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ABSTRACT Most speech authentication algorithms are over-optimized for robustness and efficiency,
resulting in poor discrimination. Hashing shorter sequence is likely to cause the same hashing sequence
to come from different speech segments, which will cause serious deviations in authentication. Few people
pay attention to the research on the discrimination of hashing sequence length, so this paper proposes a long
sequence speech authentication algorithm based on constant Q transform (CQT) and tensor decomposition
(TD). In this paper, hashing long sequence is used to solve the problem of poor collision resistance of
existing algorithms, fast and accurate authentication can be achieved for important speech fragments with
large data volumes. The sub-band in the frequency domain are first divided into different matrix, then the
variance set of sub-band in the frequency domain is obtained, and finally the feature values are obtained
by CQT and TD transformation. The obtained feature values have strong robustness and can cope with the
interference of complex channel environment. In this paper, Texas Instruments and Massachusetts Institute
of Technology (TIMIT) speech database and the Text to Speech (TTS) are used to establish a database
of 51600 speeches to verify the performance of the algorithm. Experimental results show that compared
with the existing speech authentication algorithms, the proposed algorithm has the characteristics of high
discrimination, strong robustness and high efficiency.

INDEX TERMS Speech authentication, perceptual hashing, CQT, TD, hashing long sequence,
discrimination.

I. INTRODUCTION
With the development of multimedia technology, the speech
not only has a huge amount of data, but also has the
characteristics of high redundancy and low confidentiality.
Therefore, speech authentication, integrity verification and
content recognition face great challenges. At present, speech
authentication methods mainly include watermarking tech-
nology and digital signature. The disadvantage of watermark-
ing technology is that the original data will be modified and
the quality of the speechwill be degraded after embedding the
watermark [1], [2], [3], [36]. Digital signature technology is
too sensitive to changes in the binary level of speech data to be
suitable for speech content [35]. The perceptual hash function
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converts the speech data into a short binary string. When the
speech datas are the same or similar, they generate the same
hash value. For those different speech datas, the hash function
could produce different hashing sequence [4]. Therefore,
the speech content authentication based on the perceptive
hashing just solves the disadvantages of the above method
and is also suitable for the speech authentication in the big
data environment.

Speech perception hashing authentication mainly con-
sists of two parts: hash construction and matching,
among which hashing construction has a very important
impact on the performance of the algorithm. At present,
the features extracted from speech signals include short-
term energy, short-term correlation, Mel-frequency cepstral
coefficient (MFCC) [7], [28], cochleagram [9], spectral
entropy [11], short-term zero-crossing rate [12], discrete
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wavelet transform (DWT) [10], [13], linear prediction coef-
ficient (LPC) [14], spectrogram [22], [27], formant [24],
bark frequency Cepstral coefficients [29] and multiple fusion
features. Li et al. [8] proposed an audio hash scheme based on
non-negativematrix factorization (NMF) ofmodified discrete
cosine transform (MDCT) coefficients. The algorithm has
good robustness, especially compression aspects such as
MP3 and AAC, but its processing efficiency is relatively low.
Zhang et al. [11] proposed an efficient perceptual hashing
based on improved spectral entropy for speech authentica-
tion. The algorithm has higher efficiency, but its collision
resistance performance and robustness performance at the
MP3 compression is relatively poor. In Ref. [25], the speech
authentication algorithm used a ternary hashing sequence
instead of a binary hash sequence, and the hash construct
proved to be flexible. The algorithm is not only robust
to content preserving operations, but also highly efficient.
Jiang et al. [26] proposed an audio fingerprinting extraction
algorithm based on lifting wavelet packet and improved
optimal-basis selection. Although the algorithm has strong
robustness and efficiency, it reflects fragmentary speech
data and has certain limitations. Hammad and Wang [39]
proposed a secure multimodal biometric system by fusing
electrocardiogram (ECG) and fingerprint based on convo-
lution neural network (CNN). The proposed algorithm is
efficient, robust and reliable, and provides a new idea for
speech authentication.

Although the length of hashing sequence can affect the
collision resistance performance of speech authentication,
there is a lack of research on the length of hashing sequence.
In Ref. [10], the algorithm given rotating QR decompo-
sition is used to extract speech feature parameters for
wavelet packet coefficient matrix, and then perceptual hash-
ing sequence is constructed. Although the algorithm com-
pares the effects of different length hashing sequences on the
discrimination of the algorithm, the algorithm only adopts
the hashing sequence of 250 bits, without in-depth discus-
sion of the characteristics of the hashing long sequence.
Zhang et al. [13] proposed a high-performance speech per-
ceptual hashing authentication algorithm based on DWT
and measurement matrix. The algorithm adopts the length
of 360 bits hashing sequence. Although the discrimination
of the algorithm has been improved, its comprehensive per-
formance remains to be improved. Therefore, the increase
of hashing sequence length can improve the algorithm
discrimination.

To sum up, it can be found that the existing speech per-
ception hashing algorithms adopt shorter hashing sequences,
which easily leads to the mapping of multimedia numbers of
different perception contents to the same perception hashing
value, thus making the algorithm lower discrimination. Most
authentication algorithms are optimized independently for
robustness and authentication efficiency, without balancing
the performance of the whole algorithm. To solve the above
problems, this paper studies a novel long sequence speech
perception hashing algorithm based on tensor decomposition.

TABLE 1. Notations and symbols.

Hashing long sequence can improve the discrimination of
the algorithm. Using uniform sub-band variance and CQT
can enhance the robustness of the algorithm. In this paper,
the algorithm is optimized in structure and the authentication
efficiency is also improved.

The rest of this paper is organized as follows: Section II
describes the related theory. Section III illustrates the detailed
proposed algorithm on a long sequence speech perceptual
hashing authentication based on CQT and TD. Section IV
gives the experimental results and the performance analysis
compared with other related methods. Finally, Section V con-
cludes the paper with future work. The major symbols used
in this paper are summarized in Table 1 for easy reference.

II. RELATED THEORY INTRODUCTION
A. UNIFORM SUB-BAND VARIANCE
The features of speech and noise are different in spectrum
domain. The energy of speech varies greatly with the fre-
quency band. There is a large peak at the formant, and a
small energy at other frequencies. However, the noise energy
is much smaller than the speech energy, and it is more evenly
distributed in the frequency band. In this paper, the frequency
band variance can not only reduce noise interference, but also
enhance the robustness of the algorithm.

The time-domain waveform of the speech signal is x(n),
and xi(m) is the i-frame speech signal obtained after pre-
processing by adding window division, then it is satisfied

xi(m) = ω(m) ∗ x(iT + m) 1 ≤ m ≤ M (1)

where ω(m) is the window function;M is the frame length; T
is move the frame length.

The spectrum is obtained by applying xi(m) to the discrete
Fourier transform (DFT).

Xi(l) =
M−1∑
m=0

xi(m)exp(−j
2π lm
M

) 0 ≤ l ≤ M − 1 (2)
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In the frequency domain, the data length of each frame
is M , and there are (M2 + 1) spectral lines in the positive
frequency domain after DFT. The (M2 + 1) spectral lines
Xi = Xi(1),Xi(2), · · · ,Xi(M2 + 1) are divided into q sub-
bands, and each sub-band contains p = fix[(M2 + 1)/q]
spectral lines (fix[·] represents the integer part).

XXi(j) =
1+(m−1)p+(p−1)∑
l=1+(m−1)p

|Xi(l)| 1 ≤ j ≤ q (3)

In this paper, sub-bands are divided into r sub-band sets,
and the variance of each sub-band set is obtained.

XXi = [XX (1)
i ,XX (2)

i , · · · ,XX (r)
i ] (4)

where the first sub-band set is XX (1)
i = [XX (1)

i (1),XX (1)
i (2),

· · · ,XX (1)
i (q/r)], themean and variance can be obtained from

Equations (5) and (6).

E (1)
i =

r
q

q/r∑
t=1

XX (1)
i (t) (5)

D(1)
i =

1
q/r − 1

q/r∑
t=1

[XX (1)
i (t)− E (1)

i ] (6)

Since each sub-band has p spectral lines after the original
DFT, it is called uniform sub-band. In other words, each sub-
band is of equal bandwidth. Each sub-band set contains the
same number of sub-bands. The variance of all sub-band sets
per frame is Dr,i = [D(1)

i ,D
(2)
i , · · · ,D

(r)
i ].

B. CONSTANT Q TRANSFORM
The essence of CQT is variable resolution processing, that is,
the low frequency part has high frequency resolution and the
high frequency part has high time resolution. CQT not only
inherits the advantages of high resolution and high precision
of DFT, but also has good robustness [16], [17]. In CQT,
the relation between the central frequencies of each frequency
band fk is defined as Equation (7).

fk = fmin2
k−1
b (7)

where fmim is the lowest frequency of CQT spectrum; b is the
parameter, which determines the weight of time-frequency
resolution. It can be seen fromEquation (7) that the frequency
domain of each frequency band is different. This is different
from the frequency domain of the DFT, where each band has
an equal frequency domain.

In CQT, Q represents the ratio of center frequency to
bandwidth, which is a constant independent of k .

Q =
fk
δf
=

fk
fk+1 − fk

= (21/b − 1)−1 (8)

where δf is the bandwidth.
CQT of discrete signal x(n) is shown in Equation (9).

XCQT (k, n) =
n+bNk/2c∑
j=n−bNk/2c

x(j)a∗k (j− n+ Nk/2) (9)

where k = 1, 2, · · · ,K is the frequency band number; a∗k (n)
denotes the complex conjugate of ak (n); Nk are the vari-
able window lengths; b·c denotes rounding towards negative
infinity.

K = bblog2(
fmax
fmin

)c (10)

Nk = Q
fs
fk

(11)

ak (n) =
1
2
ω(

n
Nk

)ei(
2πnQ
Nk
+φk ) (12)

where fs is the sampling rate; ω(t) is a window function (e.g.
Hamming window); φk is the phase shift;2 is a given scaling
factor.

2 =

bNk/2c∑
l=−bNk/2c

ω(
l + Nk/2

Nk
) (13)

C. TENSOR DECOMPOSITION
TD are efficient tools for data analysis and has been success-
fully applied inmany applications, such as data mining, graph
analysis, signal processing and computer vision [19], [21],
but its use in speech perceptual hashing authentication is
rarely discussed. In this paper, TD is used to derive percep-
tual hash, and Tucker decomposition algorithm is selected to
realize TD.

For a third-order eigentensor V ∈ RQ1×Q2×Q3 , the Tucker
decomposition will decompose it into a core tensor G ∈
RI×J×K and three orthogonal factor matrices U1 ∈ RQ1×I ,
U2 ∈ RQ2×J , and U3 ∈ RQ3×K . Mathematically, Tucker’s
decomposition is expressed in Equation (14).

V ≈ JG;U1,U2,U3K

=

I∑
i=1

J∑
j=1

K∑
k=1

gi,j,k (u
(1)
i ◦ u

(2)
j ◦ u

(3)
k ) (14)

where u(1)i , u(2)j , and u(3)k are the column vectors of the matrix
U1, U2, and U3 respectively; gi,j,k represents the core tensor
G; the symbol ‘◦’ represents the cross product of the two
vectors; and the symbol ‘J·K’ is a concise representation of
Tucker decomposition. Equation (14) can be rewritten as
Equation (15).

vw,h,r ≈
I∑
i=1

J∑
j=1

K∑
k=1

gi,j,ku
(1)
w,iu

(2)
h,ju

(3)
r,k (15)

where vw,h,r , u
(1)
w,i, u

(2)
h,j and u

(3)
r,k are the elements of V , U1, U2

and U3 respectively. Calculation of Tucker decomposition is
equivalent to solving an optimization problem as follows.

JG;U1,U2,U3K

= arg min
G,U1,U2,U3

‖V −
I∑
i=1

J∑
j=1

K∑
k=1

gi,j,k (u
(1)
i ◦ u

(2)
j ◦ u

(3)
k )‖2

(16)
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FIGURE 1. Block diagram of the proposed speech perceptual hashing algorithm.

where ‖ · ‖2 is the Frobenius norm. In general, this opti-
mization problem can be solved by alternating least squares
(ALS). Tucker decomposition is shown in Fig 1.

In this paper, the sub-band variance set matrix of speech
frequency domain is converted into a third-order tensor V ∈
RK×r×N by CQT. Tensors can embody the whole framework
of speech features in three-dimensional space, and the sub-
band variance features of each frame of speech signal are
carefully positioned in space. In this paper, the target tensor
is adopted. The target tensor is very similar to the original
feature tensor. The target tensor eliminates the noise and
enhances the speech feature. To obtain the target tensor,
the core tensor should be combined with the orthogonal
matrix for reconstruction, as shown in Equation (17).

W = G×1 UT
1 ×2 UT

2 ×3 UT
3 (17)

whereW is the target tensor. By reducing the dimension of the
target tensorW , a one-dimensional long matrix P is obtained.

P = [p1, p2, · · · , pN ]

=

[∑W (1)
K ,r

K ∗ r
,

∑
W (2)
K ,r

K ∗ r
, · · · ,

∑
W (N )
K ,r

K ∗ r

]
(18)

whereW (1)
K ,r ,W

(2)
K ,r , · · · ,W

(N )
K ,r are the matrix for each frame of

the target tensor W ; p1,p2, · · · , pN are the mean value of the
eigenmatrix of the target tensorW for each frame.

III. THE PROPOSED ALGORITHM
The generic block diagram of the proposed long sequence
speech perceptual hashing authentication algorithm based on
CQT and TD is shown in Fig 1. The hash structure andmatch-
ing of the speech signal are carried out, and the processing
steps are as follows :

Step 1: Pre-processing Pre-processing includes pre-
emphasis, framing and windowing. The speech signal
x(n) is obtained by pre-emphasis the input signal s(n).
Pre-emphasis can increase the features of the speech
signal’s high-frequency components, which is advantageous
to further spectrum analysis. Then, the processed signal
is framed and windowed, where in the window function
selects a Hamming window to smooth the edge of the
frame. the speech x(n) is divided into N frame, and sig-
nal x(m) = {xi(m)|i = 1, 2, · · · ,N ,m = 1, 2, · · · ,M} is
obtained, where the subscript i represents the i frame after
framing.

Step 2: FFT The time domain signal is converted into the
frequency domain signal, and the frequency domain signal
A = {Ai(m)|i = 1, 2, · · · ,N ;m = 1, 2, · · · ,M} is obtained.

Step 3: Construct sub-band variance set matrix The
frequency domain signal is divided into uniform sub-bands,
and the frequency domain sub-band matrix B = {Bi(m)|i =
1, 2, · · · ,N ;m = 1, 2, · · · , q} is obtained. Then the
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sub-band matrix is divided, and the sub-band set matrix C =
{Ci(m)|i = 1, 2, · · · ,N ;m = 1, 2, · · · , r} is obtained, q is
an integer multiple of r .

C =


Ci(1)
Ci(2)
...

Ci(r)


= [Bi(1) Bi(2) · · · Bi(q/r)]T

[Bi(q/r + 1) Bi(q/r + 2) · · · Bi(2q/r)]T

...

[Bi((r − 1)q/r + 1) Bi((r − 1)q/r + 2) · · · Bi(q)]T

(19)

Finding the variance of each sub-band set, and geting
the matrix of sub-band variance set is D = {Di(m)|i =
1, 2, · · · ,N ;m = 1, 2, · · · , r}.
Step 4: CQT The sub-band variance set matrix is trans-

formed by CQT to obtain the two-dimensional feature matrix
E∗K ,N . The feature matrix of the variance of each sub-band set
is fused to obtain a feature tensor V .

V =
[
E∗K ,1,N ,E

∗

K ,2,N , · · · ,E
∗
K ,r,N

]T (20)

Step 5: TD The feature tensor is decomposed by Tucker,
and then the low-dimensional core tensorG and three orthog-
onal matrices U(1,2,3) are recombined to obtain the target
tensor W .
Step 6: Hashing long sequence structure Themean value

of each frame of the target tensorW is calculated to obtain the
target matrix P. The target matrix is constructed with hash
length sequence to generate a one-dimensional binary hash
long sequence h.

h1(i) =

{
1, if P1(i) > P1(i− 1)
0, Otherwise

(21)

where h(1)=0; h(i) is the perceived hash value of each frame
speech signal.

Step 7: Hashing digital distance and matching For the
two speech clips s1 and s2, their hashing digital distance
BER(:, :) can be calculated from the formula as follows:

BER (hs1, hs2) =
N∑
i=1

(|hs1(i)− hs2(i)|) /N (22)

where hs1 and hs2 respectively represent hashing long
sequences for s1 and s2; N is the length of the hashing
sequence.

In this paper, we use the hypothesis test of hashing digital
distance BER(:, :) to describe the hashing matching.

W0: if the perceptual content of the two speech clips s1
and s2 are the same:

BER(hs1, hs2) 6 τ (23)

W1: if the perceptual content of the two speech clips s1
and s2 are not the same:

BER(hs1, hs2) > τ (24)

where τ represents the perceptual authentication threshold,
h(·) is a perceptual hashing function. By setting the size of
matching threshold τ , calculating the digital distance between
perceptual hashing sequences of the speech clip s1 and s2.
If the digital distance BER(:, :) 6 τ , then when their per-
ceptual content are treated as the same, the authentication is
passed, and otherwise it is failed.

In order to evaluate the performance of the authentication
algorithm, the False Accept Rate (FAR) and False Reject Rate
(FRR) of the algorithm can be calculated by Equations (16)
and (17).

FAR (τ ) =
∫ τ

−∞

1

σ
√
2π

e
−(x−µ)2

2σ2 dx (25)

FRR (τ ) = 1−
∫ τ

−∞

1

σ
√
2π

e
−(x−µ)2

2σ2 dx (26)

where τ is the perceptual authentication threshold, µ is the
expected value, σ is the standard deviation. Generally speak-
ing, FAR and FRR are used to evaluate the robustness and
discrimination of the authentication algorithm. The lower
FAR denotes the better discrimination, and the lower FRR
denotes the better robustness.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
The operating experimental hardware platform is Intel(R)
Core(TM) i5-7500 CPU, 3.40 GHz, with computer memories
of 4G. The operating software environment is MATLAB
R2018b of Windows 7 system.

In this study, after lots of experiments, we found that the
following parameters are given the best results after applying
it to the proposed algorithm: M = 178;N = 1064; q =
25; r = 5; b = 12;K = 34. Where: M is the length
of a frame of speech signal, N is the length of the hashing
sequence, q is number of sub-band in frequency domain, r is
number of sub-band variance sets, b is the parameter, K is the
frequency band number.

A. DATASETS
The experimental speech datas comes from TIMIT speech
database and TTS speech database. There are different
1200 speech clips in the original speech database. The format
of each speech clip is WAV with the length 4 s, which is of
the form of 16 bits PCM, mono and sampled at 16 kHz.

According to the environment of speech transmis-
sion, the content preserving operations are performed on
each speech in the speech database. A speech database
of 14400 different content preserving operations was estab-
lished, including 12 types of content preserving operations,
such as echo, noise, low pass filter, resampling and MP3
compression.
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FIGURE 2. BER normal distribution of different hashing sequence lengths.

In order to simulate the mixed noises in the real environ-
ment, the Noisex-92 noise database was added to the orig-
inal speech database. A speech database of 36000 different
Real background noise was established, including 6 types
of noises,such as Gnoisegen noise, Pink noise, Factory floor
noise 1, Factory floor noise 2, Babble noise and Volvo noise.
The signal-to-noise ratios of noises added are respectively
0db, 5db, 10db, 15db and 20db.

B. DISCRIMINATION TEST AND ANALYSIS
The BER of the perceptual hashing value of different
speech contents basically obeys the normal distribution.
719400 BER datas are obtained by comparing the two
perceptual hashing values of 1200 speech clips. In this
paper, the BER normal distribution of hashing sequence
length is shown in Fig 2. The better the BER normal
distribution curve is, the better the randomicity and col-
lision resistance performance of the perceptual hashing
sequence are. The experimental results show that the prob-
ability distribution of BER values of different speechs has
a high coincidence degree with the probability curve of
the standard normal distribution, and the sequence length
of 1064 bits selected in this paper is smaller in BER
range than that of 532 bits, 639 bits and 798 bits. The
effect is better when 1064 bits are selected for the hashing
length.

According to the DeMoivre-Laplace central limit theorem,
the hamming distance is approximate obeying normal distri-
bution (µ = p, σ =

√
p(1− p)/N , N is the number of bits

in a hashing sequence, p represents the probability of 0 or 1).
In this paper, the length of the perceptual hashing sequence is
1064 bits, and the mean value and standard deviation of the
theoretical normal distribution parameters are µ = 0.5000
and σ = 0.0153. Table 2 describes the mean and standard
deviation of the normal distribution of the theoretical and
experimental values of different hashing sequences lengths.

TABLE 2. Normally distributed parameters of different hashing sequence
lengths.

FIGURE 3. FAR curves with different hashing sequence lengths.

Fig 3 shows FAR curves with different hashing sequence
lengths.

It can be seen from Table 2 and Fig 3 that the values
of µ and σ measured in this paper are very close to the
parameters theoretically calculated. As can be seen from
Fig 3, the actual curve is getting closer to the theoretical curve
with the increase of hashing sequence length, indicating that
the hashing sequence generated by this algorithm has good
randomicity and collision resistance performance.

In order to evaluate the discrimination ability of the algo-
rithm in this paper under different thresholds, the FAR is
obtained fromEquation (25). Table 3 compares FAR of differ-
ent long hash sequence algorithms and different algorithms.

As shown in Table 3, the smaller the matching threshold τ
is, the smaller the FAR value is. When the hashing sequence
length is 1064 bits and the threshold τ = 0.35 is set, about
1.31 of each 1021 speech clips are false accepted. As the
length of the hashing sequence increases, FAR is decreasing,
indicating that discrimination is increasing. Compared with
the FAR of other hashing short sequences in this algorithm,
the FAR of the hashing long sequence selected by this algo-
rithm is the best, and it is also proved that the long hashing
sequence has a high discrimination. When τ = 0.35 occurs,
1.37 of each 1007 speech clips in Ref. [8] false accepted,
6.10 of each 1005 speech clips in Ref. [11] are false accepted,
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TABLE 3. Hashing sequences algorithms of different lengths and the FAR value of different algorithms are compared.

TABLE 4. ER of hashing sequences of different lengths.

TABLE 5. ER of the different algorithms.

and 4.28 of each 1008 speech clips in Ref. [12] are false
accepted. In contrast, although Refs. [8], [11], [12] can also
completely discriminate different speech clips, the algorithm
in this paper has a much lower FAR than these algorithms.
Compared with the hashing short sequence used in Refs. [8],
[11], [12], the hashing long sequence in this paper has a great
advantage in discrimination.

Entropy rate (ER) is a comprehensive evaluation index of
discriminative perception hash algorithm, whichmainly over-
comes the shortcomings of the algorithm being susceptible to
sequence size. The value of ER ranges from 0 to 1. The larger
value, the stronger the discrimination ability, which can be
calculated by Equations (27) and (28).

ER = −[c log2 c+ (1− c) log2(1− c)] (27)

c =
1
2

√∣∣σ 2 − σ12
∣∣

σ 2 + σ12
+ 1

 (28)

where σ and σ1 are theoretical and experimental standard
deviation of BERs respectively.

According to Table 4 and Table 5, with the increase
of hashing sequence length, the ER of the algorithm in
this paper is higher. When the hashing sequence length is
1064 bits, the ER of the algorithm is the highest, which
proves that the hashing sequence has good discriminabil-
ity. Compared with Refs. [5], [6], [8], [11], the ER of
the algorithm in this paper is the highest, indicating that
the discriminative effect of the algorithm in this paper is the
best.

C. ROBUSTNESS TEST AND ANALYSIS
In order to evaluate the robustness of the proposed algorithm,
the 14400 speech segments in the content preserving opera-
tions are extracted to generate hash sequences. According to
the hashing sequence of the original speech and the speech
after operation, the mean BER between the two is obtained.

Table 6 shows the content preserving operations that sim-
ulate a real environment. In this paper, the various BER of
different hashing sequence lengths are shown in Table 7.

It can be obtained from Table 7: the mean BER of the
whole algorithm in this paper does not exceed 0.1713, and
the max BER does not exceed 0.2444. It is shown that the
proposed algorithm in this paper holds better robustness for
paper various content preserving operations. As the length of
the sequence increases, the robustness of the operation of the
other contents, except the echo, decreases. These robustness
are only slightly reduced, which will not affect the overall
robustness of the algorithm. At the same time, the average
running time increases as the length of the hash sequence
increases. In this paper, 1064 bits are used to balance the
discriminability and robustness, and the overall effect is the
best.

719400 BER datas are obtained by comparing of the two
perceptual hashing values of 1200 speech clips. When the
hashing length is set as 532bits, 639bits, 798bits and 1046bits,
the FAR-FRR curve is obtained. The comparison results are
shown in Fig 4.

As shown in Fig 4, the FRR and FAR curves of different
hashing sequence lengths do not overlap, which can accu-
rately discriminate the content preserving operations and the
speech of different contents, indicating that the algorithm in
this paper has good discrimination and robustness. The mean
BER comparison results of this algorithm with Refs. [6], [8],
[11] are shown in Table 8.

As can be seen from Table 8, the proposed algorithm is
superior to other algorithms in volume, resampling, gaussian
noise and MP3 compression for different content preserv-
ing operations. Therefore, the proposed algorithm has better
robustness. Especially in MP3 compression, this algorithm
has better performance than other algorithms. By comparing
the algorithm in this paper with Ref. [11], it can be seen that
the algorithm in this paper is better than Ref. [11] in resam-
pling, noise, MP3 compression and other aspects. There-
fore, this algorithm is suitable for complex communication
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TABLE 6. Content preserving operations.

TABLE 7. The BER mean value of different hashing sequences and run times are compared.

environment. Since this paper takes a long time to TD and
construct hash sequences, the average time is lower than that
in Ref. [11], which is more suitable for instant messaging.
Compared with Ref. [8], although the robustness of the algo-
rithm in this paper is slightly lower in terms of volume and
echo, the robustness of the algorithm in this paper is far better
than that in Ref. [8] in other aspects. Since the NMF with
relatively complex structure is used in Ref. [8], the running
time is also much higher than the algorithm in this paper.
Compared with Ref. [6], the algorithm in this paper has better
overall performance than Ref. [6].

Through pairwise comparison of the perceptual hashing
values of 1200 speech clips, 719401 BER datas and FRR-
FAR curves are obtained. The comparison results of different
algorithms are shown in Fig 5.

As shown in Fig 5(a), the length of hashing sequence used
in this paper is 1064 bits. The FRR-FAR curves without
overlap is obtained through experiments,which indicates that
the algorithm in this paper not only has good discrimination
and robustness,but also can accurately identify the content
retention operation and the speech of different contents.
As shown in Fig 5(b), although the FRR-FAR curves obtained
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FIGURE 4. The FRR-FAR curves of different length hashing sequences.

in Ref. [11] do not overlap, the two curves are close to each
other, which cannot well solve the problems of discrimina-
tion and robustness.The comparison results also show that
the proposed algorithm is better than that in Ref. [11] in
terms of discrimination and collision resistance performance.
Comparing Fig 5(c) and Fig 5(d), FRR and FAR curves of
the two algorithms intersect, reflecting that the discrimination
and robustness cannot be solved well. It can be seen from
Table 8 that this algorithm is superior to Ref. [8] and Ref. [6]
in terms of discrimination and robustness.

D. PASSING RATE TEST AND ANALYSIS IN REAL NOISE
ENVIRONMENT
In order to evaluate the robustness of the proposed algorithm
to noise, the passing rate pr is introduced.

pr =
TA

TA + TR + FA
(29)

where TA is the number of speech clips correctly accepted
by the system between the speech clips with the same per-
ception content; TR is the number of speech clips wrongfully
rejected by the system; FA is the number of speech clips
wrongly accepted by the system between different speech
clips of perceived content. The threshold τ is selected as

the minimum BER of FAR curve. Different algorithms select
different thresholds: the proposed algorithm is 0.4173, that
in Ref. [8] is 0.3593, that in Ref. [11] is 0.3037, and that in
Ref. [12] is 0.3677. Fig 6 shows the comparison of the passing
rate between the proposed algorithm and that in Refs. [8],
[11], [12] under six different noise environments.

As shown in Fig 6, the algorithm in this paper has strong
robustness for Gaussian noise, Factory1 noise and Volvo
noise. Especially for Volvo noise, the passing rate of different
SNR reaches 100%. For all noises, the passing rate of the
algorithm in this paper reaches 100%when the SNR is greater
than 30db, which is also uncomparable in Refs. [8,11,12]. The
stable feature values obtained by TD are robust to different
noises. Compared with Ref. [11], the algorithm in this paper
has a lower passing rate under the condition of Factory2 noise
and Pink noise, indicating that the improved spectrum entropy
has a strong robustness against these two kinds of noise.
On the whole, the proposed algorithm has the best robustness.
Compared with the algorithm in Refs. [8,12], the passing rate
of the algorithm in this paper is much higher than that of
the two algorithms no matter what kind of noise. Therefore,
the proposed algorithm has better robustness for common
noises and can meet the needs of speech matching in daily
life.
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TABLE 8. The BER mean value of different algorithm and run times are compared.

TABLE 9. Efficiency of the different algorithms.

E. EFFICIENCY TESTING AND ANALYSIS
Efficiency is a very important evaluation criterion in speech
content authentication. To evaluate the efficiency of the algo-
rithm in this paper, we need to randomly select 200 speech
clips from the speech database, and then calculate the average
running time. The same operating environment is adopted,
and the speech clips is 4s. Table 9 shows the comparison
results between the algorithm in this paper and the algorithm
in Refs. [6], [8], [11], [13].

As shown in Table 9, as for the algorithm in this paper,
with the increase of hashing sequence length, although the
efficiency performance of the algorithm is decreasing, the dif-
ference is small, which meets the requirements of efficiency
authentication. The length of hashing sequence in this paper

is 1064 bits. Compared with the length of other hashing
sequences in this paper, the timeliness is relatively low, but
the discrimination is greatly improved. Compared with other
algorithm, the efficiency of the algorithm in this paper is
1.1 times that in Ref. [13], 2.3 times that in Ref. [8], and
1.2 times that in Ref. [6]. However, compared with Ref. [11],
the efficiency of Ref. [11] is 3.2 times of the algorithm in
this paper. Since this paper adopts hashing long sequence
and tensor decomposition, the complexity is much higher and
the average running time is slightly slower than Ref. [11].
Because NMF with large computation and long running
time was used in Refs. [6,8], the efficiency performance is
lower than the algorithm in this paper. Although the length
of hashing sequence in this paper is 4 times of that in
Ref. [11] and 3 times of that in Refs. [6,8,13], the algo-
rithm in this paper performs very well in the efficiency
performance and can meet the requirements of efficiency
authentication.

F. DISCUSSION
We compared the authentication performance of the pro-
posed algorithm with perceptual hashing algorithm based
on improved spectral entropy, and perceptual hashing based
on NMF and MDCT coefficients. The authentication perfor-
mance of different algorithms is evaluated in detail. The main
highlights of our proposed algorithm are summarized below:
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FIGURE 5. The FRR-FAR curves of different algorithm.

FIGURE 6. Comparison of passing rates of different algorithms under different noises.

1. This algorithm not only improves the length of hash
sequence and the recognition rate of algorithm, but also can

generate inconsistent hash sequence from a large number of
speech data.
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2. The features extracted in this paper have strong anti-
interference performance, especially various noises with low
signal-to-noise ratio.

3. Compared with the existing authentication algorithms,
the efficiency of the algorithm in this paper has achieved good
results.

According to the advantages of the proposed system, it can
be deployed in real speech authentication.

The main disadvantages of the proposed algorithm are:

• The algorithm lacks security and is easy to cause infor-
mation leakage.

• In the case of speech tampering, this proposed algorithm
cannot tamper detection and localization, which is a
major flaw in this algorithm.

V. CONCLUSION
This paper presents a long sequence perceptual hashing
authentication algorithm based on CQT and TD. This algo-
rithm has good comprehensive performance and solves the
existing problems of speech authentication algorithms. The
following conclusions can be obtained through the exper-
imental analysis: A. The algorithm in this paper adopts a
long hashing sequence with high discriminability. For differ-
ent speech clips, different hashing sequences are generated,
which effectively reduces the probability that different speech
clips are confirmed as the same speech clips and improves the
authentication rate of the algorithm. B. The algorithm in this
paper has strong robustness for content preserving operations,
especially in the case of resampling, low-pass filtering, noise
and MP3 compression, which indicates that the algorithm in
this paper is suitable for signal transmission in complex envi-
ronments. C. From the perspective of overall performance,
when the hashing sequence length of 1064 bits is selected by
the algorithm in this paper, it not only gives consideration to
the discrimination and robustness, but also has highly effi-
ciency performance, which meets the requirements of speech
authentication in the real-time communication environment.

Because the hashing sequence is too long, which will
cause the waste of storage space resources and increase the
running time, the hashing sequence length of the algorithm
in this paper needs to be further optimized, and the security
of the algorithm in an open environment needs to be further
solved. The proposed algorithm also needs to address location
detection in the case of speech tampering.
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