IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 10, 2020, accepted February 11, 2020, date of publication February 14, 2020, date of current version February 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2974051

Two-Step CNN Framework for Text Line
Recognition in Camera-Captured Images

YULIA S. CHERNYSHOVA 12, ALEXANDER V. SHESHKUS “'1-2,

AND VLADIMIR V. ARLAZAROV 34

I Federal Research Center “Computer Science and Control” of RAS, 119333 Moscow, Russia
2Smart Engines Service LLC, 117312 Moscow, Russia

3Institute for Information Transmission Problems (Kharkevich Institute) RAS, 127051 Moscow, Russia
#Moscow Institute of Physics and Technology (National Research University), 141701 Moscow, Russia

Corresponding author: Yulia S. Chernyshova (chernyshovayulia07 @ gmail.com)

This work was supported in part by the RFBR According to the Research Project 17-29-03170 and Project 17-29-03236.

ABSTRACT In this paper, we introduce an “‘on the device” text line recognition framework that is designed
for mobile or embedded systems. We consider per-character segmentation as a language-independent
problem and individual character recognition as a language-dependent one. Thus, the proposed solution
is based on two separate artificial neural networks (ANN) and dynamic programming instead of employing
image processing methods for the segmentation step or end-to-end ANN. To satisfy the tight constraints on
memory size imposed by embedded systems and to avoid overfitting, we employ ANNs with a small number
of trainable parameters. The primary purpose of our framework is the recognition of low-quality images of
identity documents with complex backgrounds and a variety of languages and fonts. We demonstrate that
our solution shows high recognition accuracy on natural datasets even being trained on purely synthetic
data. We use MIDV-500 and Census 1961 Project datasets for text line recognition. The proposed method
considerably surpasses the algorithmic method implemented in Tesseract 3.05, the LSTM method (Tesseract
4.00), and unpublished method used in the ABBYY FineReader 15 system. Also, our framework is faster
than other compared solutions. We show the language-independence of our segmenter with the experiment
with Cyrillic, Armenian, and Chinese text lines.

INDEX TERMS Text recognition, artificial neural networks, character segmentation, character recognition,

machine learning.

I. INTRODUCTION

Smartphones, tablet computers, and other mobile devices
gain more and more popularity each day. Applications for
such devices include government and commercial services
that often require entering data from printed documents. Yet
the text entry on modern touch-based keyboards is error-
prone and time-consuming [1], [2]. Thus, several solutions
appeared in recent years [3]-[6] for optical text recognition in
images that are captured using mobile devices. These systems
can be classified into two groups: client-server solutions,
which transfer images to a ‘“cloud” and require internet
connection, and ““on the device” methods that perform the
recognition process without data transmission.

The associate editor coordinating the review of this manuscript and

approving it for publication was Ah Hwee Tan

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

Recognition of identity documents is a specific case since
they contain sensitive personal information, and any applica-
tion should guarantee the security of personal data. Conse-
quently, it seems reasonable to say that the “on the device”
methods fit better for their processing than the ‘“cloud”
solutions since the former present fewer security issues.
The tight constraints on computational power and memory
size imposed by the embedded and mobile systems limit
the resources available and render many approaches unus-
able. Also, any noticeable delay while executing a smart-
phone application can affect user experience. Moreover, such
a system faces a lot of challenges. Unlike invoices and
other official papers, identity documents often have complex
backgrounds. Besides, they usually have specific surfaces.
For example, ID documents can be laminated, and, con-
sequently, highlights can appear in images captured using

32587

https://orcid.org/0000-0002-9520-3278
https://orcid.org/0000-0002-8970-8747
https://orcid.org/0000-0003-3260-9104
https://orcid.org/0000-0003-0378-4069

IEEE Access

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

FIGURE 1. Example images from MIDV-500.

a smartphone. In addition, the process of image acquisi-
tion tends to introduce many distortions [7]-[9], which make
methods designed for scanned documents images unsuitable
for camera-captured ones [10]. Fig. 1 presents samples of
camera-captured ID images from MIDV-500 dataset [11],
which demonstrates typical input images for a recognition
application on a mobile device. As a result, any competent
approach to the embedded recognition of IDs should employ
rather sophisticated methods and be efficient in the system
with stringent resources.

The process of ID recognition can be divided into a
number of steps, such as document identification and loca-
tion, zone extraction and rectification, per-field segmentation,
field recognition, language model postprocessing, and result
acquisition [6]. In our study, we consider the field recogni-
tion step, which includes text line detection and recognition
(Fig. 2), and focus on the text line recognition part. As identity
documents have the predefined structure, the algorithms for
straight line identification [12] are used for text line detection
in a text field image. The text line vertical position can
be specified in different ways that are common for both
printed and handwritten text lines [13]. In our experiments,
we suppose that baseline and cap line (Fig. 3) approximate
coordinates are found beforehand, and we get them as input.

In this paper, we present a method for text line recognition
that can be used as a part of an on-the-premises recognition
system for various printed documents including but not lim-
ited to identity cards, passports, and driving licences.

Il. RELATED WORK

Most of the modern text line recognition techniques can be
divided into two large groups: the ones with explicit per-
character segmentation followed by recognition and the end-
to-end solutions. In sections II-A and II-B we briefly describe
the existing approaches from both groups.

32588

Extracted field image

v

Text line detection

—
Cropped text line image
Character
segmentation
Text line —<
recognition
OCR
Field recognition result
—
Result output
FIGURE 2. Field recognition scheme.
Ascent line
Ascender line .
Cap line
Mean line
Baseline

Descender line

FIGURE 3. Representation of a text line.

A. RECOGNITION WITH EXPLICIT SEGMENTATION
Per-character line segmentation is a process of finding bound-
ing rectangles of characters and is one of the essential prob-
lems of text recognition [12], [14]. Segmentation can be
applied to binarized or grayscale images. However, in the
case of camera-captured images, binarization can have a
drastic effect of introducing background noise [7]. After the
segmentation is performed, a classifier is used for OCR. The
classification approaches vary greatly from pattern matching
to the most modern architectures of neural networks. The
majority of the recent studies focus on the segmentation part
of these methods as it is believed to be more difficult than
recognition [15].

Two main approaches to the per-character segmentation
exist: projection analysis and connected components process-
ing. The typical problem faced by the standard methods is
the segmentation of either connected symbols or individual
symbols consisting of several separate primitives, espe-
cially in the context of complex backgrounds and camera-
specific distortions. Most methods include various heuristics
about possible glyphs [5], [16], [17], which allow cutting or
merging components of specific shapes. To overcome all
the difficulties, over-segmentation methods are developed.

VOLUME 8, 2020

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

IEEE Access

These methods try either to evaluate different segmenta-
tion paths and select the best one [7] or to restore correct
segmentation from an over-segmented line using dynamic
programming [18]. But even these methods use prior infor-
mation about the text. For instance, a method [7] is fine-
tuned for text printed with a monospaced font and method
[18] does not consider the existence of characters consisting
of several primitives. Remarkably, methods based on over-
segmentation often employ artificial neural networks (ANN)
for result improvement in the following way: a classifier,
e.g., ANN, is trained to distinguish a character from its over-
segmented part and the classification results are taken into
account for the choice of the best path [19], [20]. To our
best knowledge, it is the only way ANNs are used in explicit
per-character segmentation. It is an omission as the ANNS,
especially fully convolutional networks (FCN), demonstrate
the state-of-the-art results in the contiguous task of semantic
segmentation [21], [22].

The current situation with per-character segmentation
can be regarded as the one with the omnifont character
recognition before the rise of deep learning. While it is possi-
ble to perform optical character recognition (OCR) exploit-
ing features that are pre-defined in the algorithms without
any ANNs, such approaches are usually outperformed with
modern ANN-based methods. However, most of the modern
segmentation methods work in the same way—with the pre-
defined language-dependable features. And as ANNs have
already influenced OCR, they can significantly improve per-
character segmentation.

B. END-TO-END RECOGNITION

Techniques without explicit segmentation, or end-to-end
recognition, appeared due to the claim that the segmenta-
tion algorithms are highly error-prone for distorted images
[23]. Modern segmentation-free text recognition methods are
predominantly represented by various ANN-based methods
and include the sliding-window classifiers [24] and the ones
based on recurrent neural networks (RNN) [25], [26]. Nowa-
days RNNs demonstrate state-of-the-art results in the text-
in-the-wild recognition problem [27], [28], and are used in
various OCR engines, e.g., Tesseract 4.00 [29]. The main
advantage of RNNs is their ability to handle sequences of
characters, but it can make them ineffective for identity doc-
uments recognition as these documents contain, firstly, fields
without language model (document numbers) and, secondly,
rare spellings of popular names which can be “corrected”
by the classifier [30]. The other variant of segmentation-free
recognition is the utilization of per-word classifiers, i.e., one
class stands not for a character, but a whole word [31].
This approach faces two main problems: the impossibility of
recognition of document fields without language model and
an enormous number of the resulting classes.

C. ANNS IN “ON THE DEVICE” OCR SOLUTIONS
OCR is the core part of any text recognition framework.
The results of ICDAR2015 competition on smartphone

VOLUME 8, 2020

document capture and OCR [32] demonstrate that OCR
in camera-captured images remains an open problem even
for documents with simple backgrounds. At the same time,
the extensive use of mobile devices makes OCR a “must-
have” application on modern gadgets [33]. Since the intro-
duction of a convolutional neural network (CNN) LeNet-5
and its results on the MNIST dataset [34], the OCR task is
usually solved with various ANNs that demonstrate state-
of-the-art results on public datasets for object classifica-
tion [35]-[39]. However, to be usable, ANNs employed in
“on the device” software should satisfy the tight constraints
on computational power and memory size [40]. In par-
ticular, it is essential for multi-language applications that
require several classifiers. Consequently, many deep architec-
tures need re-thinking for such applications [41]. Moreover,
such methods as model ensembling employed in [35] could
become quite resource-intensive. Thus, a number of different
approaches to ANN modifications were introduced in recent
years. Some of them suggest the creation of efficient light-
weight architectures and modification of the state-of-the-art
ones [42]-[48], others introduce solutions with 8-bit fixed
point or binarized weights [49]-[51]. It should be mentioned
that a few hardware-aware and hardware-adapted solutions
exist [49], [52], but we are not interested in them in our
study as we need a solution for off-the-shelf systems. Most
of the suggested architectures have hundreds of thousands of
weights. As the recent studies claim that the majority of the
modern networks have the excessive capacity and are prone to
overfitting [53], we intend to use feed-forward networks that
have a small number of trainable parameters and are suitable
for embedded systems. The light-weight ANN architectures
that we propose in our framework are based on the previous
papers of the authors. For example, in [54]-[56] we showed
the capabilities of the light-weight architecture in OCR prob-
lems, in [58] we employed a light-weight neural network
for both optical font recognition and OCR, and in [59] the
ability of a light-weight ANN to detect vanishing points was
demonstrated.

D. TEXT LINE RECOGNITION TOOLSETS

Nowadays, a number of text recognition systems are
available. Some of them are available as the on-premises
solutions, and some provide the client-server interfaces.
In our study, we limit the set of considered systems to the
two in the most common use: Tesseract OCR and ABBYY
FineReader. Tesseract OCR is a free OCR engine, and
ABBYY FineReader is a commercial product.

1) TESSERACT OCR

Tesseract OCR [60] is one of the most popular open-source
OCR engines [61], widely employed by both developers
and users. According to [32], [61]-[64], this system is com-
monly used within the community as a baseline method
for recognition quality evaluation. Nowadays, Tesseract is
being developed by Google. To assess our method, we com-
pare its recognition results with those of Tesseract OCR of

32589

IEEE Access

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

versions 4.00 and 3.05. Tesseract OCR 4.00 was released on
October 29, 2018, and employs an ANN with LSTM blocks.
This ANN contains 7.8 x 103 weights and has been trained on
a large amount of purely synthetic data [29]. While the whole
training data is not available online, the provided examples
and the generation process description show that Tesseract
4.00 can be used for reference [65]. We additionally pro-
vide the results of the previous version, i.e., Tesseract OCR
3.05, as, firstly, it allows comparison with earlier studies,
and, secondly, it demonstrated competitive results with other
methods [61], [62].

2) ABBYY FINEREADER

ABBYY FineReader [66] is a state-of-the-art commercial
OCR application [61] that is used in both scientific studies
[71, [32], [62], [65] and business. In our experiments, we used
the latest ABBYY FineReader 15. FineReader is considered
one of the best solutions available on the market, but its
source code or the employed algorithms are not published yet.
Judging by the information provided on the official website,
we can presume that machine learning algorithms with lan-
guage models are used for text recognition.

1Il. DATASETS

Datasets is a widely used mean for method evaluation and
comparison of various methods. The importance of public
datasets in studies cannot be overestimated as they allow not
to reproduce previously published methods for comparison,
and, what is more, allow the comparison with the state-
of-the-art commercial systems that do not provide enough
information for method reproduction.

Throughout our study, we want to evaluate both the pro-
posed method and its separate components. As a result,
we need three types of test datasets: one suitable for the
segmenter evaluation, one for the classifier evaluation, and
one for the full framework evaluation. To evaluate char-
acter classification, we used the famous MNIST dataset
(Sec. ITII-A). The dataset for the segmentation evaluation is
more tricky, as to directly assess it we need per-character
segmentation ground truth. To our best knowledge, no public
dataset provides such a ground truth. Thus, we use synthetic
data (Sec. III-D) for segmenter evaluation.

As for the overall framework evaluation, we use two
recently introduced public datasets: MIDV-500 (Sec. I1I-B)
and the test part of the 1961 Census for England and Wales
from [61] (Sec. III-C). These datasets are of great interest
to us as they provide text line segmentation ground truth,
i.e., they allow evaluating text line recognition independently
from document location and text line segmentation meth-
ods. In fact, such datasets are a rarity within the modern
scientific community. Firstly, private datasets are widely
used [7], [62], [65] for text line recognition evaluation. Sec-
ondly, public datasets are often designed for overall docu-
ment recognition systems. The vivid example of this problem
is a widely used SmartDoc-2015 dataset [32]. This dataset

32590

contains camera-captured images of documents and text
ground truth. Yet, if one wants to use it for the evaluation
of text line recognition quality, they have to employ exterior
methods for document detection and text line segmentation.

Since our method employs ANNs, we also need training
data. We mainly use synthetic training data as they allow us
to achieve sufficient accuracy and to get samples for various
languages and scripts. Also, synthetic data provides the nec-
essary font and background diversity without laborious and
time-consuming data preparation. Thus, we employ synthetic
training data (Sec. III-D) in all experiments except the one
with MNIST. We use the MNIST default training sample to
compare our classifier with the previously published ones
without training data influence.

A. MNIST

MNIST consists of 70000 images of handwritten digits,
60000 of which form the training set, and the rest 10000 are
treated as the test set. The state-of-the-art result reported
for MNIST is the 0.23% error rate for non-ensemble classi-
fiers. We use this dataset to assess the suggested light-weight
architecture of the per-character classifier: we train our per-
character classifier on the training set of MNIST and then
calculate the classification error-rate of the acquired classifier
on the MNIST test set.

B. MIDV-500

MIDV-500 [11] is of particular interest for us as it contains
images of ID samples. Each document is captured in five
different conditions with two mobile devices (Apple iPhone 5
and Samsung Galaxy S3). Resulting snapshots contain com-
plex background and various distortions that are typical for
images acquired with smartphones [11] (Fig. 1). Text lines
in MIDV-500 are printed with multiple proportional and
monospaced fonts.

We preprocess MIDV-500 using the provided ground truth
to 1) select snapshots with fully visible documents as the
dataset contains some images with documents partially hid-
den off-screen; 2) perform projective rectification; 3) extract
images of separate text lines and divide these lines into
four groups which are distinguished in the ground truth:
“Dates’” — numeric dates, “Latin names’ — names and sur-
names printed with Latin letters without diacritical marks,
“MRZ” — machine-readable zones [67], and “Docnum” —
document numbers. The exact statistics on the acquired
text lines are given in Table 1. We do not filter out the
blurred, highlighted, or otherwise degraded images. Fig. 4
shows the examples for each type of text line. Initially,
the total number of character classes in the test dataset
was equal to 70 and included digits, punctuation symbols
“(), .—/< 7 and both capital and small Latin letters. As we
train case-insensitive classifiers and also unify the letter
“0” and the digit “0”, the resulting number of classes
became 43.

VOLUME 8, 2020

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

IEEE Access

10.01.2012

(a) “Dates”

HAPPY

FIGURE 4. Examples of text lines from MIDV-500.

(b) “Latin names”

OT478D<<6408125F

(C) “MRZ>
Yead

(d) “Docnum”

TABLE 1. The distribution of text line images in MIDV-500.

Field type Images Symbols
Dates 17735 176142
Latin names 15257 131067
MRZ 5096 220992
Docnum 9329 88294

15-19 TOTAL

FIGURE 5. Examples of text lines from the 1961 Census sample.

C. THE 1961 CENSUS FOR ENGLAND AND WALES
SUBSAMPLE

The employed subsample of the 1961 Census for England
is presented in [61] and is available for download from
PRImA website [68]. It contains scanned images of docu-
ments printed with one font. This test sample is suitable for
our method, as the authors provide the geometrical ground
truth as well as the textual one. Thus, to perform experiments,
we used the provided ground truth to acquire separate images
of text lines. The text lines in this set contain capital Latin
letters, punctuation symbols “&, .—/” and digits. Fig. 5
presents the text line images from this dataset.

D. SYNTHETIC DATASETS

We utilize no data from MIDV-500 for training CNNs.
Instead, we use a method described in [69] to generate a
synthetic training dataset. This method allows us to create an
unlimited number of images with projective transformation,
motion blur, and ink degradation. As we want our model
to be as language-independent as possible, we employ no
dictionaries in the generation process. To preserve the gen-
eralization capability of our ANNs, we do not choose any
specific fonts. We utilize 600 different fonts that are available
on GoogleFonts [70] and backgrounds that were acquired

VOLUME 8, 2020

A\

\ \\, \! \\\\\\ \
FUXKEINTG G2V 502D uUga RELJ”u\ L LV?Yidme

2DmhmAbm 26.012wsélio2] ,O%Zka<

1a3933V6tF 11 TRV 2GS 09 RIZGTVE QT[S UalzR

jswp(g3BE38KXYaMQ d nI
(2£d3WH3UA2ED T6i83qM78abb, 7
s/3t5Y8W C-D1xoFeNS)3LvY, jec5/s0

FIGURE 6. Example generated images from training dataset.

from images of various documents. Examples of the synthetic
images are shown in Fig. 6. As we train case-insensitive
recognition network and also do not distinguish the letter “O”
and the digit ““0”’ the number of samples per character differs,
but the number of examples per class stays approximately
equal. For instance, each class consists of approximately
25000 samples, but for class “1” all samples contain the
same character and class “O” contains “O”, “0” and “0” in
equal proportions. This training dataset is ava1lable at ftp:
//smartengines.com/2cnntrain/.

What is more, we use synthetic data as both training and
test sets to evaluate the per-character segmentation part of
the proposed method. To be exact, we generate three train-
ing datasets (Chinese characters, Cyrillic characters, and a
mixture of Cyrillic, Latin, and Armenian characters) and
three test datasets (Chinese characters, Cyrillic characters,
and Armenian characters). We select these writing systems
for the test datasets as, firstly, they are rather different, and,
secondly, two of them are in the top five most widespread
scripts around the world, and the third one is a rare writing
system which is used mostly in Armenia and, consequently,
is rarely considered in OCR systems. We do not use the Latin
characters in test sets as they are similar to the Cyrillic ones.

Each dataset contains ground truth for each image. The
annotation was performed automatically by the data gen-
eration engine. The ground truth is given in JSON for-
mat and is organized as follows (Fig. 7): 1) one JSON
dictionary stands for one text line; 2) “line_rect” is
the bounding box of the text line, “cuts_x" stands for
the cuts between the letters, i.e. ideal segmentation results,
“start_x" and “end_x’ outlines the exact coordinates of
character end points in horizontal direction, “values” are
the Unicode characters codes in a decimal numerical system,
“let_blines” stands for upper and lower ordinates of
each character, and “blines” represents the lines from
Fig. 3 except for the ascender line.

IV. A METHOD FOR TEXT LINE RECOGNITION

In a classic Heuristic Over-Segmentation method, a segmen-
tation graph is formed from the vertical projection (projec-
tion on the horizontal axis) P [34], [71]. To solve the task,
one looks for the best path from the start node to the end
node. What is crucial, the cuts from P are usually selected
once, before the graph construction. It means that if the cut

32591

ftp://smartengines.com/2cnntrain/
ftp://smartengines.com/2cnntrain/

IEEE Access

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

"line_rect": [75, 55, 570, 4017,
"cuts_x": [87, 108, 131, 154, 185],
"start_x": [77, 87, 108, 131, 1557,
"end_x": [83, 108, 129, 153, 183],
"valid": true,
"values": [59, 99, 103, 51, 671,
"let_blines": [[63,93], [62,87],
[62, 951,55, 871, [55, 8711,
"blines": [55, 56, 64, 86, 95]

//next line description

FIGURE 7. Generated image ground truth in JSON format.

was initially missed, it could not be restored by the method.
Besides, the start and end nodes should be determined before-
hand. Such limitations seem to be presumptuous for any
practical use in the case of images captured with a mobile
device.

To overcome the drawbacks of the classical approach,
we propose a method based on two ANNs, namely a seg-
menter and a classifier, and dynamic programming. To be
exact, we employ an FCN NNj,g, to build P and a CNN
NN¢jq55 for candidate characters recognition. NNje, and
NN_jss are described in Sec. IV-A and Sec. IV-B in detail.
Fig. 8 presents the flowchart of our algorithm:

1) Crop an image using baseline and cap line, and scale
the resulting image to a predefined height.

2) Apply NNyegn and obtain P.

3) Build P; as a non-maximum suppression of P.

4) Build pairs of non-zero points from P with the distance
from the predetermined interval fd € [fdyin, fdmax]-

5) Classify the preliminary candidate character images
with NN jass.

6) Employ dynamic programming to build the segmenta-
tion path optimizing the sum of the cuts scores from P
and confidences of the corresponding candidate char-
acters, if any.

7) Classify characters at the positions from the built path
that were not processed in steps (3)-(4), if any.

Firstly, we apply NNyegm to the cropped text line image
scaled to the predefined height and obtain the projection P
that represents the score of a cut for every column in the
image. Fig. 9 provides the result obtained with the segmenta-
tion network for the text line image from Fig. 8.

Then, we build the initial subset P; of the most probable
cuts from P, selecting the local maxima of P. Based on Py,
we classify preliminary candidate characters with NN ;-
The preliminary candidate characters can be mutually exclu-
sive, i.e., their bounding boxes can overlap. It should be
mentioned that we do not classify all the candidate characters.

32592

[Recognize an image}

Obtain FCN-produced
projection

Select the most
possible cuts

Recognize candidate
characters

l

Select the best
segmentation path

All characters
recognized?

l\io

Recognize missed
Yeés | candidate characters

res.BestUtf8String():
res[©]: [15, 1; 17, 31]: (3: @.
res[1]: [29, 1;
res[2]: [47, 1;

> Return the best result | FEEENEINEE
res[4]: [79, 1; 22,

FIGURE 8. Text line recognition scheme.

Local maxima

4

10 / N

0.8 4

0.6

Cut confidence

0.4 4

0.2 1

0.0 1

T T
0 20 40 60 80 100
Image width

FIGURE 9. Cuts confidence obtained with NNsegm-

We sort the candidate characters according to the sum of their
forming cuts from Py, and then select m most probable ones,
where m is the quotient of the ratio between input image
width and the mean possible character width from fd. After
the candidates classification, we employ dynamic program-
ming to select the best segmentation path. What is crucial,
the absence of some necessary cuts in Py does not inevitably
lead to the incorrect result as we allow the discontinuity of the

VOLUME 8, 2020

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

IEEE Access

best segmentation path in relation to preliminary candidate
characters. To be more exact, when we build a segmentation
path, we look into P, not Py, for cuts scores and consider all
possible candidate characters. We evaluate each segmentation
path as the mean of the scores of its candidate characters. The
score s of one candidate character is calculated in (1):

s = 0.5 x (P(x)) + P(x,)) + ¢ (1

where x; and x, are the cuts used to form the candidate, ¢ is
the confidence of the first alternative obtained with NN_js
for preliminary classified characters, or 0, if the candidate
was not classified. After the best segmentation path is chosen,
we check it for the missed character candidates and classify
them.

Speaking about candidate characters, we obtain their
images not from the cropped image, but from the original
input one. The reason is that at this stage we analyze the
horizontal projections of individual character images and
adjust their vertical borders to handle diacritics, descenders,
and ascenders. Also, we allow setting a restriction to the
width/height ratio of the selected candidate character images
as an input parameter to our framework. This restriction is set
in the form of possible minimal and maximal width/height
ratio and is used to forbid impossibly narrow or wide
symbols.

Fig. 10 explains how we acquire the result with dynamic
programming in more detail. In Fig. 10, we calculate cur-
rent image width x by the horizontal axis and the num-
ber of characters k by the vertical one. As we mentioned
before, we preset the interval of possible character widths
fd € [fdnin, fdmax]- Thus, we calculate the maximal number
of characters k4 as:

Wimg

kmax f dmin ' (2)
where w;;,, denotes the width of the input image. As we limit
the possible width of the character, we do not need to calculate
all the possible states in dynamic programming. In Fig. 10,
we denote the possible states as green cells. Bright green cells
denote the possible initial states, and dark green ones denote
the final states. In our solution, we explicitly restrict the possi-
ble initial and final states. For any initial state x € [0, fdqx]
and for any final state x € [Wing — fdmax, Wimgl-

As the initial state of our value function we set the scores
of all the possible first characters to:

dp(x,0) = 0.5 x P(x). 3)
dp(x, k) = 0.5 x P(x) +dp(x*, k — 1) + C(x*, x),
x* = argmax dp(xpr, k — 1),)

Xpr €[X —fdmax ,x—fdmin]

where x* denotes the previous cut coordinate, C(x*, x) is the
confidence of the first alternative obtained with NN, for
candidate character between x* and x, or O if the candidate
was not classified. Fig. 11 shows part of the best segmentation
path selection process for the image from Fig. 8.

VOLUME 8, 2020

Eq. 4
Initial states
o Wimg X
dp(xK)
kmax
Final states
k

FIGURE 10. Dynamic programming employment.

e

FIGURE 11. Selection of the best segmentation path.

We use two separate ANNSs instead of an end-to-end solu-
tion for two main reasons. The first one is that the character
recognition quality depends on the correspondence between
the alphabets of the classifier and text lines. The second
one is that segmentation can be considered as a language-
independent problem for a large number of languages, and,
to some extent, as the one independent of the writing system
as well. Due to the same reasons, we do not utilize segmen-
tation methods based on specific knowledge about characters
in the considered text lines. Conversely, the recognition ANN
will be error-prone if we merge several alphabets. For exam-
ple, the resulting set of characters from all the Latin-script
alphabets would contain about ten ““I” letters with different
diacritical marks; composition English and Russian alphabets
would include many identical symbols, so we would be bound
to perform a postprocessing stage to obtain the result.

A. SEGMENTER

As it was already mentioned, we employ the FCN to compute
a vertical projection of the image. Using the information from
its receptive field, the segmentation neural network decides

32593

IEEE Access

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

TABLE 2. Architecture of the segmentation FCN.

Layers

Type Activation | Parameters

function
1 conv RelLU 6 filters 5x 5, stride 2x 1, no padding
2 conv ReLU 6 filters 5x 5, stride 1x2, padding 0x2
3 conv ReLU 6 filters 3x7, stride 1x 1, padding 0x3
4 conv RelLU 6 filters 5x5, stride 1x 1, padding 0x?2
5 conv ReLU 6 filters 3x 3, stride 1x 1, padding 0x 1
6 conv ReLU 6 filters 5x5, stride 1x2, padding 0x?2
7 conv ReLU 6 filters 5x2, stride 1 x 1, no padding
8 conv RelLU 6 filters 5x 5, stride 1x2, padding 0x 1
9 conv Tanh 6 filters 5% 3, stride 1x 1, padding 0% 1
10 | conv 1-RBF 1 filter 33, stride 1x 1, no padding

whether there is a cut at a given position or not. As a result,
we acquire a projection containing the network’s scores for a
cut at each column in the image. In the inference stage, this
neural network can be applied to an image of arbitrary width
since all its layers are size-independent. Table 2 describes
the architecture of the FCN, which we use in our experi-
ments. The approximate number of trainable parameters of
this FCN is 5.7 x 103. To train the network, we use grayscale
images of fixed size 131 x33 and the ground truth in the form
of 131x1 images that represent an ideal projection — zero-
filled image with one-filled points at the places of correct
cuts. All the images and ground truth are taken from the
dataset described in Sec. III-D. The training was performed
with the minimization of Euclidean distance between the
calculated and ideal projections.

B. CLASSIFIER

To recognize the characters, we employ the ANN with light-
weight architecture, which is provided in Table 3. This CNN
takes grayscale images of fixed size 15x 19 as an input. The
number of trainable parameters of this CNN depends on the
size of the alphabet |A| as its last layer is a fully-connected
one. For a classification task with the alphabet size of 30, it is
approximately 3.4 x 10%.

V. EXPERIMENTAL RESULTS

A. CLASSIFIER EVALUATION

To begin with, we experiment with MNIST to evaluate the
error rate of the recognition network with architecture from
Table 3 with |[A] = 10. We do not employ any additional
training data or data preprocessing but use online augmen-
tation [55]. Table 4 provides the results obtained by the
suggested CNN and those of previously published stud-
ies, and also shows the number of trainable parameters in
the applied ANNs. We get an error rate of 0.25% against
0.23% demonstrated by the best non-ensemble model and
0.14% - by the ensemble one. In Table 4, we present the best
results that can be found in the published papers. Reference
[72] provides the results known before 2013. We also provide
the human performance error rate — ~0.20% — to emphasize
that the majority of the classifiers presented in Table 4 are
almost equal to human recognition ability. We claim that this

32594

TABLE 3. Architecture of the classification CNN.

Layers
Type Activation | Parameters
function
1 conv ReLU 8 filters 3x 3, stride 1 x 1, no padding
2 conv RelLU 8 filters 3x 3, stride 1x 1, padding 1x 1
3 conv ReLU 16 filters 3 x 3, stride 2x 2, padding 1 x 1
4 conv ReLU 16 filters 33, stride 1x 1, padding 1x 1
5 conv RelLU 16 filters 3x 3, stride 1x 1, padding 1x 1
6 conv Tanh 32 filters 3x 3, stride 2x 2, padding 1x 1
7 conv Tanh 32 filters 33, stride 1x 1, padding 1x 1
8 conv Tanh 32 filters 33, stride 1x 1, padding 1x 1
9 conv Tanh 8 filters 33, stride 1x 1, padding 1x 1
10 | fully connected | A| neurons
with softmax

TABLE 4. MNIST recognition results.

Model Test error | Parameters | Voting
rate (%) x 106 ANNs

State-of-the-art 0.14 354 15

R.F. Alvear-Sandoval et al. [73]

Human performance ~0.20 N/A N/A

Y. LeCun et al. [74]

L. Wan et al. [35] 0.21 =~ 20.0 5

I. Sato et al. [75] 0.23 0.099 1

D. Ciresan et al. [76] 0.23 2.660 35

J.-R. Chang et al. [77] 0.24 0.259 1

Our CNN 0.25 0.034 1

S.Sabour et al. [78] 0.25 8.2 1

M. Liang et al. [79] 0.31 0.670 1

S.Sabour et al. [78] 0.35 6.8 1

result on the MNIST database proves the applicability of such
a light-weight ANN to the OCR problem.

B. SEGMENTER EVALUATION
In the second stage, we focus on the proposed segmentation
network and its claimed language-independence. It should
be emphasized that by the language-independent method we
mean that our segmentation network can be built with a lot of
languages and writing systems taken into account. To verify
the proposed method, we use the datasets that are described in
Sec. ITI-D. Fig. 12 provides example test images. The images
in Fig. 12 are intended to show both the diversity of characters
and distortions in the test set. This diversity prevents us from
using classic image processing methods.

To evaluate only the segmentation, we exclude the second
summand from eq. 1. We calculate the segmentation error
rate as:

Liotal
Z CM(P;, l;.,,.)
SER=2=L)
total
where Ly, denotes the total number of lines, [, 1is
the ground truth cuts, P; is the computed projection, and
CM(P;, ;) means the result of the discrete two-sample
Cramér-von Mises test [56]. Table 5 provides the segmen-
tation results, the value of eq. 5 if no “cuts” were found
and the worst-case value of eq. 5 for each test set. It should
be emphasized that the Cramér-von Mises test depends on

VOLUME 8, 2020

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

IEEE Access

(a) Armenian

(c) Cyrillic

FIGURE 12. Example generated images from segmentation test sets.

the number of “cuts” in the text line, on the width of the
characters, and on the distance between characters. Conse-
quently, the results of one segmentation algorithm on several
datasets cannot be directly compared. In the case of Table 5,
it means that we can compare the values in one column, but
to compare the values in one row, we should take the “No
segmentation” results into account. In Fig. 13, we provide
an example of such a noncomparability. Fig. 13a presents the
beginning of the text line, and 13b shows the cumulative sums
of the number of cuts from the ground truth and segmentation
result that are used in the Cramér-von Mises test. As one
can see, even for the first cut, there is a difference between
the ideal and the obtained cuts. Such a small difference is
allowable, but it will affect the resulting segmentation rate.
The effect caused by such differences accrues with the length
of the text line. In Table 5, the segmentation error for the
“Cyrillic” test set is higher as the average “Cyrillic” text
line is longer than the “Chinese” and ‘“Armenian” ones.
As one can see from the results (Table 5), the “mixture”
segmentation network outperforms the other ones even on the
Chinese hieroglyphs that were not presented in its training
set. Also, the “Cyrillic” network demonstrates the results

VOLUME 8, 2020

TABLE 5. Text lines segmentation results.

Test dataset
Chinese Cyrillic Armenian
Training Chinese 0.20 1.32 1.09
dataset Cyrillic 0.20 0.79 0.70
Mixture 0.18 0.79 0.64
No cuts 4.54 7.45 6.88
Worst possible score 245.61 244.19 244.62

(a) Part of a text line image

T T
Cut source: Ll

—— Ground truth
—— Result

3.0

25

2.0

Distance between
ground truth and result
15

1.0

0.5

0.0

0 20 40 60 80 100
Image width

(b) Cumulative sum of the number of cuts

FIGURE 13. Difference between the ideal and obtained cuts.

which are equal to the ones of the “Chinese” network on
the Chinese set, but not vice versa. The reason is, on the one
hand, the similarity of forms of the most hieroglyphs so that
FCN mostly “saw” straight line segments and almost no arcs,
and, on the other hand, the variety of geometric primitives
presented in the Cyrillic script. We hypothesize that results
on the Armenian set implicitly confirm this assumption as
the “Chinese’” network demonstrates worse results than the
“Cyrillic” one.

C. EVALUATION OF TEXT LINE RECOGNITION
FRAMEWORK

All components of our framework consider a single-channel
image as an input. Thus, when an RGB image comes in,
we average the three intensity values of each pixel. Also,
we resize the image if it is necessary for the component,
i.e., we resize the image to the height of 33 pixels preserving
the width for the segmenter (Sec. IV-A) and we resize each
candidate character image to 15x 19 pixels as required by
the classifier (Sec. IV-B). No other image pre-processing is
performed.

32595

IEEE Access

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

1) MIDV-500 RESULTS

Finally, we experiment with MIDV-500 to evaluate the com-
plete text line recognition framework. We train the seg-
mentation network (Table 2) and the classification network
(Table 3) employing traditional single precision (32-bit) com-
putations. As the evaluation measure for the acquired results,
we calculate the per-character recognition rate PCR.

Lootal

Z min(lev(liideal 4 liremg)’ len(liideal))
PCR=1- =! (©)

Liotal

> len(liy,,)

i=1

where L, denotes the total number of lines, len(l;,,,) is
the length of the i-th line and lev(liy,y» liy,e,,) Stands for the
Levenshtein distance between the recognized text and the
ground truth. Table 6 provides the results of the proposed
approach in comparison with Tesseract 4.00, Tesseract 3.05,
and ABBY'Y FineReader 15. In our experiments, we used the
modes of both versions of Tesseract OCR and FineReader that
allow recognition of Latin characters, digits, and punctuation
marks. In Tesseract OCR, we also disabled postprocessing
with dictionaries as, firstly, some of the text lines do not have
any language model, and, secondly, our framework does not
employ any postprocessing. To evaluate the time consump-
tion of the proposed algorithm in comparison with Tesseract,
we measure the total time (in seconds) necessary for pro-
cessing all images for each field on the personal computer
on CPU AMD Ryzen 7 1700 on a single thread (Table 7).
We do not provide a comparison with the execution time of
ABBYY FineReader, as it is an application with a graphical
user interface. Also, we do not provide time comparison with
methods from Table 4 as they are designed for individual
character recognition, not for the text line recognition.

A significant problem faced by the recognition systems for
the camera-captured images is errors of document boundaries
detection. It results in incorrectly rectified field images and
distorted characters. To estimate the robustness of our method
to such errors, we perform an experiment to model document
detection errors employing the method described in [11]. For
each image available in MIDV-500, we modify the document
quadrangle by the addition of normally distributed noise
to each vertex. We change each coordinate by five pixels
at most as we want, firstly, to preserve text visibility and,
secondly, to avoid highly distorted images that are unsuitable
for Tesseract 4.00. Then we acquire the text line images as
we did for the original quadrangles and perform the text line
recognition process for the resulting image. Table 8 provides
the absolute difference between the results from Table 6 and
the ones of this experiment.

According to the experimental results, our method out-
performs the latest Tesseract 4.00 on all types of the text
lines in both accuracy and speed. The proposed method is at
least 2.07 times faster than Tesseract 4.00. Moreover, in all
fields our method yields substantially fewer errors than both
Tesseract 4.00 and ABBYY FineReader 15 even though it

32596

TABLE 6. Text lines recognition results of the proposed method, Tesseract
4.00, Tesseract 3.05 and ABBYY FineReader 15 for MIDV-500.

Text Proposed Tesseract Tesseract FineReader
line method 4.00 3.05 15

type PCR x 100%

Latin names | 79.04 75.44 37.29 55.76

Dates 84.59 57.80 41.85 56.67

MRZ 92.98 47.94 58.52 74.11
Docnum 80.06 41.83 27.27 57.11

TABLE 7. Total time required for all images recognition for each field
in MIDV-500.

Text line Total time (seconds)

type Proposed Tesseract Tesseract
method 4.00 3.05

Latin names 112.697 304.269 714.159

Dates 121.755 371914 696.674

MRZ 233.179 586.808 731.757

Docnum 110.067 227.961 446.367

does not employ any language model postprocessing. The
results on the “Docnum” images are of particular interest as
these text lines, on the one hand, contain unstructured data
that are unlikely to be represented in the training dataset and,
on the other hand, are one of the most important fields of the
document. Also, our method mostly produces errors because
of its case insensitivity and the independent recognition of
each symbol. To be exact, its most frequent inaccuracy is
mistaking the capital “I” for the small ““1” and vice versa,
e.g., we obtain “MAR1A” instead of “MARIA”. Such inac-
curacies could be fixed during the postprocessing stage with
language models. As for Tesseract 3.05, which was added
due to its popularity in earlier studies, it is substantially
surpassed by both the proposed method and Tesseract 4.00.
The correspondence between the results of Tesseract 3.05 and
ABBYY FineReader 15 complies with the previously pub-
lished results. As for the mentioned speed advantage of our
method, we suppose the main reason for it is that we employ
two ANNs with approximately 4.0x10* weights in total
while Tesseract 4.00 employs ANN with 7.8 x 10° weights.
Judging by results in Table 8, the proposed framework is
more robust than the end-to-end solution employed in Tesser-
act 4.00. Remarkably, the most severe decrease in Tesseract
4.00 PCR happens in the “Latin names” text lines, where
it demonstrated the result closest to the proposed method.
The possible reason for such an outcome is that the isolated
recognition errors affect the end-to-end solution more seri-
ously than they influence our method with independent per-
character recognition.

TABLE 8. Difference between the original results and recognition results
with noisy document image rectification (MIDV-500).

Text Proposed Tesseract Tesseract FineReader
line method 4.00 3.05 15

type PCR X 100% decrease

Latin names 1.65 4.32 3.82 2.12

Dates 1.87 3.56 9.65 3.10

MRZ 1.02 1.30 1.03 4.27
Docnum 2.14 2.88 3.09 242

VOLUME 8, 2020

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

IEEE Access

2) THE 1961 CENSUS FOR ENGLAND AND WALES
SUBSAMPLE RESULTS

The second experiment that we perform to evaluate the whole
framework is the one with The 1961 Census for England
and Wales subsample. We use the same segmentation net-
work but retrain the classifier as the previous one does not
contain “&” and ““,” in its alphabet. The training data is
acquired in the same way as described in Sec. III-D. The
other difference between this experiment and the one with
MIDV-500 is character recognition accuracy calculation. The
previously published results for this sample are calculated
with PRImA TextEval [80]. This tool uses the so-called
University of Nevada measure that is based on Levenshtein
distance to compute character recognition accuracy. As Tex-
tEval is freely available, we use it to get recognition results
comparable with previously presented ones. Table 9 provides
the experimental results of the various methods and systems
on the 1961 Census subsample. It should be mentioned that
the authors of [61] retrain Tesseract Engine with the data
obtained from the documents of the same 1961 Census for
England and Wales. In other words, their training sample con-
sists of character images printed with a specific font while we
do not adjust the synthetic data generator for this particular
document.

TABLE 9. Text line recognition results for the 1961 Census sample.

Method / System OCR accuracy (%)
Tesseract 3.04 90.08
Tesseract 4.00 91.13

FineReader Engine | 88.40
11[61]
Proposed method 96.69
Retrained 94.51
Tesseract [61]
Retrained Tesseract | 95.40
with dictionaries [61]

The acquired results demonstrate that our language-
independent model surpasses methods that employ both the
implicit language models (LSTM in Tesseract OCR 4.00)
and the explicit ones (dictionaries in [61]). What is more,
the most frequent error of our method is mistaking “O” for
“C”” when the former are distorted as demonstrated in Fig. 14.
Fig. 15 provides the text lines images with incorrectly recog-
nized “O”. Our method is prone to these errors as it does
not employ any dictionaries and could not understand that
“TOTAL” is much more probable than “TCTAL”. Even
the simplest dictionary-based postprocessing could signifi-
cantly improve the accuracy of our method as this error takes
35.10% of all character recognition errors committed by our
method.

3) EXTENDED LATIN AND NON-LATIN TEXT

LINE EXAMPLES

To check the language-independence of the framework on
the real data, we applied it to several images from MIDV-
500 containing non-Latin characters and Latin characters

VOLUME 8, 2020

0 O0CC

FIGURE 14. Distorted Os from the 1961 Census sample.

NHS ISOLATION HCS

(a) Recognized as NHS ISOLATION HCS

CLD TCTAL

(b) Recognized as CLD and TCTAL

200 CR MORE
- 1

(c) Recognized as 200 CR MORE
FIGURE 15. Text line images with incorrectly recognized O.

(X R | e 2

L ACELE L. TT

DAXILIISLORINAZIRLIV

b AIA IR LS PP AT PAR L A

o] PRIAMAL- VYICHIOD

FREIEHAA

FIGURE 16. Segmentation results for different writing systems.

with diacritical marks. To do these experiments, we also
trained the classifiers for four different alphabets with-
out re-training the segmenter. We employed the procedure
described in III-D to generate training data for the clas-
sifiers. Fig. 16 provides the results acquired for Chinese,
Azerbaijani, Czech, and Russian characters. According to the
results, we claim that the segmentation network can be made
language-independent if trained with enough data. It should
be mentioned that for recognition of the Chinese characters,
we employ an ANN described in [57]. This ANN is similar
to our classifier but provides the embeddings of the input
images. Thus, the number of neurons in the last layer does
not become enormously large, as it represents the dimension-
ality of embedding space, not the alphabet size. To be exact,
the employed architecture proposed in [57] contains 7.7 x 10*

32597

IEEE Access

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

weights, which is twice the size of our basic classifier, but it
is light-weight in the case of Chinese characters.

VI. CONCLUSION

In this paper, we present our method for text line recogni-
tion that employs two ANNSs interconnected by the dynamic
programming algorithm. The primary motivation for the pro-
posed approach is to solve the per character segmentation task
as the language-independent one. As data acquisition is an
obstacle for training ANNSs for different languages, we utilize
only the synthetic training data in our central experiment.

We provide a comparison of the recognition accu-
racy results of our method, LSTM-based Tesseract 4.00,
the algorithmic method from Tesseract 3.05, and ABBYY
FineReader 15 on the public dataset for the camera-captured
ID recognition MIDV-500. The acquired results show that our
framework is essentially better than ABBYY FineReader 15
and both versions of Tesseract OCR. Also, we provide the
results of our method on the 1961 Census of England and
Wales Project dataset. We achieve the highest recognition
accuracy in comparison with previously published results
of several LSTM-based and algorithmic methods. Moreover,
we would like to mention that the recognition accuracy of
our framework in images with names and other dictionary
words can be improved significantly by using the language
model postprocessing. We demonstrate the transferability of
the segmentation network to different scripts if connected
with the appropriate recognition ANN.

To justify the applicability of the suggested light-weight
classifier, we experiment with the classic MNIST dataset
and acquire the results comparable with the state-of-the-art
ones. To examine the segmentation method, we show that
the segmentation networks trained on the data with differ-
ent alphabets perform almost equally on different datasets.
We employ synthetic data for this experiment as we need per-
character segmentation ground truth.

To conclude, our framework demonstrates the powerful
capabilities of employing the FCNs for text line segmenta-
tion and of using extremely light-weight ANNs for camera-
captured image recognition.

REFERENCES

[1] S. Azenkot and S. Zhai, “Touch behavior with different postures on soft
smartphone keyboards,” in Proc. MobileHCI, San Francisco, CA, USA,
2012, pp. 251-260.

[2] S. Ruan, J. O. Wobbrock, K. Liou, A. Ng, and J. Landay, “Comparing
speech and keyboard text entry for short messages in two languages
on touchscreen phones,” 2018, arXiv:1608.07323. [Online]. Available:
https://arxiv.org/abs/1608.07323

[3] Y. Wang, Y. Sun, and C. Liu, “Layout and perspective distortion inde-
pendent recognition of captured chinese document image,” in Proc.
14th IAPR Int. Conf. Document Anal. Recognit. (ICDAR), Nov. 2017,
pp. 591-596.

[4] M.M. Lugman, pp. Gomez—Kriamer, and JM. Ogier, “Mobile phone
camera-based video scanning of paper documents,” in Camera-Based
Document Analysis and Recognition (Lecture Notes in Computer Science),
vol. 8357. Cham, Switzerland: Springer, 2013.

[5] B. Q. L. Mai, T. H. Huynh, and A. D. Doan, “An independent character
recognizer for distantly acquired mobile phone text images,” in Proc. Int.
Conf. Adv. Technol. Commun. (ATC), Oct. 2016, pp. 85-90.

32598

[6]

[71

[8]

[9]

[10]

(11]

(12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

K. Bulatov, V. V. Arlazarov, T. Chernov, O. Slavin, and D. Nikolaev,
“Smart IDReader: Document recognition in video stream,” in Proc. 14th
IAPR Int. Conf. Document Anal. Recognit. (ICDAR),Nov. 2017, pp. 39-44.
F. Jia, C. Shi, Y. Wang, C. Wang, and B. Xiao, “Grayscale-projection
based optimal character segmentation for camera-captured faint text recog-
nition,” in Proc. 14th IAPR Int. Conf. Document Anal. Recognit. (ICDAR),
Nov. 2017, pp. 1301-1306.

N. Nayef, M. M. Lugman, S. Prum, S. Eskenazi, J. Chazalon, and
J. M. Ogier, “SmartDoc-QA: A dataset for quality assessment of smart-
phone captured document images-single and multiple distortions,” in Proc.
ICDAR, Nancy, France, Aug. 2015, pp. 1231-1235.

K. Bulatov, ““Selecting optimal strategy for combining per-frame character
recognition results in video stream,” J. Inf. Technol. Comput. Syst., no. 3,
pp. 45-55, 2017.

Y. Wang, Y. Sun, and C. Liu, “Layout and perspective distortion indepen-
dent recognition of captured chinese document image,” in Proc. 14th [APR
Int. Conf. Document Anal. Recognit. (ICDAR), Nov. 2017, pp. 591-596.
V. V. Arlazarov, K. Bulatov, T. Chernov, and V. L. Arlazarov,
“A dataset for identity documents analysis and recognition on mobile
devices in video stream,” Comput. Opt., vol. 43, no. 5, pp. 818-824, 2019,
doi: 10.18287/2412-6179-2019-43-5-818-824.

S. Eskenazi, P. Gomez-Krimer, and J.-M. Ogier, “A comprehensive survey
of mostly textual document segmentation algorithms since 2008, Pattern
Recognit., vol. 64, pp. 1-14, Apr. 2017.

G. Renton, C. Chatelain, S. Adam, C. Kermorvant, and T. Paquet, “‘Hand-
written text line segmentation using fully convolutional network,” in Proc.
14th IAPR Int. Conf. Document Anal. Recognit. (ICDAR), vol. 1. Kyoto,
Japan, Nov. 2017, pp. 5-9.

P. Sahare and S. B. Dhok, “Multilingual character segmentation and
recognition schemes for Indian document images,” IEEE Access, vol. 6,
pp. 10603-10617, 2018.

P. Lu, L. Shan, J. Li, and X. Liu, “A new segmentation method for
connected characters in CAPTCHA,” in Proc. Int. Conf. Control, Autom.
Inf. Sci. (ICCAIS), Oct. 2015, pp. 128-131.

P. Shivakumara, S. Bhowmick, B. Su, C. L. Tan, and U. Pal, “A new
gradient based character segmentation method for video text recognition,”
in Proc. Int. Conf. Document Anal. Recognit., Sep. 2011, pp. 126-130.

U. Pal, P. Pratim Roy, N. Tripathy, and J. Lladds, ‘“Multi-oriented Bangla
and Devnagari text recognition,” Pattern Recognit., vol. 43, no. 12,
pp. 4124-4136, Dec. 2010.

P. Pratim Roy, U. Pal, J. Lladés, and M. Delalandre, ““Multi-oriented touch-
ing text character segmentation in graphical documents using dynamic pro-
gramming,” Pattern Recognit., vol. 45, no. 5, pp. 1972-1983, May 2012.
T. Saba and A. Rehman, “Effects of artificially intelligent tools on pattern
recognition,” Int. J. Mach. Learn. Cyber., vol. 4, no. 2, pp. 155-162,
Apr. 2013.

R. Hussain, H. Gao, and R. A. Shaikh, “Segmentation of connected
characters in text-based CAPTCHA s for intelligent character recognition,”
Multimedia Tools Appl., vol. 76, no. 24, pp. 25547-25561, Dec. 2017.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), vol. 39, Jun. 2015, pp. 640-651.

G. Nanfack, A. Elhassouny, and R. O. H. Thami, “Squeeze-SegNet: A new
fast deep convolutional neural network for semantic segmentation,” Proc.
SPIE, vol. 10696, Apr. 2018, Art. no. 1069620.

C. H. Chen and J. L. DeCurtins, “Word recognition in a segmentation-
free approach to OCR,” in Proc. 2nd Int. Conf. Document Anal. Recognit.
(ICDAR), Tsukuba, Japan, Dec. 2002.

H. El Bahi and A. Zatni, “Text recognition in document images obtained by
a smartphone based on deep convolutional and recurrent neural network,”
Multimedia Tools Appl., vol. 78, no. 18, pp. 26453-26481, Sep. 2019.

B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural net-
work for image-based sequence recognition and its application to
scene text recognition,” 2015, arXiv:1507.05717. [Online]. Available:
https://arxiv.org/abs/1507.05717

T. Chernov, D. Ilin, P. Bezmaternykh, I. Faradzhev, and S. Karpenko,
“Research of segmentation methods for images of document textual blocks
based on the structural analysis and machine learning,” RFBR J., vol. 92,
no. 4, pp. 55-71, 2016.

B. Su and S. Lu, “Accurate scene text recognition based on recurrent
neural network,” in Computer Vision (Lecture Notes in Computer Science),
vol. 9003, D.Cremers, I. Reid, H. Saito, and M. H. Yang, Eds. Cham,
Switzerland: Springer, 2014.

VOLUME 8, 2020

http://dx.doi.org/10.18287/2412-6179-2019-43-5-818-824

Y. S. Chernyshova et al.: Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

IEEE Access

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

B. Su and S. Lu, “Accurate recognition of words in scenes without char-
acter segmentation using recurrent neural network,” Pattern Recognit.,
vol. 63, pp. 397-405, Mar. 2017.

R. Smith. (2016). Tesseract Blends Old and New OCR Technology.
[Online]. Available: https://github.com/tesseract-ocr/docs/tree/master/
das_tutorial2016.

A. Ul-Hasan and T. M. Breuel, “‘Can we build language-independent OCR
using LSTM networks?” in Proc. of 4th Int. Workshop Multilingual (OCR-
MOCR), New York, NY, USA, 2013, p. 9.

M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, ““Synthetic data
and artificial neural networks for natural scene text recognition,” 2014,
arXiv:1406.2227.

J. Burie, J. Chazalon, M. Coustaty, S. Eskenazi, M. M. Lugman, M. Mehri,
N. Nayef, J. Ogier, S. Prum, and M. Rusinol, “ICDAR2015 competition on
smartphone document capture and OCR (SmartDoc),” in Proc. 2015 13th
Int. Conf. Document Anal. Recognit. (ICDAR), Nancy, France, Aug. 2015,
pp. 1161-1165.

S. Paul, S. Saha, S. Basu, P. K. Saha, and M. Nasipuri, “Text localization
in camera captured images using fuzzy distance transform based adaptive
stroke filter,” Multimedia Tools Appl., vol. 78, no. 13, pp. 18017-18036,
Jul. 2019.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, Nov. 1998.

L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, ‘“Regularization of
neural networks using dropconnect,” in Proc. 30th Int. Conf. Mach. Learn.
(ICML), vol. 28. Atlanta, GA, USA, May 2013, pp. 1058-1066.

B. Graham, “Fractional max-pooling,” 2015, arXiv:1412.6071. [Online].
Available: https://arxiv.org/abs/1412.6071

DA. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (ELUs),” 2015,
arXiv:1511.07289. [Online]. Available: https://arxiv.org/abs/1511.07289
J. Zhao, M. Mathieu, R. Goroshin, and Y. LeCun, “Stacked what-
where auto-encoders,” 2015, arXiv:1506.02351. [Online]. Available:
https://arxiv.org/abs/1506.02351

C.-Y. Lee, P. W. Gallagher, and Z. Tu, “Generalizing pooling func-
tions in convolutional neural networks: Mixed, gated, and tree,” 2015,
arXiv:1509.08985. [Online]. Available: https://arxiv.org/abs/1509.08985
Z.Luo, A, Small, L. Dugan, and S. Lane, ““Cloud Chaser: Real time deep
learning computer vision on low computing power devices,” Proc. SPIE,
vol. 11041, Mar. 2019, Art. no. 110412Q.

D. Kang, D. Kang, J. Kang, S. Yoo, and S. Ha, “Joint optimization of speed,
accuracy, and energy for embedded image recognition systems,” in Proc.
Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2018, pp. 715-720.
X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely
efficient convolutional neural network for mobile devices,” in Proc. 2018
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Salt Lake City, UT, USA,
Jun. 2018, pp. 6848-6856.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,” 2017, arXiv:1704.04861.
[Online]. Available: https://arxiv.org/abs/1704.04861

S. H. Hasanpour, M. Rouhani, M. Fayyaz, M. Sabokrou, and
E. Adeli, “Towards principled design of deep convolutional networks:
Introducing SimpNet,” 2018, arXiv:1802.06205. [Online]. Available:
https://arxiv.org/abs/1802.06205

S. H. Hasanpour, M. Rouhani, M. Fayyaz, and M. Sabokrou, “Lets keep
it simple, Using simple architectures to outperform deeper and more
complex architectures,” 2018, arXiv:1608.06037. [Online]. Available:
https://arxiv.org/abs/1608.06037

Y. Weng and C. Xia, “A new deep learning-based handwritten character
recognition system on mobile computing devices,” Mobile Netw. Appl., to
be published.

S. Han, J. Tran, J. Pool, and W. J. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. NIPS, Montreal, QC,
Canada, 2015, pp. 1135-1143.

C. Alippi, S. Disabato, and M. Roveri, ‘“Moving convolutional neural
networks to embedded systems: The AlexNet and VGG-16 case,” in
Proc. 17th ACM/IEEE Int. Conf. Inf. Process. Sensor Netw. (IPSN), Porto,
Portugal, Apr. 2018, pp. 212-223.

A. Ignatov, R. Timofte, W. Chou, K. Wang, M. Wu, T. Hartley, and
L. Van Gool, ““Ai benchmark: Running deep neural networks on Android
smartphones,” in Proc. ECCV, Munich, Germany, Sep. 2018, pp. 288-314.

VOLUME 8, 2020

(50]

[51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

[63]

[64]
[65]
[66]

[67]

[68]

[69]

[70]

(711

(72]

P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, “Ristretto: A frame-
work for empirical study of resource-efficient inference in convolutional
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5784-5789, Nov. 2018.

J. Kung, D. Zhang, G. van der Wal, S. Chai, and S. Mukhopadhyay,
“Efficient object detection using embedded binarized neural networks,”
J. Signal Process. Syst., vol. 90, no. 6, pp. 877-890, Jun. 2018.

A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and
K. Keutzer, “SqueezeNext: Hardware-aware neural network design,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Salt Lake City, UT, USA, Jun. 2018, pp. 1638-1647.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals,
“Understanding deep learning requires rethinking generalization,” 2017,
arXiv:1611.03530. [Online]. Available: https://arxiv.org/abs/1611.03530
A. N. Chirvonaya, A. E. Lynchenko, Y. S. Chernyshova, and
A. V. Sheshkus, “Comparison of the classifying and similarity metric-
based neural networks through the recognition of the filed,” Sensory Syst.,
vol. 33, no. 1, pp. 65-69, 2019, doi: 10.1134/S0235009219010049.

A. V. Gayer, Y. S. Chernyshova, and A. V. Sheshkus, “Effective real-time
augmentation of training dataset for the neural networks learning,” Proc.
SPIE, vol. 11041, Mar. 2019, Art. no. 1104111

A. V. Sheshkus, Y. S. Chernyshova, A. N. Chirvonaya, and D. P. Nikolaev,
“New criteria for neural network encoder learning in the string segmenta-
tion problem,” Sensory Syst., vol. 33, no. 2, pp. 173-178, 2019.

S. A.Ilyuhin, A. V. Sheshkus, and V. L. Arlazarov, ‘“‘Recognition of images
of korean characters using embedded networks,” 2019, arXiv:1911.04241.
[Online]. Available: https://arxiv.org/abs/1911.04241

Y. S. Chernyshova, M. A. Aliev, E. S. Gushchanskaia, and A. V. Sheshkus,
“Optical font recognition in smartphone-captured images and its appli-
cability for ID forgery detection,” Proc. SPIE, vol. 11041, Mar. 2019,
Art. no. 1104117, doi: 10.1117/12.2522955.

A. Sheshkus, A. Ingacheva, V. Arlazarov, and D. Nikolaev, “HoughNet:
Neural network architecture for vanishing points detection,” in Proc. Int.
Conf. Document Anal. Recognit. (ICDAR), Sep. 2019, pp. 844-849.
(2018). Tesseract OCR. [Online]. Available: https://github.com/tesseract-
ocr

C. Clausner, A. Antonacopoulos, and S. Pletschacher, “Efficient and
effective OCR engine training,” Int. J. Document Anal. Recognit., to be
published.

A. P. Tafti, A. Baghaie, M. Assefi, H. R. Arabnia, Z. Yu, and P. Peissig,
“OCR as a service: An experimental evaluation of Google Docs OCR,
Tesseract, ABBYY FineReader, and Transym,” in Proc. ISVC, vol. 2016,
Las Vegas, NV, USA, 2016, pp. 735-746.

F. Asad, A. Ul-Hasan, F. Shafait, and A. Dengel, “High performance
OCR for camera-captured blurred documents with LSTM networks,” in
Proc. 12th IAPR Workshop Document Anal. Syst. (DAS), Santorini, Greece,
Apr. 2016, pp. 7-12.

M. Kis§, M. Hradis, and O. Kodym, “Brno mobile OCR dataset,” 2019,
arXiv:1907.01307. [Online]. Available: https://arxiv.org/abs/1907.01307
M. Namysl and I. Konya, “Efficient, lexicon-free OCR using deep learn-
ing,” 2019, CoRR, abs/1906.01969, 2019.

(2019). ABBYY FineReader. [Online]. Available: https://www.abbyy.
com/en-eu/finereader/

International Civil Aviation Organization Doc 9303.
Accessed: Jan. 10, 2020. [Online]. Available: https://www.icao.int/
publications/pages/publication.aspx ?7docnum=9303

Dataset for Paper Efficient and Effective OCR Engine Training.
Accessed: Jan. 10, 2020. [Online]. Available: https://www.primaresearch.
org/datasets/ TESSERACT_TRAINING.

Y. Chernyshova, A. Gayer, and A. Sheshkus, “Generation method of
synthetic training data for mobile OCR system,” Proc. SPIE, vol. 10696,
Apr. 2018, Art. no. 106962G.

GoogleFonts. Accessed: Jan. 10, 2020. [Online]. Available: https:/fonts.
google.com/

C. J. C. Burges, O. Matan, Y. Le Cun, J. S. Denker, L. D. Jackel,
C. E. Stenard, C. R. Nohl, and J. I. Ben, “Shortest path segmentation:
A method for training a neural network to recognize character
strings,” in Proc. IJCNN Int. Joint Conf. Neural Netw., Jan. 2003,
pp. 165-172.

Y. LeCunn, C. Cortes, and C. C. J. Burges. The MNIST Database
of Handwritten Digits. Accessed: Aug. 7, 2019. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

32599

http://dx.doi.org/10.1134/S0235009219010049
http://dx.doi.org/10.1117/12.2522955

IEEE Access

Y. S. Chernyshova et al.:

Two-Step CNN Framework for Text Line Recognition in Camera-Captured Images

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

R. F. Alvear-Sandoval, J. L. Sancho-Gémez, and A. R. Figueiras-Vidal,
“On improving CNNs performance: The case of MNIST,” Inf. Fusion,
vol. 52, pp. 106-109, Dec. 2019.

Y. LeCun, L. D. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker,
I. Guyon, U. A. Miiller, E. Séckinger, P. Simard, and V. Vapnik, “Learning
algorithms for classification: A comparison on handwritten digit recogni-
tion,” in Proc. ICNN, Perth, WA, Australia, 1995, pp. 53-60.

I. Sato, H. Nishimura, and K. Yokoi, “APAC: Augmented pattern classi-
fication with neural networks,” 2015, arXiv:1505.03229. [Online]. Avail-
able: https://arxiv.org/abs/1505.03229

D. Ciresan, U. Meier, and J. Schmidhuber, ‘“Multi-column deep neural
networks for image classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Providence, RI, USA, Jun. 2012, pp. 3642-3649.

J.-R. Chang and Y.-S. Chen, “Batch-normalized maxout network in net-
work,” 2015, arXiv:1511.02583. [Online]. Available: https://arxiv.org/
abs/1511.02583

S. Sabour, N. Frosst, and J. E. Hinton, “Dynamic routing between
capsules,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), 2017,
pp. 3856-3866.

M. Liang and X. Hu, “Recurrent convolutional neural network for object
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Boston, MA, USA, Jun. 2015, pp. 3367-3375.

PRImA Text Evaluation Tool. Accessed: Jan. 10, 2020. [Online]. Available:
http://www.primaresearch.org/tools/PerformanceEvaluation

YULIA S. CHERNYSHOVA received the B.S.
degree in applied mathematics and the M.S. degree
in applied computer science from the National
University of Science and Technology MISIS,
Moscow, Russia, in 2016 and 2018, respectively.
She is currently pursuing the Ph.D. degree in com-
puter science with the Federal Research Center
Computer Science and Control of RAS, Moscow.

She is also with Smart Engines. Her research
interests include training data synthesis, optical

character recognition, and deep neural networks.

32600

ALEXANDER V. SHESHKUS received the B.S.
and M.S. degrees in applied physics and mathe-
matics from the Moscow Institute of Physics and
Technology, State University, Moscow, Russia,
in 2009 and 2011, respectively.

He is currently the Head of the Machine Learn-
ing Department, Smart Engines, and a Researcher
with the Federal Research Center Computer Sci-
ence and Control of RAS. His research interests
include deep neural networks, computer vision,

and projective invariant image segmentation.

VLADIMIR V. ARLAZAROV received the Ph.D.
degree in applied mathematics from the Moscow
Institute of Steel and Alloys, in 1999.

He is currently an Associate Professor with
the Moscow Institute of Physics and Technol-
ogy, State University, Moscow, Russia, and a
Senior Researcher with the Institute for Infor-
mation Transmission Problems of RAS, Moscow.
His research interests are pattern recognition and
machine learning.

VOLUME 8, 2020

