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ABSTRACT A diagnosing method for phased antenna array element failures is proposed. The element
excitation amplitudes and phases are reconstructed by a compressed sensing based approach, in which the
radiated electric fields of the array are sampled by a single fixed receiving antenna. The diagnosing can be
processed when the phased array is still in service. Particularly, it can be specialized for detecting faults only.
Element excitation phases are designed to follow Bernoulli distribution, which is difficult to be realized in
conventional geometric sampling methods. It is capable to provide effective and simultaneous detection for
different types of failures with phase control means that are simpler comparing with other methods in which
excitation phase adjustment is required. Especially, a two-step detection strategy is proposed to effectively
detect phase failures due to faultily short-circuited phase shifters. Numerical results illustrate the effective
sensing range of a single receiving antenna. Full-wave simulations validate the diagnosing performance in
the presence of mutual couplings between array elements.

INDEX TERMS Phased array antenna, array diagnosis, phase shifter, compressed sensing, Bernoulli
distribution.

I. INTRODUCTION
Phased array antennas are widely used in many engineering
applications such as radar, sonar, and biology systems [1].
With the development of wireless communications, more
applications appear in satellite, remote sensing and cellular
communications recently [2]. Phased arrays usually consist
of a large number of antenna elements. Due to the harsh
operation environment, the occurrence of element errors and
failures is inevitable, which will deteriorate the array perfor-
mance. Owing to numerous sources of defects, it is difficult
to detect them at one time. To preserve the performance of
phased arrays, detecting different types of defects in a fast
and accurate manner is valuable. It is meanwhile the pre-
processing procedure of approaches to compensate a phased
array with a small number of failed elements by adjusting
excitations of other normal elements [3].
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The detection of defects in the whole array under test
(AUT) can be casted into a problem of reconstructing the
complex excitations of antenna elements. The backward
propagation method transfers near field radiation data to the
array aperture to verify element excitations [4]. In matrix
methods [5], [6], excitations and near field data are written
in a matrix form, so that the reconstruction is equivalent to
solving the inverse problem. Neural network methods apply
far field data to build training sets. Defective elements are
located by properly selected network parameters [7], [8].
By microwave holography methods, the hologram on the
array aperture is obtained from the measured far field pat-
tern [9], [10]. Methods dealing with arbitrary distributions
of array elements are reported in [11], [12]. Singular value
decomposition (SVD) has been applied to find the solu-
tion. A low degree polynomial kernel has been developed
for fast diagnosing by support vector machine (SVM) [13].
Other than on-off failures, partial faults have been han-
dled in [14]. In those methods, a large number of measure-
ments are required, which decreases the total efficiency. Fast
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diagnosis methods dealing with digital phase shifter failures
in phased arrays are proposed in [15]–[17]. Independent data
are obtained by shifting antenna excitation phases [15]. The
mutual coupling technique (MCT) is used to identify element
phase failures by measuring adjacent elements [16], [17].
It is assumed that array elements are uniform and the mutual
coupling among adjacent elements is the same. The mea-
suring antenna is fixed during failure detection. Although
the measuring procedure is simple, it still requires the mea-
surement number to be far larger than the total number of
phased array elements. The control of excitation phases is
also complicated.

In the last decade, detection approaches based on com-
pressed sensing (CS) [18]–[31] have been popular, by which
the required number of measurements can be largely reduced.
According to CS theory, unknown sparse signals can be
retrieved from a small set of observations [32], [33]. In [19],
[20], the sparse vector is generated by subtracting a reference
excitation vector from AUT excitation vector. The sparse
vector is firstly obtained and then commonly adopted in later
CS based detection approaches. A regularization has been
added to solve the optimization from measured near field
data. Random partial Fourier matrices (RPFMs) have been
used for the retrieval via far field data. The Bayesian CS
based framework is proposed to provide reliable detections
in [18], [26]. In order to detect AUT via magnitude data
only, approximations and modifications are provided in [21],
[24]. Convex optimizations for different configurations are
assessed in [28], [29]. The measurement number is further
reduced by sparsity promotion methods [30]. The sampling
in those methods is performed at different receiving loca-
tions. The radiated fields are sampled in the phase domain
in [31] to avoid probe shifting errors. However, only on-
off failures are detected, partial failures and phase failures
cannot be diagnosed. The abovemethods are mainly designed
to detect only excitation failures or aperture field distribu-
tions. Although uncorrelated measurements can be obtained,
the way to regulate the detection system is quite limited
since the required condition on the sensing matrix is usually
satisfied approximately using random Gaussian distribution
only.

In this paper, a detecting method for different types of
faults in phased arrays is proposed. It applies near field
data for detection, which is practical in very large arrays.
After the establishment of sparse excitation vectors, elec-
tric field data are sampled in the phase domain by a single
fixed antenna [31]. The way of constructing the detection
system is different. Since data can be sampled at only one
fixed location, it simplifies the measurement process which
is most time-consuming in diagnosing. Besides, it enables
new ways to design the CS based detection system, in which
entries in the sensing matrix can be managed flexibly by
utilizing different random distributions. Via controlling ele-
ment excitation phases, requirements of CS are satisfied by
binary random matrices whose entries follow Bernoulli dis-
tribution. It is different from existing detection methods by

which binary random matrices are hard to build. Therefore,
Bernoulli distribution can be easily and strictly achieved in
the proposed method. In traditional detection schemes that
directly apply CS for real number analysis, excitation phase
failures are difficult to be identified, since the phase informa-
tion is not included in the unknown excitation vector to be
retrieved. Not to mention that a faulty element may contain
both amplitude and phase defects. In the proposed method,
the original unknown excitation vector is split to real parts
and imaginary parts to form a new vector whose entries are
all real numbers. Both amplitude and phase failures can be
distinguished and then detected simultaneously. Convex and
non-convex optimization are both performed and compared.
The non-convex one indicates better capability.

A q-bit digital phase shifter contains q phase-shifting
stages. Phase control is realized by short-circuiting some
phase-shifting stages according to the control signal. Typical
phase failures are usually caused by faultily short-circuited
stages in phase shifters. It is important to note that these short-
circuiting phase failures coincide with some of the normal
phase states, so that the effect of these failures is invisible
and cannot be detected by conventional methods. A two-
step detection is applied in consideration of this kind of
failures. Firstly, a special control approach of phase shifters
is designed to discover those faults at one single bit (usually
the highest bit). Then, possible short-circuiting failures at the
rest bits are diagnosed along with other kinds of failures.
The measurement number is small compared with the total
number of possible fault cases.

Compared with methods sampling data at different spa-
tial locations, the proposed method takes advantages of the
adjustable excitation phases in phased arrays. The inde-
pendence of measured data and the constraints of CS
can be satisfied in a more rigorous way by regulating
array element excitation phases properly. The phase con-
trol is easier and the types of detectable failures are also
extended.

This paper is organized as follows. In Section II, the detec-
tion system is formulated and analyzed. The diagnosing for
different defects is illustrated in Section III. In Section IV,
numerical examples are presented to show the detection per-
formance in detail. Full wave simulations are implemented
in Section V to validate the behavior of proposed method
in a more practical case taking into account of the mutual
coupling effect.

II. THE DIAGNOSING PROBLEM
The radiation properties of a phased antenna array, such as
the main beam direction, gain, and sidelobe levels, mainly
depend on three factors: the types of array elements, their
geometric distributions, and complex excitations. Due to the
presence of errors and failures, the array performance may be
degraded. The degradation can be expressed by the deviation
of practical element excitations from the idea ones. To diag-
nose a phased array, a main task is to retrieve the excitations
from observed data.
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FIGURE 1. An example of a phased antenna array and a 3-bit digital
phase shifter.

A. CLASSIFICATION OF EXCITATION DEFECTS
A phased antenna array is mainly composed of three parts:
radiation antenna elements, phase shifters with control cir-
cuits, and excitation sources along with the feeding network,
as shown in Fig. 1(a). The feeding network may contain
amplifiers, isolators, power dividers, and attenuators, etc.
Discrete digital phase shifters are commonly applied in large
phased arrays owing to the convenience and flexibility to
control element phases. A 3-bit digital phase shifter is shown
in Fig. 1(b). It is a 3-stage circuit, each stage controlled by a
binary signal, with ‘‘0’’ corresponding to the short-circuiting
state and ‘‘1’’ corresponding to the phase-shifting state. The
number of achievable phase states and the minimum phase
shift are L = 23 = 8 and 1ϕ = 2π/23 = 45◦, respectively.

Excitation defects can be clarified into two types: ampli-
tude defects and phase defects. For amplitude defects, fab-
rication tolerances and short-circuited electronic devices in
each channel lead to abnormal element amplitudes. The open-
circuiting and breakdown of devices and transmission lines
will disconnect those corresponding elements and result in
zero amplitudes.

There are two typical types of phase defects. The first one
is shifting errors caused by inaccurate length of transmis-
sion lines and phase shifter errors. It causes abnormal phase
shift. The second one is called partial phase failure, in which
one or more stages in a phase shifter remain short-circuited
because of failures. When a partial phase failure occurs at one
stage, it coincides with those normal phase states with a ‘‘0’’
control bit of the same stage. In other words, in these phase
states, the partial phase failures cannot be detected since it is
difficult to distinguish whether the short-circuiting is due to
a failure or due to the control signal ‘‘0’’.

To summarize and simplify formulations, we divide all
defects into two categories: on-off failures and partial defects.
Failures resulting in zero excitations are termed as on-off
failures. The rest defects that lead to abnormal amplitudes,
phase shift deviations, and partial phase failures are named as
partial defects. The two types of defects can be characterized
from their excitations. The way to detect both on-off failures
and partial defects will be presented in Section III.

B. VIRTUAL ARRAY AND ARRAY MANIFOLD
The electric field of an N element phased array can be
expressed by the superposition of element electric fields,
given by (1):

EE =
N∑
n=1

cn EEn =
N∑
n=1

bne−jϕn EEn (1)

in which cn is the complex excitation of the n-th element
composed of amplitude bn and phase ϕn. EEn is the complex
element electric field factor at the receiving point.

An assumption is made that the number S of defective
elements is small with respect to the total element number N .
Suppose a failure-free reference array occupies the same con-
figuration with AUT except for excitations. The differences
of array excitations between the reference and AUT form a
sparse excitation vector, and the difference array is referred to
as the virtual phased array [19], [20]. Excitations of normal
elements in AUT are the same with those in the reference
array. As a result, they cancel each other during subtraction
and those corresponding elements in the virtual array have
zero excitations. Only defective elements possess non-zero
excitations. Denote received fields of the reference array,
AUT, and the virtual array with EER, EEA, and 1EE , (1) can be
rewritten as:

1EE = EER − EEA =
N∑
n=1

1cn EEn (2)

where the superscript ‘R’ denotes the reference and ‘A’
denotes AUT. 1cn is the complex excitation of the n-th
element in the virtual array, which is given by:

1cn = bRn e
−jϕRn − bAn e

−jϕAn

=

(
bRn cosϕ

R
n − b

A
n cosϕ

A
n

)
− j

(
bRn sinϕ

R
n −b

A
n sinϕ

A
n

)
(3)

Since S elements in the virtual array have non-zero exci-
tations, the virtual array is considered as a sparse array with
only S antenna elements radiating fields.

To retrieve complex excitations of AUT, a linear detection
system is formulated in (4):

y = Ax+ e

A ∈ CM×N , Amn = Emne−jϕ
R
mn

y = [y1, y2, · · · , yM ] ∈ CM×1, ym =
N∑
n=1

1cmnEmn
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x = [x1, x2, · · · , xN ] ∈ CN×1,

xn = bRn − b
A
n e
−j1ϕn=

(
bRn − b

A
n cos1ϕn

)
+j
(
bAn sin1ϕn

)
e = [e1, e2, · · · , eM ] ∈ RM×1 (4)

where y is the radiated field vector of the virtual array, M
stands for the total measurement number, x is the vector of
unknowns. The sensing matrixA is anM×N matrix of array
manifold, and e is the noise vector. The entry Amn of A is the
product of the electric field factor Emn of the n-th element at
the m-th measurement and the corresponding ideal element
excitation phase e−jϕ

R
mn in the reference array. The entry xn

of the unknown vector x is formed by subtracting bAn e
−j1ϕn

from the ideal excitation amplitude bRn of the n-th element,
in which bAn refers to the actual excitation amplitude in AUT
and 1ϕn = ϕAn − ϕ

R
n refers to the excitation phase difference

of the n-th element. In this way, the ideal element excitation
phases are included in matrix A to form a proper sensing
matrix. The information of practical excitations of AUT are
contained in the unknown vector x.

C. SAMPLING STRATEGY
In CS based detection methods, properties of the sensing
matrix are affected by the sampling strategy. There are two
ways to regulate the sensing matrix. The traditional one is
the geometric sampling by receiving fields at different posi-
tions or sampling radiation patterns at various angles in the far
field. Independent data and the sensing matrix are controlled
by the geometry distribution of measurement locations while
excitations of array elements remain unchanged. Accord-
ingly, in entry Amn, the electric field factor Emn varies along
with the receiving location. Nevertheless, the ideal element
excitation phase ϕRmn is independent with measurement index
m. Once the receiving location changes, while ϕRmn stays
constant, both the amplitude and phase of Emn change. In fact,
Emn is proportional to e−jkrmn/rmn for far field measurements,
in which k is the wavenumber and rmn is the distance from
the element to the receiving location. Thus, it is difficult
to identify proper sampling positions so that entries in the
sensing matrix can follow the required distributions.

Taking into account the agile beam steering property of
phased arrays, a novel sampling strategy is to keep the
receiving location fixed, rotate the array beam by different
excitation phases, and record data during beam scanning.
By this means, the electric field factor Emn is independent
with m, only the excitation phase ϕRmn varies. If the phase
adjustment schemes are carefully designed, it is possible
to construct a proper sensing matrix A. Different from the
MCT method or other methods which require complicated
andmassive phase adjustments, the proposedmethod samples
data in the phase domain in a simple and random manner.
Thus, it is possible to detect failures while AUT is still in-
service.

Except for being able to meet the required criterions for
the sensing matrix, the phase domain sampling method pro-
vides an alternative way to design the sensing matrix. Since

measurements are received at a fixed location, Emn reduces
to En that can be regarded as the weighting coefficient. It can
be obtained via different approaches, such as computational
EM methods, software simulations, and even on-site mea-
surements. For instance, one can simulate the array and excite
one element at once with excitation ‘‘1’’. Then, record the
electric field at the fixed position to get one weighting coef-
ficient En. After repeating the process N times, an N × 1
coefficient vector can be obtained. The entire sensing matrix
is the product of the excitation phase matrix and a diagonal
weighting coefficient matrix:

A = 89 (5)

in which 8 is an M × N matrix whose entries are controlled
by ideal element excitation phases, i.e., 8mn = e−jϕ

R
mn , and

9 is an N ×N diagonal matrix whose diagonal elements are
those weighting coefficients, that is, 9nn = En.

In traditional geometric sampling methods, the detection
system is usually governed by pattern multiplication the-
ory or partial Fourier transform in the far field, and the mutual
couplings among elements are not considered. The calculated
matrix A is different from the practical case. If the entries
in A are obtained by simulations or on-site measurements,
it requiresM×N times to measure them all. Besides, the con-
structed A is only valid for one single trial. The process
is redundant and inefficient. In the proposed phase domain
sampling, since the receiving antenna is fixed, it requires
only N times to measure the entries. More importantly, for
different trials and failure patterns, the sensing matrix A is
valid once for all as long as the position of the receiving
antenna remains unchanged.

III. EXCITATION RETRIEVAL BASED ON COMPRESSED
SENSING
When applying CS for excitation retrieval, the restricted
isometry property (RIP) condition which is the constraint on
the sensing matrix A needs to be satisfied. In equation (4),
if A satisfies RIP, the inverse problem x = (y+ e)A−1 has a
unique solution and it can be solved by sparse approximation
algorithms even if the total number of measurements is less
than the number of unknowns (M < N ) [34]. However,
verifying the RIP condition of a matrix is difficult. According
to [35],A satisfies RIP provided that the measurement matrix
8 and the sparse dictionary matrix9 are uncorrelated. More-
over, to successfully and accurately calculate x, the number
of measurement needs to obey [34]:

M ≥ CS ln (N/S) (6)

in which C is a universal constant.
It is difficult to directly construct 8 that is uncorrelated

with 9. Candés proved that A has high probability to satisfy
the RIP condition if 8 is a random Gaussian matrix that
its entries follow the independent and identical Gaussian
distribution [36,37]:

8mn ∼ N
(
0,

1
N

)
(7)
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Another choice of 8 is the binary random matrix whose
entries follow Bernoulli distribution that

8mn :=


+1
√
M

with probability
1
2
,

−1
√
M

with probability
1
2
.

(8)

As is known in [38], using different random matrices in
different application scenarios can enhance the performance
of detection. In conventional spatial samplingmethods, Gaus-
sian distribution is commonly applied by measuring data at
random receiving locations. Other random distributions are
difficult to realize, since when changing the receiving loca-
tions, entries in 8 change simultaneously. The modification
of a single element at each time is inconvenient without
affecting other elements. The choices of random distributions
for constructing 8 are restricted. In the proposed method,
by using binary random matrices, excitation phase failures
that cannot be diagnosed in [31] can be detected along with
other kinds of failures. It will be presented in following
subsections.

A. SCANNING MODE AND DETECTION MODE
According to Huygens’ Principle, in order to reconstruct
excitations of AUT, it is required to sample the electric field
on a closed surface around it. For a phased antenna array,
the fields can be sampled with a fixed probe with different
excitation phases. If the array is able to scan in sufficiently
wide directions, the information contained in phase domain
sampling and in the geometric sampling are approximately
equivalent. However, for a practical phased array using digital
phase shifters, the range of achievable scanning directions is
restricted and the scanning states are discrete. The available
phase states are further limited when the array is in service,
while excitation phases in a row, a column, or in a sub-array
are usually altered simultaneously. Therefore, conventional
non CS-based failure detection methods are not applicable
because of insufficient sampling data in the phase domain.
However, it is possible that the selected excitation phases
satisfy requirements of the sensingmatrix and contain enough
information for defect detections using CS.

There are basically two diagnosing approaches for phased
array antennas. One is to perform diagnosis when the phased
array antenna is working and sample data during the scan-
ning process. This method is referred as diagnosing in the
scanning mode. The second one is referred as the detec-
tion mode. It is specially designed for performing diagno-
sis, where all phase states that phase shifters can provide
are available to be controlled for the purpose of diagnosis.
The detection performance of the two modes are obviously
different.

In the scanning mode, the scanning directions in the
achievable phase state space are randomly selected to make
8 an approximate random Gaussian matrix. As a result, on-
off failures, partial amplitude defects, and abnormal phase
shifting can be detected. However, phase failures caused by

short-circuiting of phase shifters cannot be detected. Besides,
the design of 8 is subject to much severe restriction because
AUT has to maintain regular scanning.

In the detection mode, 8 can be designed more flexibly to
follow the expected random distributions. The phase failures
due to faulty short-circuiting can be detected along with other
defects. When adjusting excitation phases, short-circuited
stages in faulty phase shifters produce non phase-shifting.
The faulty stages cannot be distinguished from other normal
working stages when the control signals are ‘‘0’’. In other
words, if the control signal is ‘‘0’’, the corresponding stage
is faulty or not cannot be verified. A special approach has
to be applied to identify faultily short-circuited stages before
diagnosing. It can be performed by properly chosen excitation
phases.

Instead of random Gaussian matrix by which short-
circuiting phase failures are difficult to be disclosed,
the binary random matrix that follows Bernoulli distribution
is capable in this situation. The binary entries in8 correspond
to two different states of phase shifters with equal probability
of 50%. The key point is to generate two independent states
to implement the Bernoulli distribution, and meanwhile, each
state should be effective to expose the possible failure infor-
mation. Take 6-bit digital phase shifters as examples. It is
possible to expose all phase failures only when the control
code is ‘‘111111’’. Otherwise, the phase failures related to the
‘‘0’’ control bits are invisible. We can see that it is impossible
to detect phase failures of all bits at a time. Because we have
only one qualified code ‘‘111111’’. It is also the reason that
the method presented in [31] cannot detect short-circuiting
phase failures, since there are no qualified control codes using
Gaussian random matrices.

A good strategy is to divide the control bits of phase shifters
into two groups and carry out the detection in two steps.
Separately, the failures associated with the first group are
detected in the first step, whereas the failures with bits in
the second group are detected in the second step. The bit
diagnosed in the first step is called the flag bit. We choose
the highest bit as the flag bit in the first group as an example,
then all other lower 5 bits are assigned to the second group.
In the first step, the two independent codes are ‘‘111111’’ and
‘‘100000’’, corresponding to two independent phase states.
Apparently, the faulty short-circuiting phase failure at the
highest bit is always visible with the two codes. Furthermore,
because the two codes have the largest phase interval in this
situation, the detection accuracy is also better, as will be
verified with examples in later section.

After failures at the flag bit have been detected, their effect
can be compensated by modifying the sensing matrix. Then
in the second step, we can choose the two independent codes
‘‘111111’’ and ‘‘011111’’ to create the binary random sensing
matrix. In fact, the binary values are achieved by the flag
bit. It is obvious that short-circuiting related phase failures
at lower 5 bits are all visible in this step, and can be detected
by CS based methods.
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B. SPARSE RECONSTRCUTION OF EXCITATIONS
In terms of (4), the entries of vectors and matrices in the
detection system are all complex. However, CS based sparse
reconstruction algorithms are commonly developed for real
number analysis. If detecting amplitude failures only, either
the real or imaginary parts of entries in the sensing matrix
can be separated and applied alone. In phased antenna arrays,
in order to detect both amplitude and phase defects, it is
required to modify the detection system given by:

ỹ = Ãx̃ + ẽ

ỹ =
[
Re (y)
Im (y)

]
∈ R2M×1, x̃ =

[
Re (x)
Im (x)

]
∈ R2N×1

Ã =
[
Re (A) −Im (A)
Im (A) Re (A)

]
∈ R2M×2N , ẽ =

[
e
z

]
∈ R2M×1

(9)

where Re (·) is the real value operator, Im (·) is the imaginary
value operator, Re (xn) = bRn −b

A
n cos1ϕn is the n-th entry of

Re (x), and Im (xn) = bAn sin1ϕn is the n-th entry of Im (x), z
is anM×1 zero vector. Then, excitation amplitude and phase
information of array elements are separated and are both
contained in x̃. After reconstructing x̃, real and imaginary
parts of x can be identified to determine amplitude and phase
defects. This detection system can also be directly solvedwith
existing CS based methods to detect phase failures.
The sparsity of the new unknown vector x̃ is different. The

sparsity S of the original vector x represents the total number
of defective elements in AUT, whereas an impaired element
may contain one of or both the amplitude and phase defect
at the same time. If a defective element has amplitude defect
only, it indicates one non-zero entry in vector x̃. Otherwise,
there are two non-zero entries in x̃, corresponding to the real
part and the imaginary part of the faulty excitation. Denote
the new sparsity with S̃, which satisfies S̃ ≤ 2S. Once x̃ is
solved, the amplitude and phase defects can be determined
by comparing with the ideal element excitations. After iden-
tifying faults in the flag bit in stage one, other types of failures
will be detected at the same time in stage two, in which the
results obtained in stage one are used as priori information.
A number of algorithms have been applied to achieve

the sparse reconstruction, which can be mainly classified
into two categories: convex optimizations and non-convex
optimizations. The first theoretical method is possibly the
l0-minimization. Since x̃ is S̃ sparse, it is intuitively to find
the solution by minimizing the l0-norm of x̃. Nevertheless,
l0-minimization is NP-hard which is impractical. An equiva-
lent solution via l1-minimization is then proved and utilized
[36]. In consideration of noisy observations, the optimization
problem can be illustrated as

min
x̃∈R2N×1

||x̃||1 subject to ||ỹ− Ãx̃||22 ≤ ε (10)

The optimization in (10) is a quadratically constrained
linear program. A commonly used convex optimization algo-
rithm is basis pursuit de-noising (BPDN), where its standard

formulation is given by [39]:

min
x̃∈R2N×1

1
2
||ỹ− Ãx̃||22 + τ ||x̃||1 (11)

Suppose that the noise is Gaussian white noise with stan-
dard deviation σ . The left part of (11) is an l2-norm used to
minimize the reconstruction error while the right part is an
l1-norm to facilitate the sparse solution by enforcing the small
components in x̃ to be 0. The regularization parameter τ is
non-negative used to balance the error and the sparsity. If Ã
is normalized, τ = σ

√
2 log(P), where P is the cardinality of

Ã, namely P = N . If the restricted isometry constant (RIC)
δ2S satisfies δ2S <

√
2 − 1 and ||e||2 ≤ ε, the solution x̂

of (11) satisfies

||x̂− x̃||2 ≤ C0
||x̂− x̃||1
S1/2

+ C1ε

C0 =
2[1+ (

√
2− 1)δ2S ]

1− (
√
2− 1)δ2S

, C1 =
4(
√
1+ δ2S )

1− (
√
2− 1)δ2S

(12)

The inequality in (12) demonstrates the stability of BPDN
that the S̃-sparse vector x̃ can be recovered with limited error.
The error can be divided into two parts, the left one is associ-
ated with the best S̃-term approximation residual and the right
part is associated with the noise level ε. Inequality (12) can be
satisfied if (6) is satisfied. Then, a regular way to accomplish
the optimization is to convert BPDN into a quadratic program,
which avoids dealing with negative values [40].

In addition to the aforementioned lp-norms where p is an
integer, the unconstrained lp-minimization where 0 < p < 1
is an alternative approach which is usually applied to handle
noisy cases. Its objective function is given by substituting the
l1-norm by the lp–norm

min
x̃∈R2N×1

1
2
||ỹ− Ãx̃||22 + τ ||x̃||

p
p (13)

Similarly, τ is a regularization coefficient that reweights the
proportion of the sparsity S̃ and the retrieved error. The
reconstruction error of (13), denoted by ||x̂− x̃||p2, is bounded
as well

||x̂− x̃||p2 ≤ C2||x̂− x̃||p2 + C3ε
p (14)

where C2 and C3 are local constants associated with RIP
and S̃ [25]. The optimization in (13) is non-convex resulting
in the retrieved vector x̂ a local minimum. The iterative
reweighted least square (IRLS) algorithm is commonly used
to converge the iteration error to provide better detection
accuracy [25], [41].

IV. NUMERICAL RESULTS
In this section, 10×10 planar arrays are applied. The antenna
elements are confined as isotropic antennas. The central
operating frequency is 2.4 GHz. Array elements are equally
distributed with d = λ/2 and excited with uniform excitation
amplitude, in which λ is the operating wavelength. 6-bit digi-
tal phase shifters are applied. A single fixed receiving probe is
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placed in the near field region of AUT to collect electric field
data. Gaussian white noise is added to the received electric
fields of AUT. The signal-to-noise ratio (SNR) is 30 dB.

A hypothesis is made that at most 20% of total elements
may contain defects. The number and locations of faulty
elements are randomly selected in each trial. A defective
element may contain one of or both the on-off failure and
partial failures. Faulty levels of amplitude and phase are
randomly selected. The partial amplitude failure is ranging
from 10% to 80% of the normal excitation amplitude. The
minimum partial phase failure that can be detected is assumed
to be the same as the minimum phase shift that a phase shifter
can produce, corresponding to the lowest control bit. For
6-bit shifters, it is 1α = 2π/26 = 5.625◦. A partial phase
failure due to short-circuiting is1α ·ks, where ks is the short-
circuited stage in the phase shifter.

The overall performance of detection is evaluated via mean
square errors (MSE), MSE = 10 log10(|x

A
−xD|22/N ), where

xD is the retrieved complex excitation vector. If MSE of
one trial is less than −30 dB, the detection is considered
successful for all defects. 1000 trials are performed to obtain
the average rate of successful recovery (RSR). The detection
performance per element is evaluated by the reconstruction
error ratio

∣∣(xAn − xDn )/xRn ∣∣ and the successful detection rate
(SDR), in which xDn and xRn denote the retrieved excitation and
the failure-free excitation of the n-th element, respectively.
If
∣∣(xAn − xDn )/xRn ∣∣ is less than a threshold value of 0.1, the

element excitation is successfully detected.

A. DETECTION RESULTS IN THE SCANNING MODE
The minimum discrete interval of the scanning angle is
approximately θmin ≈ arcsin (1α · λ/2πd) = 1.79◦. Sup-
pose the maximum scanning angle is θmax = 45◦, the scan-
ning range of AUT is from +45◦ to 45◦. Thus, there are
50 scanning states available in one direction. If AUT scans
in both azimuth and elevation directions, a scanning angle
depends on a pair of scanning states. By randomly selecting
the pair in the available scanning ranges, the independent
electric fields can be received and the condition on the sensing
matrix can be roughly satisfied.

The detection results according to different number of
defects and measurements are given in Fig. 2. Different
types of defects are verified at the same time except for
phase failures caused by short-circuiting. The single receiving
probe is positioned 1.5 wavelength away from the midpoint
of the right side of AUT. The solid lines denote results
calculated by non-convex optimizations using IRLS algo-
rithm and the dash lines denote results calculated by convex
optimizations using BPDN. Non-convex optimizations reveal
better detection accuracy than the convex ones in the same
configuration. Therefore, the RSR is poor if the number of
faulty elements exceeds 15. It is mainly due to two reasons.
Firstly, AUT works in regular scanning mode, the element
excitation phases in rows and columns are varied linearly.
Hence, the un-correlation property of columns in 8 is not

FIGURE 2. Total RSR according to S = 5, 10, 15, 20 against different
number of measurement by BPDN (convex) and IRLS (non-convex) when
AUT is in-service and the detection is in scanning mode.

satisfied rigorously. Secondly, the probe is placed very close
to AUT, so that it lies in the near field regions of some antenna
elements and in the far field regions of other elements. The
magnitudes of the radiated fields at the probe by the two kinds
of elements are hugely different.

The average element SDR is shown in Fig. 3 to demonstrate
the effective sensing range of the probe in scanning mode.
Those elements whose SDR are smaller than 85% are not
displayed (they are denoted by blue squares in figures for a
better resolution). In Fig. 3(a), the probe is placed 1.5 wave-
length away from the midpoint of the right side of AUT. Its
effective sensing range is nearly half a circle. If the probe
is placed 1.5 wavelength away from the top right corner of
AUT, the effective sensing range is nearly a quarter section
of a circle. Although the detection accuracy in scanning
mode is limited, it can be used for early-warning by properly
designing alarm strategies in an on-site way.

B. DETECTION RESULTS IN THE DETECTION MODE
In the detection mode, all kinds of defects listed in this paper
will be detected. Phase failures caused by short-circuiting
and occurred at the flag bit are firstly detected in stage one.
The highest bit is chosen as the flag bit. AUT may contain
other kinds of defects at the same time. The binary ‘‘1’’ is
represented by the control code of ‘‘111111’’ and the binary
‘‘0’’ is represented by ‘‘100000’’ in this stage. The detection
results in a single trial are shown in Fig. 4. Although other
phase defects are not detected precisely, phase failures of the
flag bit have been identified correctly which will be used in
the next stage.

In stage two, errors caused by phase failures of the flag bit
are compensated in the sensing matrix in advance, according
to diagnostic results in stage one. In this stage, the binary
‘‘1’’ is represented by ‘‘111111’’ and the binary ‘‘0’’ is rep-
resented by ‘‘011111’’. Possible phase defects of the rest five
bits are exposed. Those defects along with other amplitude
defects will be detected simultaneously. The detection results
are shown in Fig. 5. Fig. 5(a) depicts the performance of
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FIGURE 3. The performance of detecting array element excitations at one
single fixed location in the scanning mode when AUT is still working.

FIGURE 4. Element excitation phases failures detection of the highest
control bit in detection mode in stage one.

amplitude failure detection. Both on-off failures and partial
defects can be detected. Phase failures of the rest lower five
bits are accurately recovered, as depicted in Fig. 5(b).

The average SDR of elements in the detection mode are
given in Fig. 6. The AUT changes to a square array con-
sisting of 24×24 elements. Since element excitation phases
are randomly determined in the detection mode, requirements

FIGURE 5. Element excitation amplitudes and phase defects diagnosis in
the detection mode in stage two.

of the sensing matrix are satisfied more strictly. As a result,
the effective sensing range of the single probe is extended.
The shapes of effective sensing ranges in both the corner and
themidpoint cases are in accordance with Fig. 3. The shape of
the sensing range of a single probe is affected by two factors.
One is the location of the receiving probe. The other is the
type of antenna elements, which relates to different radiation
pattern [31]. For large arrays, several probes can be placed
at proper positions to preserve the accuracy according to the
actual situation.

V. SIMULATION RESULTS
A10×10 planar array alongwith one single receiving antenna
have been simulated via HFSS shown in Fig. 7. The array ele-
ments and the receiving antenna are all bow-tie antennas with
identical structures. Array elements are uniformly distributed
with d = λ/2. The receiving antenna is located 1.5 wave-
length away from the midpoint of the right side of AUT,
so that all elements in AUT are in the effective sensing range
of the measuring antenna. The central frequency is 3 GHz.

6-bits digital phase shifters are used. To simplify sim-
ulations, phase shifters are not directly implemented into
the array. Instead, the phase shifting functions are realized
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FIGURE 6. The detection results of element excitations measured at one
single fixed location in the specialized detection mode for 24×24 planar
arrays.

FIGURE 7. The geometric distribution of a 10×10 planar bow-tie array.

by editing the phases of the excitation sources of antenna
elements. For the reference array free of detects and errors,
the phase shifting is set according to control bits of phase
shifters. For AUT, faulty excitation phase values are randomly
produced as well as the locations of corresponding defective
phase shifters. Phase shifting of other normal elements are the
same with those in the reference array.

FIGURE 8. The detection results of phase failures caused by
short-circuiting on the highest control bit in phase shifters in
stage one in the detection mode.

The simulated system can be treated as a 101-port network
whereas a port maps to an excitation port. Electric field con-
tributions of antennas can be expressed by the 101×101 net-
work scattering matrix S. Denote the receiving antenna as
the 101-th port, the scattering parameter S101,n in S can
be applied to represent the electric field contribution of the
n-th element in AUT at the receiving antenna. As a result,
the diagonal entry En in 9 can be denoted using S101,n.
In addition, the scattering parameters are linear with complex
excitations of antennas which satisfy requirements of CS.
Excitation phases are controlled in each trial. In this way,
the mutual couplings among elements in AUT have been
taken into account. The influence of the receiving antenna to
AUT has been included in a similar way.

The detection results in stage one for identifying the flag bit
are presented in Fig. 8. The highest bit is chosen as the flag
bit firstly. The total number of defects is 20. The defective
number of the highest bits in phase shifters is calculated
from 1 to 5. (denoted by Shighest in the figure legend). Assume
that there is a phase failure of the highest bit (denoted by
1ϕAn = π ). The failure is successfully detected if the nor-
malized error ratio

(
1ϕDn −1ϕ

A
n
)
/π between the retrieved

phase and that phase in AUT is smaller than the threshold
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FIGURE 9. The detection results of all other kinds of defects in stage two
in the detection mode.

of 0.1. 1000 trials are performed to calculate the average
SDR.

Fig. 8(a) shows the SDR and error ratio according to
different measurement numbers. If the measurement number
exceeds 30, the SDR is larger than 90%. Fig. 8(b) shows
the performance under different SNR levels. The results are
less sensitive to noise since only one kind of failures are
examined.

The results in stage two are shown in Fig. 9. All other
kinds of defects except for those detected in stage one are
diagnosed. Fig. 9(a) shows the total RSR and MSE according
to different measurement numbers. A measurement number
larger than 50 indicates an accurate detection which is in
accordance with [42]. Fig. 9(b) shows the total RSR andMSE
according to different SNR levels, the measurement number
is confined as 50 in this case. If the SNR level is larger than
25 dB, RSR of 90% can be achieved. Although the detection
occupies two stages, the total measurement number required
is still less than the total number of array elements. In fact,
for a 6-bit phase shifter, there are 6 kinds of defective phase
states. If detecting failure states one by one, at least 6N trials
should be performed. Moreover, more trials are required by
traditional MCT methods since one element is diagnosed by
no less than two adjacent elements.

Compared with those methods, the proposed method pro-
vides a more efficient detection with only a small number of

FIGURE 10. The detection results by using different flag bits in the
detection mode.

measurements. Besides, the excitation phase management is
easier to achieve in only two stages than feeding each array
element one stage by one stage.

The aforementioned results examine the highest bit as the
flag bit in stage one. Other bits can also be selected as flag
bits with detection results shown in Fig. 10(a). The SDR is
gradually decreased from bit 6 (highest bit) to bit 2. It is
because a higher bit indicates a larger phase shifting interval
between the two binaries, which is easier to be distinguished.
Fig. 10(b) shows results in stage two when using other bits.
It is in accordance with Fig. 10(a) that a higher flag bit reveals
better detection performance.

VI. CONCLUSION
A method for detecting phased array antenna element fail-
ures is proposed. Radiated data are sampled in the phase
domain by which only one receiving antenna is required. The
receiving antenna is fixed during detection, only excitation
phases are changed. It avoids the shifting error comparedwith
conventional methods sampling data at different geometric
positions. No additional operation on AUT is required, and
the detection operation merely takes place on the controlling
of phase shifters. A new detection system has been designed
using binary random matrices to expose all types of fail-
ures, in which some phase failures caused by short-circuiting
are hard to discover in other methods that need to control
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excitation phases. Entries in the sensing matrix are created
to follow Bernoulli distribution by regulating the excitation
phases. Both on-off failures and partial errors can be detected
with high accuracy. In addition to amplitude failures, this
method is capable to diagnose phase failures especially those
caused by faultily short-circuited phase shifters. The detec-
tion is divided into two steps. Short-circuiting phase failures
in the flag bit are identified in the first step. The remaining
bits are examined in the second step. Despite that short-
circuiting phase failuresmay be buried in normal phase states,
the detection is still accurate even in situations that amplitude
faults occur at the same time. The required measurement
number is much smaller than the total number of all possible
faulty phase states.

Compared to phase faults detection methods in which
phase shifter controlling is complex, the proposed method
only needs simple phase control codes corresponding to
two binaries states. Although only Gaussian distribution and
Bernoulli distribution are applied in this paper, other sam-
pling strategies may be feasible for detection in different
situations if properly designed by sampling in the phase
domain. The mutual coupling effect has been considered in
the sensing matrix. Full wave simulation results validate the
efficient detection performance.
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