
Received November 27, 2019, accepted January 12, 2020, date of publication February 14, 2020, date of current version February 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974001

Locally Adaptive Channel Attention-Based
Network for Denoising Images
HAEYUN LEE 1, (Student Member, IEEE), AND SUNGHYUN CHO 2, (Member, IEEE)
1Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
2Computer Science Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea

Corresponding author: Sunghyun Cho (s.cho@postech.ac.kr)

This work was supported by the Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-IT1801-05.

ABSTRACT Channel attention has recently been proposed and shown a great improvement in image
classification accuracy. In this paper, we show that channel attention can greatly help a low-level vision task,
image denoising, as well, and propose channel attention-based networks for image denoising. We provide a
thorough analysis on the effect of channel attention on image denoising, which shows that channel attention
boosts denoising performance by making the network to focus on informative channels more closely related
to noise. We also show that channel attention has an adaptive nature to image contents and noise and propose
locally adaptive channel attention for further improving image denoising quality. Experimental results show
that our denoising network with global channel attention outperforms existing state-of-the-art methods in
both blind and non-blind settings, and our locally adaptive channel attention substantially improves both
image quality and computation time.

INDEX TERMS Image denoising, deep learning.

I. INTRODUCTION
Image denoising is one of the most fundamental problems in
computer vision and image processing fields. A noisy image
y is generally modeled as y = x + n where x is a noise-free
image, and n is noise, which is often assumed to be additive
white Gaussian noise with a standard deviation σ . The goal
of image denoising is to infer x from y, which is ill-posed due
to the loss of information caused by noise. Image denoising
has a wide range of applications such as consumer cameras,
medical imaging, and other vision systems that take noisy
images as input.

Recently, deep learning-based approaches have shown sig-
nificant improvement over classical ones [1]–[5]. A key chal-
lenge in applying deep learning to denoising is to find an
effective network architecture that maximizes denoising per-
formance. As the representational power of a convolutional
neural network (CNN) usually increases as does its depth,
an intuitive solution would be to use more convolutional
layers. However, simply stacking up more convolutional lay-
ers makes learning more difficult and causes over-fitting or
performance saturation [6], [7].
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To resolve this and to achieve higher denoising quality,
we propose a channel attention-based network for denois-
ing images (CANDI). Our network adopts channel atten-
tion, which was first proposed by Hu et al. [8] to enhance
image classification accuracy. Specifically, Hu et al. compute
channel-wise weights, or channel attention, from a given
feature volume and recalibrate the channels in the feature
volume using the weights. In this way, informative features
can be emphasized and selectively used for more accurate
image classification.

In our work, we adopt channel attention to emphasize
informative features that help separate out noise from image
contents. More specifically, extracting features from a noisy
image using a CNN is analogous to extracting different
frequency components of an image using a transform such
as wavelet transforms. Among different frequencies, image
noise is most distinguishable in high-frequency components,
so classical denoisingmethods focus on such components [9].
In the case of a CNN, different feature channels correspond
to different frequency components, so we may selectively
use informative channels using channel attention to more
effectively identify noise.

Based on this motivation, we first present CANDI
and examine different network configurations to find an
optimal architecture for CANDI (Sec. III). We then con-
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duct an analysis of the effect of channel attention on image
denoising with respect to different image contents and noise
levels (Sec. IV). Through the analysis, we verify that chan-
nel attention does select informative feature channels with
high-frequency components related to noise. We also show
that channel attention has an adaptive nature to image con-
tents and different noise levels. Based on the analysis, we also
propose a locally adaptive channel attention-based network
for denoising images (LACANDI) (Sec. V). Experimental
results on natural images with Gaussian noise show that
CANDI outperforms most state-of-the-art methods in both
blind and non-blind settings, and LACANDI substantially
improves image denoising quality as well as computation
time (Sec. VI).

Our main contributions are summarized as follows:
• We propose novel channel attention-based networks for
image denoising that outperform state-of-the-art meth-
ods in both non-blind and blind settings.

• We provide an analysis of the effect of channel attention
on image denoising, which shows that channel attention
boosts denoising performance in three aspects. 1) It
makes a network to focus on informative channels more
closely related to noise. 2) It adapts a network to image
contents to faithfully restore a clear image. 3) It also
adapts a network to different noise levels for effective
blind denoising.

• We present locally adaptive channel attention for mod-
eling locally different nature of natural images.

II. RELATED WORK
A. IMAGE DENOISING
Early approaches usually use explicit modeling of the char-
acteristics of natural images. Filtering based approaches such
as Gaussian filtering and bilateral filtering [10] assume that
nearby pixels have similar values. Total variation [11], [12]
assumes the magnitudes of image gradients follow a Lapla-
cian distribution. Buades et al. [13] proposed to exploit the
self-similarity property of natural images. This property has
been widely applied in many following works such as [4], [5],
[7], [14], [15].

To more faithfully capture the characteristics of natural
images, learning-based approaches have been actively stud-
ied. Elad and Aharon [16] learn over-complete dictionaries
for image denoising. Yang et al. [17] proposed coupled dic-
tionaries learned from high-and low-resolution image patches
for single-image super-resolution. Roth and Black [18] pro-
posed the Fields of Experts framework that learns potential
functions of Markov random fields. Zoran and Weiss [19]
proposed an image prior based on a Gaussian mixture model
of natural image patches. However, their performance is lim-
ited as they rely on relatively simple models compared to
recent deep learning-based approaches.

For the last few years, deep learning has been actively
applied to image denoising. Chen and Pock [2] proposed
a non linear diffusion model called TNRD. Mao et al. [3]
introduced a fully convolutional encoding-decoding frame-

work for image denoising and super-resolution.
Zhang et al. [1] proposed DnCNN that adopts residual
learning [6] and batch normalization [20]. Yang and Sun [4]
presented a BM3D-Net, which is inspired by BM3D [14].
Lefkimmiatis [21] developed a non-local operator to exploit
self-similarity, and a deep network architecture consisting of
several non-local operators. Plötz and Roth [5] introduced
a deep learning architecture based on differential K-nearest
neighbor selection called a neural nearest neighbors block.
Liu et al. [7] presented a recurrent network based on non-local
recurrent modules to exploit self-similarity. While deep
learning-based approaches have shown superior results to
classical ones, their performance is limited as they treat useful
and less useful features in the same way.

B. CONTENT-ADAPTIVE IMAGE RESTORATION
Our work is also closely related to content-adaptive image
restoration techniques for reflecting different characteristics
of different images. As different images may have different
characteristics, adaptive techniques to image contents have
been proposed. Saquib et al. [22] proposed to estimate param-
eters of a prior from a noisy image for image restoration. As
a single image may have different characteristics in differ-
ent local areas, locally adaptive approaches have also been
proposed. Bishop et al. [23] introduced an image restoration
approach that splits an image into regular grid cells and adapts
a prior to each cell. Cho et al. [24] proposed to estimate
parameters of a prior from local image regions. Sun et al. [25]
showed that locally adapted priors can significantly improve
the quality of non-blind deconvolution. On the other hand,
recent deep learning-based image denoising approaches treat
different channels representing different features in a fixed
way regardless of image contents. Thus, they can be consid-
ered analogous to using one universal model or prior to all
images in classical approaches, and bear the same limitations.

C. CHANNEL ATTENTION
Since Hu et al.’s work [8], a few following works that use
channel attention have been introduced. Woo et al. [26] pro-
posed a convolutional block attention module that combines
channel attention and spatial attention for high-level vision
tasks. Regarding low-level vision tasks, Zhang et al. [27]
and Cheng et al. [28] recently proposed single image
super-resolution approaches that utilize channel attention.
However, both of them do not target at image denoising.
Furthermore, we provide a careful analysis on the effect of
channel attention on image denoising, and present locally
adaptive channel attention based on it.

III. CHANNEL ATTENTION-BASED NETWORK FOR
DENOISING IMAGES
In this section, we first review the channel attention mod-
ule [8]. We then introduce the architecture of CANDI and
explain its training. Finally, we examine different design
options for CANDI. For brevity, we denote convolution, batch
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FIGURE 1. A channel attention module [8].

normalization [20] and rectified linear unit [29] by Conv, BN
and ReLU, respectively in the rest of the paper.

A. CHANNEL ATTENTION MODULE
A channel attention module, or a squeeze-and-excitation
block, was recently proposed by Hu et al. [8] for enhancing
image classification accuracy. Fig. 1 illustrates the architec-
ture of a channel attention module. Given a feature volume,
the module computes channel-wise global statistics using
global average pooling, and per-channel weights, or chan-
nel attention, ranging from 0 to 1 from the statistics. Each
per-channel weight is then multiplied to its corresponding
channel of the input feature volume to produce a re-scaled
feature volume. In this way, informative channels can be
emphasized while less useful ones are suppressed.

B. ARCHITECTURE OF CANDI
Fig. 2 shows the architecture of our denoising network,
CANDI. CANDI takes a noisy grayscale image as input and
predicts its noise map, which can be subtracted from the input
image to produce a denoised result. We adopt the residual
learning strategy that predicts a residual map, or a noise
map in our case, as the strategy has consistently shown to
outperform direct estimation of a restored image in recent
image restoration methods [1], [7].

As shown in Fig. 2, CANDI consists of a series of residual
blocks except for the first and last blocks. The first block
extracts shallow features from an input image. It consists a
Conv layer with 64 filters of size 3×3×1 followed by a ReLU
layer for non-linearity. In the middle, we have 20 residual
blocks that perform denoising in the feature space. Each
residual block consists of three Conv+BN+ReLU followed
by one Conv and one channel attention module. Each block
has a skip connection to ease the training of a deep network.
Every Conv layer in the residual blocks has 64 filters of size
3 × 3 × 64. We set the number of channels (C ′ in Fig. 1)
in the middle of the channel attention modules as 4 using the
reduction rate of 16 suggested byHu et al. [8]. Finally, the last
block reconstructs a noise map from features, and has a single
Conv layer of size 3× 3× 1.
The network architecture of CANDI is mainly inspired

by DnCNN, which is a state-of-the-art CNN-based denois-
ing method [1]. Removing the skip connections, Conv lay-
ers marked in yellow in Fig. 2, and channel attention
modules, CANDI reduces to DnCNN. The effects of the
additional components adopted to CANDI will be examined
in Sec. III-D.

C. TRAINING
To evaluate the performance of CANDI, we train a few
different models including models for known specific noise
levels, and a blind model for unknown noise levels. We refer
the models trained for known noise levels as CANDI, and the
blind model as CANDI-B. In the following, we describe how
we train both CANDI and CANDI-B.

1) LOSS FUNCTION
To train CANDI and CANDI-B, we use an L2 loss
function. Specifically, given a training dataset D ={
. . . ,

(
I (i), J (i)

)
, . . .

}
where I (i) and J (i) are the i-th noisy

image, and its corresponding ground truth noise-free image,
respectively, we minimize the following loss function:

L (2;D) =
∑
i

∥∥∥(I (i) − f (I (i);2)
)
− J (i)

∥∥∥2 (1)

where 2 is a set of network parameters, and f (I (i);2) is
noise predicted by CANDI with parameters 2.

2) TRAINING DATA FOR CANDI
We generate training data following [2]. We use 400 images
from the training and test sets of BSD500 dataset [30], each
of which consists of 200 images. We downsample each image
by scaling factors of 0.9, 0.8, and 0.7, and obtain four images
including the original one. Each image is then randomly
cropped into 180×180. From each cropped image, we extract
40 × 40-sized patches with stride of 10 × 10. We augment
each patch by random horizontal and vertical flips and ran-
dom rotation by 90◦’s, and obtain two augmented versions.
Through this process, we generate 476,800 patches. In our
experiments, we consider three noise levels: σ = 15, 25, and
50. To train CANDI for each noise level, we add Gaussian
noise of each noise level to the generated patches.

3) TRAINING DATA FOR CANDI-B
For CANDI-B, we follow the training strategy for the blind
version of DnCNN [1]. We use the same 400 images from the
BSD500 dataset, and perform the same procedure except for
a couple of steps. First, we extract patches of 50× 50 instead
of 40×40 as done in [1]. Second, for each patch, we randomly
sample a noise level σ from a uniform distribution defined on
[0, 55], and add Gaussian noise of σ to the patch.

4) TRAINING SETUP
For both CANDI and CANDI-B, we initialize the weights
of all Conv layers by random normal initialization with
zero-mean and a standard deviation of 0.0005. We use Adam
optimizer [31] with parameters β1 = 0.9, β2 = 0.999, and
ε = 10−8. We set the learning rate as 0.001 and reduce it
by half every 30 epochs. We use a mini-batch size of 64, and
train the models for 100 epochs. We used PyTorch [32] to
implement and train CANDI and CANDI-B. The training of
each model takes four days using an Intel Zeon E5-2620 @
2.0 GHz and an NVIDIA TITAN RTX (24GB).
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FIGURE 2. The architecture of CANDI.

FIGURE 3. The architecture of CANDI2×8, which has two Conv layers in
each residual block.

D. HYPERPARAMETERS AND NETWORK DESIGN
The network architecture is one of the most important factors
for the performance of a neural network. In this section,
we examine several different design options to find the opti-
mal network architecture for CANDI. As our model is based
onDnCNN [1], we begin with the architecture of DnCNN and
examine different options one by one. In all the experiments,
the performance of different models are evaluated using the
Set12 dataset [1] for a noise level σ = 50. All models includ-
ing DnCNN in this section were trained for 50 epochs using
the setting described in Sec. III-C.

1) NUMBERS OF CONV LAYERS IN THE RESIDUAL BLOCK
We first conducted an experiment to find an optimal number
of Conv layers in each residual block. Specifically, we pre-
pared variants of CANDI with different numbers of Conv
layers ranging from 1 to 5.We set the total number of layers of
each variant as either 17 or 18 to compare them with DnCNN
with 17 layers. We denote a model with y residual blocks with
x Conv layers by CANDIx×y. CANDIx×y has (x×y+2) Conv
layers in total including the ones in the first and last blocks.
The number of channel attention modules also varies across
different models. For example, CANDI1×15 has 15 modules
while CANDI5×3 has only three. Fig. 3 depicts a variant of
CANDI (CANDI2×8) tested in this experiment.
Table 1 shows the experimental result. Among different

versions of CANDI, CANDI4×4 achieves the highest PSNR.
This suggests that simply using more channel attention mod-
ules does not improve denoising quality, but the number of
modules should be carefully balanced.

2) NETWORK DEPTH
In the next experiment, we fix the number of Conv layers in
each residual block as four, and gradually increase the number
of residual blocks y to find out an optimal depth. Table 2
reports the result. It shows that the performance gradually
increases until y reaches at 20, and it drops when y is 30.
A possible reason of the performance drop for y = 30 is

TABLE 1. A comparison of different architectures. The best performance
is in bold.

TABLE 2. A comparison of CANDI4×y with different numbers of residual
blocks. The best performance is in bold.

overfitting, which may be solved using a larger amount of
training data. Based on this result, we fix the number of
blocks as 20 in our final model.

3) THE STRUCTURE OF THE RESIDUAL BLOCK
Finally, we test a few different designs for the residual blocks.
We compare six different designs shown in Fig. 4. Fig. 4(a)
corresponds to a simple extension of DnCNN, which has
82 convolution layers. Fig. 4(b) corresponds to an extension
of DnCNN with skip connections, each residual block of
which consists of four Conv+BN+ReLU and a skip con-
nection, but has no channel attention modules. Fig. 4(c) has
a channel attention module, but no BNs. Fig. 4(d) has BNs
as well as a channel attention module. Fig. 4(e) and (f) are
obtained by removing ReLU and BN one by one from the
last block before the channel attention module of Fig. 4(d).
Fig. 4(f) corresponds to our final model presented in the
main paper. Using these blocks, we prepared five variants of
CANDI, each of which has 20 residual blocks.

Table 3 reports the performance of the residual blocks.
The simple extension of DnCNN without skip connec-
tion (Table 3(a)) did not converge during training possi-
bly due to the increased difficulty of training as the depth
of the network is much larger than the original DnCNN.
Table 3(c) and (d) show that adding BNs significantly
boosts denoising performance. Table 3(b) and (d) show that
a channel attention module also considerably boosts the
performance, proving its effectiveness on image denoising.
Another interesting finding is that, as shown by (d), (e),
and (f), removing ReLU and BN one by one from the block
before the channel attention module gradually increases the
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FIGURE 4. Different architectures to verify the effect of each component.
(a) corresponds to a simple extension of DnCNN with 82 Conv layers. (b) is
an extension of DnCNN with skip connections. (c) has a channel attention
module but no BNs. (d) has BNs as well as a channel attention module.
(e) and (f) are obtained by removing ReLU and BN one by one from (d).

TABLE 3. A comparison of the residual blocks in Fig. 4.

performance. Although the reason is unclear, we conjecture
that this is because features for image denoising are closely
related to intensity values, and non-linear functions such as
BN and ReLU can break the relationship between them.

IV. ANALYSIS ON CHANNEL ATTENTION
A. CHANNEL SELECTION
To investigate how channel attention helps image denoising,
we first examine what channels are selected by the chan-
nel attention modules. To this end, we visualize channel
attention weights computed from a noisy image and their
corresponding feature channels at different depths (Fig. 5).
The input image has Gaussian noise of a noise level σ = 25.
We sampled channel attention values from the first and 11th
residual blocks.

At the first residual block, features corresponding to the
largest channel attention weights are less correlated with
the structural content of the image, and show more random
and high-frequency patterns. On the other hand, features
corresponding to the smallest channel attention weights are
more correlated with the structural content of the image. The
features at the 11th residual block show a similar tendency
too, while the tendency becomes less obvious. This verifies
that channel attention emphasizes channels corresponding to
high-frequency components closely related to noise.

B. CONTENT-ADAPTIVITY
A channel attention module aggregates information from
different spatial locations, which may possibly encode the

FIGURE 5. On the left, channel attention weights from the first and the
11th residual blocks are shown on the top and bottom rows, respectively.
The largest and smallest channel weights are marked in black and red,
respectively, and their corresponding feature channels are shown on the
right.

FIGURE 6. (a) An example image with other contents. (b) The channel
attention weights at the 12th residual block.

global context of an input image. Thus, in the next experi-
ment, we investigate whether the channel attention modules
reflect the content of an input image to better restore a
clean image as done in content-adaptive image restoration
techniques [22], [24], [25].

To verify this, we first check whether channel attention
modules produce different weights with respect to different
image contents. Specifically, we added Gaussian noise of a
noise level σ = 25 to an image (Fig. 6(a)). Then, we cropped
two sub-images (marked in red and green in Fig. 6(a)) and
fed them as well as the original noisy image to CANDI to
capture their channel attention weights. We found that most
channel attention modules produce almost identical weights
regardless of image contents except for one or two modules.
Fig. 6(b) visualizes the channel attention weights at the 12th
residual block that produces different weights with respect to
image contents. The channel attention weights of the three
images are similar but clearly different to the weights of the
other images, showing that they are adaptively determined to
image contents.

To more clearly verify the content-adaptivity of channel
attention, we examine the effect of adaptively computed
channel attention weights. To this end, we applied CANDI to
the sub-image marked in red in Fig. 6(a) using three different
channel attention weights computed from the red sub-image,
from the green sub-image, and from the entire image. Then,
we measured their PSNR values. The PSNR values of the
original noisy image and its denoising result with different
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FIGURE 7. Channel attention weights of different noise levels (σ = 15,
25 and 50) at the 6th, 9th, 16th, and 19th residual blocks.

channel attention weights are 20.64, 25.27, 24.81, and
25.04 dB, respectively. The result shows that non-adaptive
weights can still remove noise. Among the denoised images,
the one obtained using channel attention weights from totally
different contents has the lowest PSNR, while the one using
channel attentionweights from its own content has the highest
value. This shows that the content-adaptivity of channel atten-
tion can improve denoising quality, analogously to previous
content-aware priors [24], [25].

C. NOISE-ADAPTIVITY
We also investigate whether channel attention is adaptive
to noise, and whether its adaptivity helps handle different
levels of noise. To this end, we prepared three images of the
same scene with different noise levels (σ = 15, 25, and 50).
Then, we fed them into CANDI-B and captured their channel
attentionweights. Fig. 7 visualizes theweights of the different
noise levels at different depths. As shown in the figure, differ-
ent noise levels produce different channel attention weights,
indicating that the channel attention modules are adaptive to
noise.

To verify whether the adaptivity of channel attention helps
handle different levels of noise, we conducted another exper-
iment using the same three images used earlier. Specifically,
in this experiment, we remove noise from the image with
σ = 25 using three different channel attention weights
computed from the images with noise levels 15, 25, and 50.
Fig. 8 shows the results. The PSNRs of the original noisy
image with σ = 25, and its denoising results are 20.47, 24.66,
30.22, and 26.67 dB, respectively. Qualitatively speaking,
the result using the attention weights of σ = 15 (Fig. 8(b))
has remaining noise, while the result using the attention
weights of σ = 50 (Fig. 8(d)) has blurry details. On the
other hand, the result using the attention weights of σ = 25
(Fig. 8(c)) has clearly restored details and no remaining noise.
This behavior of channel attention is analogous to denoising
strength parameters of traditional denoising algorithms such
as the range sigma of the bilateral filter [10], and also shows
that channel attention adapts the network to more effectively
remove noise with respect to different noise levels.

FIGURE 8. Left: A clean image, Right: (a) a noisy image with a noise level
σ = 25, (b) a denoising result with the channel attention weights
calculated from the image with a noise level σ = 15, (c) A denoising result
with the channel attention weights calculated from the image with a
noise level σ = 25 (d) a denoising result with the channel attention
weights calculated from the image with a noise level σ = 50.

V. LOCALLY ADAPTIVE CHANNEL ATTENTION-BASED
NETWORK FOR DENOISING IMAGES
The analysis in Sec. IV shows that channel attention has a
content-adaptive property. While different images have dif-
ferent types of contents, even a single image may also have
different types of contents on different local areas. However,
the channel attention module cannot model such locally dif-
ferent nature of natural images due to the global average pool-
ing operation. Inspired by this observation, in this section,
we develop a locally adaptive channel attention module that
allows us to compute spatially different channel attention.
A locally adaptive CANDI (LACANDI) is then obtained by
simply replacing all channel attention modules in CANDI by
locally adaptive channel attention modules.

To compute locally adaptive channel attention, we split an
input feature volume into a regular grid, and compute channel
attention for each grid cell. To this end, wemodify the channel
attention module. We first replace the global average pooling
by local average pooling that computes the average value for
each grid cell. Specifically, for an input feature volume of
size kwW ′ × khH ′ × C where kw and kh are the numbers
of cells along the horizontal and vertical axis, respectively,
and W ′ × H ′ is the size of each grid cell, we define a local
average pooling operator as a combination of mean filtering
and subsampling. Mathematically, the local average pooling
operator LAP is defined as:

zc = LAP(xc) = D(f ∗ xc) (2)

where xc is the c-th channel of an input feature volume x, f is a
mean filter, ∗ is a convolution operator, andD is a decimation
operator that subsamples the input feature value at the center
of each grid cell. z is the output feature volume of the local
average pooling operator, which has the size of kw × kh ×C .
In our experiments, we use a mean filter of W ′ × H ′, whose
elements are 1/(W ′H ′), for f .We also replace fully connected
layers in the channel attention module by 1× 1 Conv layers.
Fig. 9 illustrates the network structure of a locally adaptive

channel attention module. Using a locally adaptive chan-
nel attention module, we obtain a channel attention map
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TABLE 4. A quantitative comparison of different methods. The first and the second best performance are in bold and underlined, respectively.

FIGURE 9. A locally adaptive channel attention module.

of size k × k × C . To re-scale the input feature volume,
we upsample the map to the size of the input feature volume.
For upsampling, we use bilinear interpolation to introduce
smooth transition between grid cells and to avoid tiling arti-
facts. The upsampled channel attentionmap is thenmultiplied
to the input feature volume element-wise to obtain a re-scaled
feature volume.

A. TRAINING
In our experiments, we did not train LACANDI models sep-
arately, but simply reused the weights of CANDI models.
This is possible because a fully connected layer in a channel
attention module is equivalent to a 1 × 1 Conv layer in a
locally adaptive channel attention module. Also, as we use
small training images of 40× 40, we can safely assume that
the weights of CANDI models are already trained to be adap-
tive to small local areas. We also introduce a blind version
of LACANDI, denoted by LACANDI-B. For LACANDI-B,
we reused the weights of CANDI-B.

B. GRID SIZE
If we set kw = W and kh = H for an input image of size
W × H and use a mean filter of size W ′ × H ′, we can
compute locally adaptive channel attention weights for all
pixels. Nonetheless, we empirically found that kw = kh = 10
works well in most cases. We compared these two options
using the BSD68 dataset for a noise level σ = 25. Both
LACANDI models with (kw = 10, kh = 10) and (kw = W ,
kh = H ) achieve 29.34 dB, but their computation times are
0.09 seconds and 0.74 seconds, respectively, as the model
with (kw = W , kh = H ) needs a much larger amount of
computation. In the rest of this paper, we use kw = kh = 10
for both LACANDI and LACANDI-B.

FIGURE 10. The average computation times and denoising qualities of
different methods.

VI. EXPERIMENTS
In this section, we evaluate the performance of our final
models: CANDI, LACANDI, CANDI-B, and LACANDI-B.
For evaluation, we use three widely used benchmark datasets:
BSD68 [33], Set12 [1], and Urban100 [34]. We compare
our models with several state-of-the-art denoising methods:
BM3D [14], TNRD [2], DnCNN [1], N3Net [5], NLRN [7],
DnCNN-B [1], and GCBD [35]. Except for BM3D, all
the methods are learning-based. BM3D, N3Net and NLRN
exploit non-local self-similarity to effectively handle repeated
structures. DnCNN-B is a blind version of DnCNN that
shares the same architecture. GCBD is also a blind denoising
method, which is based on generative adversarial networks.
We refer the readers to our supplementary material for more
details on the evaluation in this section and the analysis
in Sec. IV.

A. QUANTITATIVE COMPARISON
We first quantitatively compare our models with state-of-
the-art non-blind methods in terms of PSNR and structural
similarity index (SSIM) [36], which is another widely used
measure for image quality assessment. A higher SSIM value
means that an image is more similar to the ground truth
one. The PSNR and SSIM values of all the other methods
are from their papers except for the SSIM values of N3Net,
which are not reported in [5]. For the SSIM values of N3Net,
we measured them using the trained models provided by the
authors.
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FIGURE 11. A qualitative comparison for a noise level σ = 25. Left: ground-truth images. Right: magnified views of different image denoising results.

Table 4 shows a quantitative comparison. It is shown that
LACANDI outperforms CANDI in all cases in terms of both
PSNR and SSIM, which validates the effectiveness of the
locally adaptive channel attention modules, and their content-
adaptivity. It is also shown that CANDI and LACANDI out-
perform the other methods in most cases. Even LACANDI-B,
a blind version of LACANDI, shows similar performance to
N3Net, which is non-blind, on the Set12 and BSD68 datasets
thanks to its noise-adaptivity. NLRN, which is another state-
of-the-art method, is not included in this comparison because
it is orders-of-magnitude slower than our models as will
be discussed later. Table 5 shows a quantitative comparison
against state-of-the-art blind denoisingmethods. It shows that
LACANDI-B outperforms all the other methods by a large
margin.

TABLE 5. A quantitative comparison of blind denoising methods on the
BSD68 dataset. The best performance is in bold.

B. QUALITATIVE COMPARISON
Fig. 11 shows a qualitative comparison against state-of-the-
art methods. The figure shows that our models produce less
artifacts than the other ones especially on the first, third and
last rows. The second and third rows show that our models
preserve more details than the others. More examples can be
found in the supplementary material.
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TABLE 6. The average computation times of different denoising methods
on the BSD68 dataset.

C. COMPUTATION TIME
Finally, we compare the computation times of state-of-the-
art methods and ours. The computation times were measured
using the authors’ code in the same environment as the
training environment (an Intel Zeon E5-2620 @ 2.0 GHz
and an NVIDIA TITAN RTX). Table 6 reports the average
computation times on the BSD68 dataset that has images
of either 321 × 481 or 481 × 321. Both our models take
about 0.1 seconds to denoise a single image, which shows
that our models can be used in practical applications. Com-
pared to N3Net and BM3D, our models are an order-of-
magnitude faster. Compared to NLRN, LACANDI is more
than 700 times faster. N3Net, BM3D, and NLRN perform
feature matching to exploit non-local self-similarity, so they
require relatively large computation times. Especially, NLRN
repeatedly performs feature matching, which causes a sig-
nificant amount of computation. Interestingly, LACANDI is
faster than CANDI even though LACANDI computes a larger
number of channel attention weights. This is because local
average pooling is more GPU-friendly than global average
pooling.

Fig. 10 visually compares the computation times and
denoising qualities of different methods measured on the
BSD68 dataset for a noise level σ = 25. The figure shows
that our methods outperform all the other methods except
for NLRN in terms of both PSNR and SSIM, although they
require relatively small amounts of computation. In terms
of PSNR, our methods are worse than NLRN. Specifically,
the PSNR and SSIM of NLRL are 29.41 dB and 0.8331,
respectively, while those of LACANDI are 29.34 dB and
0.8338. However, ours are orders-of-magnitude faster.

VII. CONCLUSION
In this paper, we proposed CANDI, a novel channel
attention-based network for denoising images. Then, we ana-
lyzed the effect of channel attention on image denoising,
and showed that channel attention has an adaptive nature
to image contents and noise. Based on this, we proposed
a locally adaptive channel attention module and an image
denoising network, LACANDI, based on it. Experimental
results showed that both CANDI and LACANDI and their
blind versions outperform state-of-the-art methods.

We believe that locally adaptive channel attention can also
benefit other problems such as super-resolution, deblurring,
and high-level vision problems such as segmentation. The
performance of image denoisingmay depend on the complex-
ity of image contents, and an analysis on this may help design
a more effective network structure for denoising. LACANDI
splits an image into a uniform grid, which may hinder fully
exploiting locally different characteristics of natural images.

To resolve this, wemay adopt semantic segmentation. Explor-
ing such possibilities would be an interesting future direction.
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