et al. [4] proposed a
Pareto-based hybrid local search (PLS) algorithm for solv-
ing multiobjective FJSP. Zhang et al [5] studied two-archive
multiobjective artificial bee colony algorithm (TMABC-FS).
Two new operators are employed to enhance the search capa-
bility of different kinds of bees, and two archives are proposed
for obtaining a group of non-dominated feature subsets with
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good distribution and convergence. Based on the existing
literature, this paper designs a discrete particle swarm opti-
mization with adaptive inertia weight (DPSO-AIW) to solve
FJSP. The FJSP model with makespan, workload of bottle-
neck machine and the total workload of machines is estab-
lished. The algorithm uses a two-layer structure to encode
chromosomes, and the evolution process uses discrete particle
swarm optimization to solve the next generation chromo-
somes directly in the discrete domain. The location update
uses the crossover operation in the genetic algorithm, and the
value of the inertia weightω is adaptively adjusted to enhance
the diversity of the population.

The paper provides the following contributions:
(1) The FJSP model with the maximal completion time

of machines, workload of bottleneck machine and the total
workload of machines is established in the paper. The ini-
tial population is generated by the hybrid method, namely
OS random selection and MA global selection by operation
(GSO). The GSO refers to the method by which an operation
selects machines in its optional machine set. The schedulings
generated in this way are all feasible. When the GSO is
selected, the machine with the minimum global workload is
selected in the optional machine set to process. It not only
ensures that the generated scheduling is feasible, but also
reduces the workload of the machine as much as possible,
shortens the optimization time and guarantees the quality of
the initial solution. Theworkload of themachine is reduced as
much as possible, the optimization time is shortened, and the
quality of the initial solution is guaranteed. The OS random
selection increase the diversity of the population and prevent
the loss of the optimal solution. This method to generate the
initial population greatly improves the quality of the solution
and the speed of obtaining the optimal solution.

(2) The evolution process uses discrete particle swarm opti-
mization to solve the next generation chromosomes directly
in the discrete domain. The location update uses the muta-
tion and crossover operations in the genetic algorithm. Dur-
ing the crossover process, the OS adopts precedence opera-
tion crossover (POX) and linear order crossover(LOX), and
the MA adopts a Improved single-point crossover method.
This crossover method ensures both the search capability is
improved rapidly and the generated solution is always fea-
sible. The genetic algorithm’s mutation operation increases
the diversity of the population. The local search ability of the
algorithm is enhanced to prevent the algorithm from falling
into immature convergence.

(3) Select adaptive adjustment of inertia weight to improve
the diversity of the population. The inertia weight is updated
by the global optimal value of the particles in the population
and the exponential function of the current value. The value
inertia weight ω is adaptively adjusted by using the global
optimal of the particles in the population and the exponential
function of the current value.

(4) The rapid non-dominated sorting method is used to
determine the fronts of each candidate solution, and the

TABLE 1. 2×4 T-FJSP.

TABLE 2. 2×4 P-FJSP.

specified solution is stored in the Pareto optimal solution set
according to fronts order.

The rest of this paper is organized as follows: Section II
introduces the formulation of FJSP, and Section III describes
the basic particle swarm optimization. Section IV introduces
the detailed implementation of the DPSO-AIW algorithm
including encoding and decoding, initialization the popu-
lation, the method to update PSO location, calculation of
adaptive inertia weight, constructing PSO optimal solution
set and the flow of DPSO-AIW algorithm. Section V is an
analysis of the computational complexity of the DPSO-AIW
algorithm. Section VI shows the results of computational
studies using the DPSO-AIW algorithm and its comparisons
with other algorithms. The parameters sensitivity analysis is
in Section VII. Section VIII is the conclusion and direction
of future research.

II. FORMULATION OF FJSP
The FJSP is commonly described as follows. There are n
jobs J = (J1, J2, . . . , Jn) to be processed on m machines
M = (M1, M2, . . .Mm). A job contains one or more oper-
ations, and Oij represents the jth operation of job i. Each
operation can be processed on different machines, but the
processing time varies from machine to machine. The pro-
cessing time of Oij performed on machine k is tijk that is
greater than 0. Cij represents the completion time of the oper-
ation Oij. The processing sequence of the operation is given
in advance. FJSP can be divided into Total-FJSP(T-FJSP)
and Partial-FJSP(P-FJSP), which are shown in Table 1 and
Table 2 respectively. In T-FJSP, every operation of all jobs can
be processed on any machine. In P-FJSP, the operation can
only be processed on some machines, that is, the real subset
of the machine set.

We consider the multiobjective FJSP with the following
three objectives to be minimized: (1)the maximal completion
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time of machines, that is F1; (2) the bottleneck machine
workload, that is F2, which considers the workload balance
among all machines to prevent too much work been assigned
to a single machine; and (3) the total workload of machines,
that is F3, which is of interest in assigning the machine
with relatively short processing time to improve economic
efficiency.

Mathematically, the FJSP can be formulated as follows:

F1=min(max(Cij))(1 ≤ i ≤ n, 1 ≤ j ≤ ni) (1)

F2=min(max(
∑n

i=1

∑ni

j=1
tijk ))(1 ≤ k ≤ m) (2)

F3=min(max(
∑n

i=1

∑ni

j=1

∑m

k=1
tijk · xijk )) (3)

xijk =


1 if operation Oij is processed
in machine k

0 otherwise

(4)

Cij ≥ 0 (5)

Cij − Cij−1 ≥ tijk · xijk (j = 1, 2, . . . , ni;

i = 1, 2, . . . , n; k = 1, 2, . . . ,m) (6)∑
xijk = 1 (7)

where Equation 6 ensures that the operations belong to
the same job and satisfy the precedence constraints, and
Equation 7 shows that one machine must be selected from
the set of available machines for each operation.

FJSP processing also satisfies the following constraints and
assumptions:

(1) All machines are available at time 0, and each job can
be processed at time 0;

(2) At a certain time, one machine can only process
one operation at a time. Once the operation is completed,
the machine can be used for other operations.

(3) Once the processing begins, it cannot be interrupted;
(4) The operations of different jobs are not constrained in

sequence, but there are successive constraints between the
operations of the same job;

(5) The setting time of the machine and the transportation
time of the operation are ignored.

III. BASIC PARTICLE SWARM OPTIMIZATION
The particle swarm optimization (PSO) algorithm is an
emerging optimization algorithm based on the theory of
swarm intelligence proposed by Kennedy in 1995, who was
inspired by the foraging behavior of birds and fish in nature.
PSO algorithm attracts the attention ofmany scholars because
of its simple parameters, easy implementation and powerful
global optimization ability. It has been widely used in the
fields of function optimization, image processing, fuzzy sys-
tem control and scheduling optimization.

The PSO algorithm was originally used to solve the con-
tinuous optimization problem. However, many practical engi-
neering application problems are discrete. So using the basic
idea of the PSO algorithm and changing it into a discrete
form for solving large-scale discrete problems such as com-
binatorial optimization has become a hot issue for many

scholars. Liu et al. [6] proposed a hybrid PSO algorithm with
Pareto archives set for the FJSP problem with three targets;
Chen et al.[7] designed an extended process coding and auto-
matic scheduling decoding mechanism. In the paper, a multi-
objective particle swarm optimization algorithm for flexible
production scheduling is designed for particle maximum and
minimum, convergence speed and corresponding boundary
conditions. Zhanget al. [8] proposed a hybrid particle swarm
optimization algorithm to study the multiobjective FJSP
based on Pareto-dominance. Based on the complementary
strengths of PSO and Variable Neighborhood Search (VNS)
algorithm, Pan et al.[9] proposed four hybrid algorithms:
PSO-VNS algorithm, Enhanced PSO(EPSO) algorithm, PSO
and VNS in Turn (PVT) algorithm, and PSO and VNS Coop-
erative algorithm (PVC). Song and Tang [10] designed a
nowait algorithm of grading for the nowait constraint between
two sequential operations of a job to optimize the hybrid
flow shop scheduling problem.Huang et al.[11] combined the
multiobjective particle swarm optimization with the variable
neighborhood search method to effectively solve the FJSP
problem.

The basic particle swarm optimization algorithm is based
on the study of the sociological behavior of birds foraging.
In such problems, the algorithm first uses a set of ‘‘particles’’
to represent a set of candidate solutions to the problem. Then,
each particle in the population remembers and follows the
current optimal particle to search in the solution space.

Suppose that a group ofM particles fly at a certain velocity
in the D-dimensional search space. The state attribute of
particle i is set as follows:
The current position of the particle:xi = (xi1, xi2, . . . ,xid );
The current velocity of the particle:vi = (vi1, vi2, . . . ,vid );
The best position that particle i has experienced:

pBti =
(
pBti1, pB

t
i2, . . .pB

t
id

)
;

gBt is the global optimal position experienced by the popu-
lation, which is the location where the maximumfitness value
is generated. The formula for the ith particle to update its
position and flight velocity at the t+1th generation is shown
in equation 8 and equation 9.

vt+1i = ω × vti + c1r1
(
pBti − x

t
i
)
+ c2r2

(
gBt − x ti

)
(8)

x t+1i = x ti + v
t+1
i (9)

In equation 8, ω represents the inertia weight; vti represents
the current velocity; c1 and c2 are the acceleration constant;
r1 and r2 are random numbers between(0,1). They are intro-
duced in the formula to simulate a slight unpredictable part
of the behavior of the group in nature, and determine to
what extent the particle remains on the original route from
gBt and pBti . This is also a way to balance exploration and
exploitation; pBti refers to the individual optimal position of
the ith particle; gBt represents the current optimal position.
Equation 8 consists of three parts: the first part ω×vti is the

previous velocity of the particle, indicating the current state of
the particle; the second part c1r1

(
pBti − x

t
i

)
is usually called

the self-cognitive part of the particle, that is, the influence
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TABLE 3. The GSO process.

of the particle’s flight experience on its own flight, which
makes the particle have a strong global search ability; the
third part c2r2

(
gBt − x ti

)
is the social learning part of the

particle, which embodies the information sharing between
the particles, that is, the influence of particles’ learning from
a population on their flight.

IV. DPSO-AIW ALGORITHM
A. ENCODING AND DECODING
Each chromosome of FJSP is represented by two-layer of
coding. The first one is operation sequencing (OS): the order
assigned to themachine is sorted. The number in the sequence
is the index of the job: the order in which each job appears in
the OS represents the processing order of the various opera-
tions of the job. The second is the machine assignment (MA):
assigning each operation to a set of capable machines, which
means assigning each operation to a selectable machine and
calculating its start time and end time [12]. The MA selection
refers to the method by which an operation selects machines
in its optional machine set. The schedulings generated in this
way are feasible.

The decoding uses a plug-in greedy decoding algorithm
to ensure that the active scheduling is generated after the
chromosome is decoded [13]. According to the OS coding of
the chromosome, the order of the operation on the sequence is
decoded. First, the first operation on the sequence is arranged
for processing, and then the second track is taken and inserted
into the processing time of the corresponding machine at the
best feasible processing time. In this way, all operations in the
sequence are placed in their best possible position (as early as
possible).

B. INITALIZATION THE POPULATION
Kacem et al.[14] first proposed the approach by localization
(AL). Pezzella et al. [15] used three scheduling rules to
initialize the sequence of operations. Gao et al. [16] proposed
a method of GLR machine selection: global selection (GS),

local selection (LS) and random selection (RS). Based on the
above literature research, this paper proposes a method to
combine the random selection of OS and the GSO of MA.
The specific implementation process is as follows:

(1) The OS adopts random selection: the OS part adopts the
operation-based coding mode selection in JSP, and for each
operation, randomly selects and generates an OS;

(2) The MA uses GSO selection: since the OS is randomly
coded, each gene in the MA is a processing machine selected
for the operation in the OS. So our goal is to select the
machine with the global minimum workload for processing
in the optional machine set. The method is as follow:

For each operation, select the machine with the minimum
workload in its optional processing machine set, and add the
workload value to the machine workload of the other opera-
tions in the same column. For example, for the 2×4 T-FJSP
in Table 1, the OS is randomly generated: 2 1 1 2 1. First
take 2, indicating the operation O21. Select the machine M3
with the minimum workload in the optional machine set,
the value is 1, and increase the remaining values of the M2
column by 1 on the basis of the original value, see Table 3 (a).
Take the remaining operations sequentially and get theMA: 3
1 3 2 4. The specific processing is shown in Table 3 (b) - (e).
Values of the selected operation are with borders, while val-
ues representing the updated machine workload are in bold.
Figure 1 is the Gantt chart of the 2×4 T-FJSP.

C. METHOD TO UPDATE PSO LOCATION
The equation to update velocity and position evolution in
the basic PSO algorithm has three main parts: the influence
of the current velocity of the particle, the ‘‘cognitive’’ part
and the ‘‘social’’ part. These three parts work together to
obtain the position of the next generation of particles. But the
basic PSO algorithm is suitable for continuous problems, and
we require discrete problems, so we imitate the optimization
mechanism of the basic PSO algorithm, update the formula
and define the position of discrete particle swarms according
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FIGURE 1. Gantt chart of the 2 × 4 T-FJSP in table 1.

to the method in equation 10.

x t+1i = c2⊗p
{
c1⊗q

[
ω ⊗ m

(
x ti
)
, pBti

]
, gBt

}
(10)

where ω, c1 and c2 are the same as those in the basic particle
swarm optimization algorithm. ω is the inertia weight, c1 is
the cognitive coefficient, c2 is the social coefficient, and ⊗
is used to represent the optimization operation. Equation 10
consists of three parts.

The first part, equation 11 refers to the part affected by the
current state.m

(
x ti
)
represents the velocity of current particle.

Mutation probability Pm is the random number in the range
of (0, 0.1), and when Pm is less than ω, execute the operation
m
(
x ti
)
, or otherwise keep the original particles unchanged.

For the inertia weight calculationmethod, see SectionD.Here
m
(
x ti
)
refers to the mutation operation of the chromosome.

M t
i = ω ⊗ m

(
x ti
)
=

{
m
(
x ti
)

Pm < ω

xki otherwise
(11)

The mutation operation is as follow:
The OS select a chromosome according to the mutation

probability, and select one of the operations randomly. Since
the job has a sequence order constraint, firstly, determine the
position of the precursor operation and the subsequent oper-
ation of the operation, and then randomly select a position
to insert the operation between these two positions, which
ensures that the resulting schedule is a feasible solution.

The MA select a parent chromosome for the mutation
according to the mutation probability, and select one of the
processing operations. Since each operation can be processed
on multiple machines, each operation has a collection of
optional processing machines. Randomly select a machine in
the processing machine set to complete the mutation.

The second part, equation 12 indicates the learning part
of the chromosome to itself, and q

(
M t
i , pB

t
i

)
indicates the

adjustment of the chromosome according to its optimal posi-
tion pBti . Crossover probability Pc1 is the random number
in the range of (0.6, 0.9), and when Pc1 is less than c1,
the crossover operation is performed. Otherwise, the origi-
nal particle remains unchanged. q

(
M t
i , pB

t
i

)
is implemented

through the crossover operation in the genetic algorithm. For
the two sets of codes in FJSP, the OS adopts precedence
operation crossover (POX)[15], and the MA adopts improved
single-point crossover(ISX) [17].

Qti = c1⊗q
(
M t
i , pB

t
i
)
=

{
q
(
M t
i , pB

t
i

)
Pc1 < c1

M t
i otherwise

(12)

The third part, equation 13 embodies the adjustment of
particles according to the global optimal position, which
shows the cooperation between particles. p

(
Qti , gB

t) is the
crossover operation betweenQti and gB

t . Perform a crossover
operation when the crossover probability Pc2 is less than c2,
and Pc2 is in the range of (0.6,0.9). Or otherwise, keep the
original particles unchanged. Crossover operation process:
OS uses LOX crossover, and MA uses improved single-point
crossover(ISX).

Pti = c2⊗p
(
Qti , gB

t)
=

{
p
(
Qti , gB

t) Pc2 < c2
Qti otherwise

(13)

The parent chromosomes after the coding are recorded
as P1, P2, . . . , Pn, and the offspring chromosomes obtained
after the crossover are recorded as C1, C2, . . . , Cn (n is the
population size).

The steps for POX are as follows:
Step 1:P1 andP2 are sequentially taken out from the parent

chromosomes. Copy all the operations included in job J1 in
P1 to C1 in the original order, and copy all the operations
contained in job J2 in P2 to C1 in the original order;
Step 2: Copy all the operations included in job J2 in P1 to

C2 in the original order, and copy all the operations of the job
J1 in P2 to C2 in the original order;
Step 3: Repeat Step 1–Step 2 in the parent chromosomes

until n offspring chromosomes C1, C2, . . . , Cn are obtained;
The steps for LOX are as follows:
Step 1: randomly generate two intersection positions in the

two parents P1 and P2, and exchange the fragments in the two
intersection positions;

Step 2: The gene in the original parent, which is exchanged
from another parent, is deleted;

Step 3: Copy the remaining genes from the original parent
to the children in turn from the first position.

The method of ISX is as follow:
Divide all the chromosomes involved in the crossover into

n
2 groups, and perform single-point crossover for the two
parent chromosomes in each group: randomly select one
crossover point, and exchange the machines assigned by the
operations included in the two parents before the crossover
point, which ensures that the chromosomes obtained after the
crossover are all feasible schedulings.

D. CALCULATION OF ADAPTIVE INERTIA WEIGHT
The search process of PSO algorithm is complex and non-
linear. The inertia weight ω is an important parameter of
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FIGURE 2. The flow chart of DPSO-AIW algorithm.

the algorithm, which is used to balance the global and local
search ability of the algorithm. When the inertia weight is
large, it is beneficial to global search, while a smaller weight
value can accelerate the convergence of the algorithm and
prevent the algorithm from falling into local optimum. There-
fore, this paper chooses the method of adaptively adjusting
the inertia weight to improve the diversity of the population.
The inertia weight is updated by the global optimal value of
the particles in the population and the exponential function
of the current value. See the equation 14 and 15. At each
iteration, the inertia weight is related to the current value of
the particle, that is, when the relative change between the
current value of the particle and the global optimal value is
large, the inertia weight increases, and vice versa.

ω (t + 1) = ωstart + (ωend + ωstart )

×(ωend + ωstart )
emi(t)−1
emi(t)+1 (14)

mi (t) =
gBt − x ti
gBt + x ti

(15)

where t represents the current number of iterations, ωstart is
the initial inertia weight, and ωend is the inertia weight when
the iterations reach to the maximum.

E. DPSO-AIW ALGORITHM FLOW
Based on the above analysis and discussion, the DPSO-AIW
algorithm for solving the multiobjective FJSP problem is as
follows:

Step 1: Set initial parameters: iteration number T , popu-
lation size N , inertia weight ω, cognitive coefficient c1 and
social coefficient c2, cycle variable t , and let t = 1;

Step 2: Initialize the population P. The OS is randomly
generated, and the MA is generated by the GSO method.
Evaluate each particle, perform rapid non-dominated sorting
on the population, and find out N

10 non-dominated solutions
in the current population and store in the optimal solution set
(POS), the size of the POS is N

10 , which is one tenth of the
population size;

Step 3: Evaluate the fitness value of each particle, and
perform rapid non-dominated sorting on the population to
find out N10 non-dominated solutions in the current population
and compare them with N

10 non-dominated solutions in the
POS, that is select N

10 non-dominated solutions from the N
5

non-dominated solutions and update the POS. The process of
updating a POS is as follows:

According to the quick sorting method, the front Fi of
the non-dominated level is obtained [18]. Let the number of
solutions in each front be ni, and if ( N

10 −
∑
ni−1≤ni), ( N10 −∑

ni−1) individuals are randomly selected in the front Fi to
store in POS;

Step 4: t = t+ 1;
Step 5: Determine whether the stopping criterion ( t > T )

is satisfied. if yes, go to Step 7; otherwise, go to Step 6;
Step 6: Update the particle position. The particle position

is updated according to equation 7. Go to Step 3;

33130 VOLUME 8, 2020



X.-L. Gu et al.: DPSO-AIW for Solving Multiobjective Flexible Job-shop Scheduling Problem

FIGURE 3. Gantt charts of the 10×10 instance obtained by the DPSO-AIW algorithm, (a) and (b) are Gantt charts generated by two
different Pareto optimal solutions respectively. The solution of (a) is (7,6,42) and the solution of (b) is (7,6,43).

Step 7: Output non-dominated solutions in the POS.
The flow chart of DPSO-AIW is shown in Figure 2.

V. COMPUTATIONAL COMPLEXITY ANALYSIS
Suppose the number of machines is M, the population size is
P, L is the length of the OS andMA in chromosome, the num-
ber of iterations is T and the number of objectives is B.
The computational complexity of the DPSO-AIW algorithm
mainly comes from the following parts: Initialization of the
population, mutation and crossover operation, decoding and
fast non-dominated sorting. During the initialization of the
population, the OS is randomly generated, and the worst com-
putational complexity of one iteration is O(L×P). TheMA is
generated using theGSOmethod, and its worst computational

complexity is O(2 × M × L × P). During the mutation
operation, the OSmutates randomly, the worst computational
complexity of the OS is O(L × P). The mutation process of
the MA is affected by the number of optional machines, the
worst computational complexity of the MA is O(M×P). The
crossover operation performed twice. In the first crossover
operation, the OS uses POX crossover, the worst computa-
tional complexity is O(4×L×P), theMA uses ISX crossover,
the worst computational complexity is O(2×L × P). In the
second crossover operation, the OS adopts LOX crossover,
the worst computational complexity is O(4×L × P), the MA
adopts ISX crossover, the worst computational complexity
remains O(2×L × P). During the decoding process, each
operation in the OS performs the following two steps:
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FIGURE 4. Gantt charts of the 10 × 7 instance obtained by the DPSO-AIW algorithm, (a) and (b) are Gantt charts generated by two different
Pareto optimal solutions respectively. The solution of (a) is (11,11,63), and the solution of (b) is (12,10,63).

Step 1: Select the corresponding machine in the MA;
Step 2: Search the processing time in its processing sched-

ule and decode to generate a feasible scheduling.
Theworst computational complexity of the entire decoding

process is O(M × L2). The computational complexity of
fast non-dominated sorting is O(M × B2) [18]. So the worst
computational complexity of DPSO-AIW algorithm is:

O(L × P)+ O(2×M × L × P)+ O(L × P)+ O(M × P)+
[O(4×L ×P)+ O(2×L ×P)]×2+ O(M × L2)+ O(M × B2)
≈O{[(14+2×M )× L +M ]× P+ O[M × (L2 + B2)]
It can be seen from the above equation that the compu-

tational complexity of the DPSO-AIW algorithm is mainly
related to the population size, the number of machines,
the number of objectives, chromosome length and the
iterations.

VI. SIMULATION AND ANALYSIS
To test the performance of the proposed DPSO-AIW
algorithm, numerical simulations were performed using
two sets of benchmark studies, including five Kacem

instances [14], [19] and three BRdata instances [20].
The algorithm is written in Python programming language
version 3.7.3 and run on a MacBook Pro with a 2.7GHz
processor and 8 GB RAM of APPLE inc. 2015.

It is generally believed that the difficulty of solving multi-
objective FJSP is closely related to the scale of the problem.
Therefore, for each instance, the iteration T is 10 × n ×m.
The population size P is n × m. ωstart is 0.9, ωend is 0.4. c1
equals to c2, and the value is 0.75.

The first set of data were tested using the five Kacem
instances: 4×5 instance, 10×7 instance, 8×8 instance,
10×10 instance and 15×10 instance. The 8 × 8 instance is
a P-FJSP, and the remaining four instances are all T-FJSP.
Figure 3 and Figure 4 show the Gantt charts of the two dif-
ferent Pareto optimal solutions obtained by the DPSO-AIW
algorithm for solving the 10×10 instance and 10×7 instance
respectively. When solving the Pareto optimal solution,
we compare the DPSO-AIW algorithm with the existing
methods MOPSO +LS [21], PSO-IN [22] and P-EDA [23].
The comparison results are shown in Table 4. The results
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TABLE 4. Results of KACEM instances.

TABLE 5. Results of MK01 instance.

TABLE 6. Results of MK02 instance.

of the compared algorithms come directly from the litera-
ture. It can be seen from Table 4 that for the 4×5 instance,
the Pareto optimal solution (11 7 30) obtained by the
DPSO-AIW algorithm is better than the non-dominated solu-
tion in the other three algorithms; for the 10×7 instance,

P-EDA obtained better solution that dominated other algo-
rithms, for the 8×8 instance, the Pareto optimal solution
(14 11 76) obtained by the DPSO-AIW algorithm is better
than the non-dominated solution in the other three algo-
rithms. For the 10×10 instance and the 10×15 instance,
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TABLE 7. Results of MK03 instance.

TABLE 8. The factor levels of parameters.

TABLE 9. The orthogonal array.

the DPSO-AIW algorithm obtains the same Pareto optimal
solution (7 6 42) and (11 11 91) as the other three methods.
The better solution for each objective of DPSO-AIW is shown
in bold in Table 4. ‘‘-’’ indicates that no value was given in the
original paper. The data show that the DPSO-AIW algorithm
is effective and feasible for solving Kacem instances.

The second set of data were tested using the BRdata
instances. Select the MK01, MK02, and MK03 issues in
the BRdata instances. Comparison of the Pareto optimal
solution obtained by the DPSO-AIW algorithm with that
obtained by the MOGA [24] and P-EDA algorithms can be
seen in Table 5 - Table 7, where the Pareto optimal solution

obtained by the DPSO-AIW algorithm is shown in bold, and
dominant solutions obtained by other algorithms are under-
lined. For the MK01 instance in Table 5, the non-dominated
solution (40 36 168) obtained by DPSO-AIW dominate
all the non-dominated solutions obtained by the other two
algorithms. For the MK02 instance in Table 6, the P-EDA
and DPSO-AIW obtained the same non-dominated solution
(27 27 145), which dominates the non-dominated solutions
obtained by the MAGO algorithm. For the MK03 instance
in Table 7, the non-dominated solution (204 168 850)
obtained by DPSO-AIW dominates all non-dominated solu-
tions obtained by the other two algorithms.
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TABLE 10. The mean value and standard deviation of each factor level.

It can be seen that DPSO-AIW is superior to MOGA
and P-EDA in solving BRdata instances. In three instances,
DPSO-AIW can achieve better Pareto optimal solutions that
dominate the solutions obtained by the MOGA algorithm and
the P-EDA algorithm. According to the above comparison
based on Kacem instances and BRdata instances, it can be
concluded that DPSO-AIW algorithm is an effective algo-
rithm for solving multiobjective FJSP problem.

VII. PARAMETER SENSITIVITY ANALYSIS
In order to determine the impact of important parameters
on the algorithm, a sensitivity analysis is performed in this
section. The 4 × 5 instance of Kacem is used to assess
performance of the DPSO-AIW with different parameter
combinations. In this paper, four different factor levels P,
ωstart , ωend and (c1, c2) are considered, and experiments are
designed using the orthogonal table of Taguchi method [25].
The optional value of each factor level is presented in Table 8,
and the design structure of the orthogonal array is shown in
Table 9. Each experiment runs ten times independently. Ave
denotes the average makespan of ten experiments, and δ is
the standard deviation. The mean value of each factor level
is presented in Table 10 according to the results in Table 9.
In Table 10, δ denotes the standard deviation for each mean
value and reflects the significance of each parameter. For
comparisons the values of δ, the parameters ωstart ranks
first, the parameter (c1, c2) ranks second, the parameter P
ranks third, and the parameter ωend ranks fourth. There-
fore, the parameter ωstart is the most significant factor in
DPSO-AIW algorithm.

VIII. CONCLUSION
In this paper, DPSO-AIW is proposed to solve the multi-
objective FJSP, the optimization model is established, and
the DPSO-AIW algorithm is applied to the optimization
model verification. The simulation data are Kacem standard
instances and BRdata standard instances respectively. The
simulation results are compared with the results obtained by
other algorithms, and the practicability and effectiveness of
the algorithm for solving multiobjective FJSP are proved.
After a lot of experiments, we found that our algorithm can
quickly find better solutions for cases with larger flexibility
ratio (flex.)[26] which is defined as the average number
of alternate machines per operation, while cases with rela-
tively smaller flex. require more iterations and a larger initial

population. It takes more time to get better results, which is
what we will do next.

This paper solves the three objectives of the FJSP problem,
and there are more goals for complex flexible workshops.
Facedwithmany uncertain factors, how to design a simplified
and efficient simulationmodel applied to the actual workshop
is the future research direction. In addition, the application of
particle swarm optimization to other combinatorial optimiza-
tion problems requires further research.
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