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ABSTRACT We present a vision system based on a monocular camera to track the 3D position and
orientation of an Unmanned Aerial Vehicle (UAV) during the landing process aboard a ship. The proposed
method uses a 3D model-based approach based on a Particle Filter (PF) with proposal distributions given by
an Unscented Kalman Filter (UKF) for the translational motion and filters based on directional statistics for
the rotational motion. Our main contributions are (i) the development of a novel 3D model-based tracking
architecture based on directional statistics that can be easily adapted to other tracking problems, and (ii)
the development of the Unscented Bingham-Gauss Filter (UBiGaF) for rotation estimation. We show the
advantages of using directional statistics based filters on 3D model-based tracking in a series of quantitative
tests in a challenging simulation scenario with real video data. The obtained position and angular error are
compatible with the automatic landing system requirements when using directional statistics. We obtain
lower error when using the UBiGaF scheme for the vast majority of the tested combinations.

INDEX TERMS Unmanned aerial vehicles, computer vision, motion estimation, algorithm design and
analysis, military vehicles.

I. INTRODUCTION
The vast majority of the accidents and incidents with
Unmanned Aerial Vehicles (UAVs) occur during take-off
or landing [1], [2], since these are the most challenging
maneuvres where, typically, an external pilot takes control.
Reducing human intervention in these operations increases
system reliability and alleviates the use of trained UAV pilots.

We propose one approach to automate the landing maneu-
ver by tracking the pose of the UAV with a monocular
Red, Green and Blue (RGB) camera located on the Fast
Patrol Boat (FPB) with a processing station to perform the
needed Computer Vision (CV) processing tasks. A ground-
based vision system makes it possible to use more processing
power, allowing the use of more computationally intensive
methods. On the contrary to systems that embed the sensing
and processing on the UAV, our approach does not require
any customization of standard Commercial-Off-The-Shelf
(COTS) UAVs. The UAV platform is composed of sensors,
actuators, communications, and onboard processing, and the
Ground Control Station (GCS) is composed of communi-
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FIGURE 1. General scheme illustration.

cations, a camera, and a processing station with a track-
ing algorithm (Figure 1). The system observes and obtains
the UAV pose and sends that information to the GCS that
computes the needed control commands to guide the UAV
via radio to perform autonomous landing using a net-based
retention system (Figure 2). In out scenarios, the fact that the
camera is installed in a moving platform in a maritime envi-
ronment and the reduced dimensions of the fixed-wing UAV
makes the initial detection and the tracking very challenging
tasks.

In previous work [3] we have proposed a pose tracking
framework using a 3D model-based vision system employ-
ing the UAV Computer-Aided Design (CAD) model and
an Unscented Particle Filter (UPF) based approach using
Gaussian noise in the translational component of motion and
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FIGURE 2. Landing area (red rectangle) and used UAV model.

Bingham (Bi) noise in the rotational component, to better
model the periodic nature of rotations. However, the Bi noise
is specific to the angular position component and does not
capture its correlation with the angular velocity. In this paper,
we introduce Bingham-Gauss (BiGa) noise to model the full
rotational noise, both in its angular position and velocity
components. We add new results that show significant per-
formance improvements when using the BiGa model with
respect to the Bi model (up to 50% less pose estimation
error). In the current implementation, we divide the trans-
lation and rotation into two independent motions. In the
UAV field, this decoupling has been applied with success
to automatic landing using the airborne camera [4], using
stereo vision to estimate altitude, attitude and motion [5]
and UAV controller design [6]. For filtering the rotational
motion, the Gaussian model is not a good approximation in
the presence of strong orientation noise. The Bi distribution
(Appendix B) is one distribution employed in the field of
directional statistics a subdiscipline of statistics that deals
with directions. Some examples of data that may be consid-
ered as directional statistics are orientations, compass direc-
tions and time of day. The BiGa distribution (Appendix D),
consists in the product of a Bi distribution and a Gaussian
distribution conditioned on the Bi distributed random vari-
ables [7]. This distribution allows us to capture dependen-
cies between the angular velocity and the UAV attitude. The
motion filtering is made using an Unscented Kalman Filter
(UKF) for the translation [8] (Appendix A) and an Unscented
Bingham Filter (UBiF) [3], [9]–[12] (Section IV-D) or a
new filter using the BiGa distribution, denoted Unscented
Bingham-Gauss Filter (UBiGaF) (Section IV-E) for the
rotation.

The main contributions of this article are (i) the inclusion
of directional statistics and correlation between attitude and
angular velocity in the UAV tracking field, (ii) the develop-
ment and analysis of a novel UBiGaF for the state estimation
of rotating objects, (iii) the use of directional statistics in 3D
model-based tracking and (iv) the comparison of performance
between the UPF, the UBiF and the UBiGaF in a simulation
environment using real data.

This article is organized as follows. In Section II,
the related work regarding 3D Model-based pose estimation
and pose tracking is outlined. In Section III, the overall sys-
tem proposal is outlined, describing the used target detection
and tracking methods. In Section IV, the used motion models
and Unscented filters are explained in detail. In Section V,
we present the experimental results. Finally, in Section VI,
we present the conclusions and provide directions for further
research work.

II. RELATED WORK
This section makes a review of the related work with
particular focus on the 3D Model-based pose estimation
(Section II-A) and pose tracking (Section II-B).

A. 3D MODEL-BASED POSE ESTIMATION
Pose estimation is an important task and has been studied in
several fields of science. The class of methods that use the
object or environment CAD model to perform pose estima-
tion are called 3D model-based pose estimation. The main
applications of 3D model-based pose estimation are Aug-
mented Reality (AuRe) [13], robot manipulation [14], robot
navigation [15], object pose tracking [16], among others.

Using the RGB onboard camera and the environment 3D
CAD model we can perform feature matching [15] using the
moving edges tracker algorithm for pose estimation and com-
bine this information with Inertial Measurement Unit (IMU)
data to get the translational velocities needed for the UAV
control [17]. In [18], [19], we describe a ground-based vision
system that estimates the UAV pose using its CAD model.
The vast majority of the ground-based systems are devel-
oped for tracking or control without using CAD information.
Nowadays all UAVs have their 3D CAD model available,
so their pose can be estimated using a class of methods for
3D model-based pose estimation. We propose a 3D model-
based ground-based vision systemwith high processing capa-
bility, which allows reducing the UAV size, weight and power
requirements. This approach makes it also possible to use
standard UAVs equipped with COTS autopilots.

B. POSE TRACKING
Given several measures over time, we can use target specific
dynamicmodels to filter the sensor data using a Kalman Filter
(KF) [20], an ExtendedKalman Filter (EKF) [21], a UKF [22]
or a Particle Filter (PF) [23]. PFs in CVwere applied to visual
tracking tasks such as ball tracking [24], spherical pendulum
tracking [25], human face tracking [26], articulated object
tracking [27], vehicle tracking [28] or object tracking [29].
The combination of a PF with a UKF, known as a UPF [30],
is described in [31] for visual contour tracking, and in [32]
for ground maneuvering target tracking. The UKF generates
better proposal distributions for the PF, taking into account
the current observations [33].

When using conventional filtering techniques for attitude
estimation, we have to consider a small angle assumption
to quantify the existing uncertainty [34]. To overcome this,
we can use a directional distribution to take into account
the periodic nature of the rotation. The Bi distribution [35]
is defined directly on the unit multidimensional hyper-
sphere [36]. It has been successfully used to (i) estimate
the attitude of a ping pong ball [37], (ii) for estimation
of orientations in the 3D space with unit quaternions [38]
and (iii) using a UKF based approach using deterministic
sampling [9]. Some mixtures and combinations of distribu-
tions have also been made to quantify the correlation between
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FIGURE 3. UAV model (left) and camera reference frame (right).

Euclidean states (e.g. angular velocities) and the attitude
on its manifold. Some of these implementations are the
Partially-Conditioned Gaussian Mixtures (PCGM) [34],
the Gauss-Bingham (GaBi) [10] and the Bingham-
Gauss (BiGa) [7] distributions. These approaches allow us
to capture the covariance between the attitude and angular
velocity uncertainties.

As described in Section I, we have developed a pose track-
ing architecture based on a UPF. The main developments
regarding our previous work [3], [12] is a comparison among
several tracking architectures based on UPFs [8] and the
development of a novel UBiGaF able to capture the covari-
ance between attitude and angular velocity.

III. SYSTEM PROPOSAL
This section presents the overall system architecture used to
perform UAV tracking. This architecture has been developed
and refined in the last few years in a series of publications [3],
[8], [12], [18], [19]. In this paper, we propose modifications
to the tracking modules using directional statistics.

As described in Section I, we are using a UPF based
scheme where each filter particle will represent the UAV state
- linear and angular positions and velocities:

xt = [tTt , r
T
t ]
T with tTt = [uTt , v

T
t ] and rTt = [q

T
t ,ω

T
t ] (1)

where uTt = [X ,Y ,Z ] is the linear position, vTt = [vx , vy, vz]
is the linear velocity, qTt = [q1, q2, q3, q4] (3) is the ori-
entation quaternion, and ωTt = [ωx , ωy, ωz] is the angular
velocity according to the camera reference frame described
in Figure 3. The state distribution is represented by the parti-
cle set xit . The developed system can be divided into two parts
(Figure 4):
• Detection and Hypotheses generation (Section III-A);
• Tracking (Section III-B).

A. DETECTION AND HYPOTHESES GENERATION
The initial UAV detection is made using a You Only Look
Once (YOLO) classifier [39] trained on a created synthetic
dataset performing transfer learning to real images. After we
obtain the RegionOf Interest (ROI), we compare it with a pre-
trained database of synthetic images of the UAV in multiple
poses to retrieve a set of top-ranked poses as described in [18].

B. TRACKING
The standard UPF [30] scheme is divided into (i) initializa-
tion, (ii) importance sampling, and (iii) importance weight-
ing and resampling. The initialization is possible using the
detection and hypotheses generation stage (Section III-A).
The main difference, when compared with the generic UPF,

is in the importance sampling step, where we use a UKF-
UBiF/UBiGaF (Section IV) to integrate the current observa-
tion and generate a better proposal distribution. The current
observation zt = [tTt ,q

T
t ]
T is given by the maximum likeli-

hood particle according to a color similarity metric [18]. The
applied resampling strategywas resampling reallocation [19].
The mode of the distribution, approximated by the particle
with the largest importance weight before resampling, is used
as the state estimation. If during tracking, we cannot detect
the UAV on the frame, all the particles came from the last
iteration. The main article focus will be the motion filtering
rotational part (Section IV).

IV. MOTION FILTERING
Motion filtering has the objective of using measures affected
by uncertainty and noise over time and generate results
closer to the real values of the measured quantities. We have
considered a constant velocity model with independent lin-
ear and angular motions [40]. The translational motion
(Section IV-A) filtering will be performed using a UKF
(Appendix A) and the rotational motion (Section IV-B) fil-
tering will be performed using a UBiF (Section IV-D) or a
UBiGaF (Section IV-E).

A. TRANSLATIONAL TRANSITION MODEL
As we are using a linear model for translation, a simple KF
could be applied. To facilitate the transition between the linear
and the angular filter formulations, wewill use a discrete-time
UKF. This is a very common filter, so we remit its descrip-
tion to Appendix A. In discrete time, the evolution of the
state is:

xlt+1 = Fl(xlt , ξ
l
t ) =

[
I3×3 1t · I3×3
03×3 I3×3

]
xlt + ξ

l
t (2)

where xlt+1 = tt+1 (1), ξ lt ∼ N (0,Ql
t ) is a Gaussian noise

random variable with zero mean and covariance Ql
t .

B. ROTATIONAL TRANSITION MODEL
We represent the UAV rotation using a unit quaternion:

q = [%T , q4]T (3)

where q ∈ S3 ⊂ R4
: ||q || = 1 with:

%T = [q1, q2, q3] = ê sin
(ρ
2

)
and q4 = cos

(ρ
2

)
(4)

where ê is the axis rotation and ρ is the angle of rotation.
In discrete time, the evolution of the state is [8]:

xrt+1 = Fr (xrt , ξ
r
t ) =

[
qt ⊗ δqωt ⊗ δq

r
t

ωt + ξ
r
t

]
(5)

where xrt+1 = rt+1 (1), ⊗ represents unit quaternion mul-
tiplication (orientations composition), ξ rt ∼ N (0,Qr

t ) is a
Gaussian noise random variable with zero mean and covari-
ance Qr

t , and δq
ω
t and δqrt are quaternions representing the

integration of the effect of the angular velocity and rotation
noise assumed constant during a sampling interval 1t:

δqωt = �(ωt ) and δq
r
t = �(ξ

r
t ) (6)
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FIGURE 4. System architecture.

with:

�(b) =
[

b
|b |

sin
(
|b |1t

2

)
, cos

(
|b |1t

2

)]
(7)

C. OBSERVATION MODEL
The observation model is given by:

zt =
[
Hl(tt , ηlt )
Hr (rt , ηrt )

]
=

[ [
I3×3 03×3

]
tt + ηlt[

I4×4 03×3
]
rt ⊗ δq

η
t

]
(8)

where ηlt ∼ N (0,Rt ) is a Gaussian noise random
variable with zero mean and covariance matrix Rt and
δqηt is a quaternion representing the integration of the
effect of the observation rotation noise in a similar way
to (6). When using the UBiF (Section IV-D) or the
UBiGaF (Section IV-E), the noise of the rotational compo-
nents of the observation model is assumed Bi distributed
(Appendix B).

D. UNSCENTED BINGHAM FILTER (UBIF)
In a periodic domain like the manifold of orientations in
a 3D space, the Gaussian model is not a good approx-
imation, especially in the presence of strong noise. The
Bi distribution is an antipodally symmetric distribution
that represents a zero-mean Gaussian distribution projected
on the unit hypersphere (Appendix B). Since the prod-
uct of two Bi distributions is closed under multiplica-
tion after renormalization (Appendix B-B), we can use
the UBiF with an update step directly derived from the
Bayes filter formulation. We apply a UBiF to the ori-
entation part of the state vector. As in other filtering
frameworks, the used UBiF has two stages: (i) prediction
(Section IV-D.1), and (ii) update (Section IV-D.2). The angu-
lar velocities will be obtained from the orientation difference
between iterations. The UBiF schematic view is described
in Figure 5.

1) PREDICTION
The prediction step is described in Algorithm 1. For the
rotation case, the system model is given by:

qt = F(qt−1)⊗8t−1 (9)

where qt−1 ∼ PB
(
Me

t−1,Z
e
t−1

)
is the orientation at time

t − 1 and 8t−1 ∼ PB(M8
t−1,Z

8
t−1) is the Bi distributed

system noise where M is an orthogonal matrix describing
the orientation of the distribution and Z is the concentration
matrix that controls the spread of the distribution around its
mean (Appendix B). The system dynamic F(.) is given by (5).

Algorithm 1 UBiF - Prediction Step
F Initialization: 8t−1 (9)
F Inputs: Me

t−1,Z
e
t−1 (9)

1.Approximate the current system state (Appendix B-E):
qt−1 ∼ PB

(
Me

t−1,Z
e
t−1

)
2. Obtain the points qit−1 using deterministic sampling
(Appendix C):

qit−1 =Me
t−1q̃

i
t−1 i = 1, . . . , 7

3. Propagate the sigma points qit using the system model
F(.) (5):

q̄it = F(qit−1) i = 1, . . . , 7
4. Compute the covariance matrix Cq̄t from the sigma
points (46):

Cq̄t = Cov(q̄t )
5. Obtain the covariance matrix C8 from the Bi system
noise 8t (45):

C8 = Cov(8t )
6. Obtain the covariance matrices composition Cq̄′t
(Appendix B):

Cq̄′t = Cov(q̄t ⊗8t )
7. Estimate the Bi distribution from the obtained covari-
ance (47):

PB(M̄t , Z̄t ) ∼ MLE(Cq̄′t )
F Outputs: M̄t , Z̄t

VOLUME 8, 2020 33887



N. Pessanha Santos et al.: Directional Statistics for 3D Model-Based UAV Tracking

FIGURE 5. UBiF schematic view.

2) MEASUREMENT UPDATE
The measurement update step is described in Algorithm 2.
The measurement model is represented as:

zt = H(qt )⊗3t (10)

where zt ∈ S3 is the measurement at time t and
3t ∼ PB

(
M3

t ,Z
3
t
)
is the Bi distributed measurement noise.

The current observation zt is given by the orientation quater-
nion of the maximum likelihood particle, as described in Fig-
ure 4. Function H(.) relates the measurement zt to the values
of the orientation qt (identity function in our case). Choosing
M8

t =M3
t = I4×4 is equivalent to the concept of zero-mean

noise in the Euclidean space.
To be able to apply the measurement update step

(Algorithm 2), the noise is rotated (disturbed) according to
the actual measurement zt according to (43):

P(zt | q̄′t )

= PB(q̄′−1t )⊗ zt ;M3
t ,Z

3
t )

= PB(diag(−1,−1,−1, 1) · q̄′t ⊗ zt ;M3
t ,Z

3
t )

= PB(q̄′t ; diag(−1,−1,−1, 1) ·M
3
t ⊗ zt︸ ︷︷ ︸

M̌

,Z3t )

= PB(M̌,Z3t ) (11)

where PB(M̌,Z3t ) represents the measurement noise
PB
(
M3

t ,Z
3
t
)
with a peak aligned with zt and spread Z3t .

The estimate is described by PB(Me
t ,Z

e
t ), directly obtained

by the product of the Bi distributed system state PB(M̄t , Z̄t )
with the Bi disturbed measure PB(M̌,Z3t ) (Algorithm 2).
The update quaternion qt is obtained from the PB(Me

t ,Z
e
t )

mode (Algorithm 2). The quaternion error is obtained by
multiplying the previous quaternion (qt−1) with the conjugate
of the estimated one (q̄t ). The angular velocities are obtained
converting to the angle-axis representation, according to:

ωx =
2 cos−1(q4)

1t
×

q1
‖ qe ‖

(12)

ωy =
2 cos−1(q4)

1t
×

q2
‖ qe ‖

(13)

ωz =
2 cos−1(q4)

1t
×

q3
‖ qe ‖

(14)

where 1t is the sampling interval and qe = qt−1 ⊗ q̄t =
[q1, q2, q3, q4]T (4).

Algorithm 2 UBiF - Update Step
F Initialization: 3t (10)
F Inputs: M̄t , Z̄t (Algorithm 1) and zt (10)
1. Disturb the measure zt using the Bi noise 3t (11):

PB(M̌,Z3t )
2. The measurement update can be derived from the
Bayes theorem:

P(q̄′t |zt )︸ ︷︷ ︸
PB(Me

t ,Z
e
t )

= C · P(zt |q̄′t )︸ ︷︷ ︸
PB(M̌,Z3t )

· P(q̄′t )︸ ︷︷ ︸
PB(M̄t , Z̄t )

where C is a normalization constant;
3. The final estimate is then obtained from (42):

PB(Me
t ,Z

e
t ) = PB(M̌,Z3t ) · PB(M̄t , Z̄t )

F Outputs: Me
t ,Z

e
t

E. UNSCENTED BINGHAM-GAUSS FILTER (UBIGAF)
The UBiF does not quantify the uncertainty of the corre-
lation between angular velocity ω and the quaternion atti-
tude q on their natural manifold. We will use the BiGa
distribution (Appendix D) that allows to capture this cor-
relation in a filtering structure. The BiGa is a distribu-
tion that consists in the product of a Bi distribution and a
Gaussian distribution conditioned on the Bi distributed ran-
dom variables. Thus, we propose the Unscented Bingham-
Gauss Filter (UBiGaF). As described in the Section IV-D,
the multiplication of two Bi distributions is closed under
multiplication after renormalization, but the same did not
happen using the BiGa distribution since we do not have
a closed-form multiplication. To be able to incorporate it
on a filtering structure, we developed an update step that
was based on the Unscented Transform (UT) [30], [31]
with a structure similar to the UKF. The UBiGaF is sep-
arated into: (i) prediction (Section IV-E.1), and (ii) update
(Section IV-E.2). The UBiGaF schematic view is described
in Figure 6.

1) PREDICTION
The prediction step is described in Algorithm 3. The system
state at time t − 1 is given by:

rTt−1 =
[
qTt−1,ω

T
t−1

]
(15)

where qt−1 is the attitude quaternion and ωt−1 is its angular
velocity at time instant t − 1. The state vector is assumed to
be BiGa distributed with parameters defined by mω

t−1 (60),
Pωt−1 (61), Pqt−1 (62) and Pqωt−1 (63) at time instant t − 1.
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FIGURE 6. UBiGaF schematic view.

The system model is given by:

rt = F(rt−1)�9 t−1 (16)

where 9 t−1 ∼ PBG with Covariance Pτt−1 for the angu-
lar velocity part and Covariance 8t−1 ∼ P8t−1 ∼

PB(M8
t−1,Z

8
t−1) for the orientation part, F(.) is the motion

model (5) and � represents the BiGa composition obtained
using the sigma points representation (Appendix E).

The quaternion motion qM = [q1, q2, q3, q4]T (4) used to
propagate each one of the sigma points Ẑ i

t−1 (Algorithm 3)
is given by (7):

q1 =
ωx

‖ ω ‖
sin
(
‖ ω ‖ 1t

2

)
(17)

q2 =
ωy

‖ ω ‖
sin
(
‖ ω ‖ 1t

2

)
(18)

q3 =
ωz

‖ ω ‖
sin
(
‖ ω ‖ 1t

2

)
(19)

q4 = cos
(
‖ ω ‖ 1t

2

)
(20)

where fω(Ẑ
i
t−1) = [ωx , ωy, ωz]T and 1t is the sampling

interval. We calculate the BiGa parameters from the obtained
sigma points after propagation Ẑ i

t (Appendix E).
After the prediction step (Algorithm 3), the predicted sys-

tem state is described by a BiGa distribution with parameters
defined by m̄ω

t , P̄
ω
t , P̄

q
t , P̄

qω
t .

2) MEASUREMENT UPDATE
The measurement update step is described in Algorithm 4,
and is similar to the used in the UBiF (Section IV-D.2). The
measurement model is also represented as:

zt = H(qt )⊗3t (21)

where zt ∈ S3 is the current observation at time t and
3t ∼ PB

(
M3

t ,Z
3
t
)
is the Bi distributed measurement noise.

Function H(.) relates the measurement zt to the values of the
orientation qt (identity function in our study case).

Using the BiGa formulation, we can model the full rota-
tional noise, both in its angular position and velocity com-
ponents. As initially described in Section IV-E, we do not

Algorithm 3 UBiGaF - Prediction Step
F Initialization: 9 t−1 (16)
F Inputs: mω

t−1,P
ω
t−1,P

q
t−1,P

qω
t−1 (16)

1. Approximate the current system state (60, 61, 62, 63):[
qTt−1,ω

T
t−1

]
∼ PBG(

[
qTt−1,ω

T
t−1

]
;mω

t−1,P
ω
t−1,P

q
t−1,

Pqωt−1)
2. Obtain sigma points Z i

t−1 (Appendix E);
3.Add uncertaintyPτt−1 to the angular velocity covariance:

P̂ωt−1 = Pωt−1 + Pτt−1
4. Add Bi noise 8t−1 to the orientation covariance
(Appendix B):

8Pqt−1 = Cov
(
Pqt−1 ⊗8t−1

)
5.Add uncertainty P̂ωt−1 to the sigma points angular veloc-
ity part and 8Pqt−1 to the quaternion part originating the

sigma points Ẑ i
t−1;

6. Propagate each one of the sigma points Ẑ i
t−1 (5): Ẑ

i
t =

Fr (Ẑ i
t−1) = fq(Ẑ

i
t−1) ⊗ qM where fq is the quaternion

part of the considered sigma point and qM is the quaternion
motion given by the angular part fω(Ẑ

i
t−1);

7. Compute m̄ω
t (82), P̄ωt (83), P̄qt (84) and P̄qωt (85) from

Ẑ i
t .

F Outputs: m̄ω
t , P̄

ω
t , P̄

q
t , P̄

qω
t , Ẑ

i
t

have a closed-form multiplication for the product of two
BiGa distributions. To be able to deal with that, we have
adopted a structure similar to the UKF (Appendix A). Using
this filtering structure, we can obtain the a posteriori state
estimate rt and state covariance Prt , as described in Algo-
rithm 4. Contrarily to the UBiF, we do not need to estimate
the angular velocities from the quaternion difference since we
estimate them directly in the filter.

V. EXPERIMENTAL RESULTS
In this section, we show results of UAV tracking in a sim-
ulated environment using real video footage. All the devel-
opments were made on a 3.70 GHz Intel i7-8700K Central
Processing Unit (CPU) using an NVIDIA Quadro P5000
Graphics Processing Unit (GPU). We have used C++ with
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Algorithm 4 UBiGaF - Update Step
F Initialization: 3t (21)
F Inputs: m̄ω

t , P̄
ω
t , P̄

q
t , P̄

qω
t , Ẑ i

t (Algorithm 3) and zt (21)
1. Predict measurement expected value z̄t (32) from Ẑ i

t
angular part;
2. Predict measurement covariance Pzzt (33) from Ẑ i

t
angular part;
3. Obtain the innovation νt (34);
4. Obtain the innovation covariance Pννt (35):

Pννt = Cov(νt ⊗3t )
5. Computation of the cross-correlation matrix Przt (36);
6. Computation of the Kalman gain Kt (37):

Kt = Przt
(
Pννt

)−1
7. Update of the a posteriori state estimate rt (38);
8. Retrievemω

t , P
ω
t , P

q
t , P

qω
t from the state covariance Prt

(39).
F Outputs: rt ,mω

t , P
ω
t , P

q
t , P

qω
t

FIGURE 7. Created video environment.

Open source Computer Vision library (OpenCV) and Com-
pute Unified Device Architecture (CUDA). To obtain ground
truth information with real images, our simulator renders
the UAV CAD model in a real captured video sequence as
illustrated in Figure 7. The trajectory of the UAV during the
landing sequence can be seen in Figure 8.

A. TESTS DESCRIPTION
We have tested three different filter combinations (see
Table 1). In combination 1, we apply a UKF for both trans-
lation and rotation filtering [8]. In combination 2, we apply

TABLE 1. Performed combinations description.

a UKF for the translational motion filtering and a UBiF for
the rotational motion filtering [3], [12]. In combination 3,
we apply a UKF for the translational motion filtering and
the novel UBiGaF for the rotational motion filtering. We also
test different particle budgetsN = {50, 100, 300, 500, 1500}.
In the first filter iteration, all the particles come from the
hypotheses generation scheme (Section III-A) trained in
the interval [−90◦, 90◦] and the velocities are initialized
with zero. Every time we capture a new frame, we update
the particle vector with 25 new particles coming from the
hypotheses generation scheme to reinforce the use of the
most recent observation. The time between new frames is
4t ∼= 0.034 seconds. The temporal filters use a Bi process
noise P8B with M8

t = I4×4 and Z8t = diag(−150, −150,
−150, 0) and a Bi measurement noise P3B with M3

t = I4×4
and Z3t = diag(−800, −800, −800, 0).

B. PERFORMANCE METRICS
On each iteration, the state estimation (Figure 4) is given by
an approximation to the mode of the distribution given by
the particle with the highest importance weight before resam-
pling. The translation error was obtained using the Euclidean
distance, and the rotation error was obtained according to:

δ(Rg,Rr ) =

√√√√‖ logm (RTg Rr) ‖2F
2

180
π

[deg] (22)

where Rg corresponds to our ground truth rotation matrix and
Rr corresponds to the retrieved rotation matrices. We have
also obtained the Standard Deviation (SD), the Mean Abso-
lute Error (MAE) and the Root Mean Square Error (RMSE).

C. TRANSLATION ERROR ANALYSIS
When we analyze Table 2, we can see that the lowest
90% error interval, RMSE and SD happens when we use,
as expected, the highest number of particles. From the tested
combinations, UKF+UBiGaF presents the best overall trans-
lation performance since the error starts getting close to zero
when we get closer to the landing area as plotted in Figure 9.
The particle perturbation caused by the correlation between
angular velocity and attitude adds more diversity to the set,
increasing the precision of the obtained estimate.

D. ROTATION ERROR ANALYSIS
As described in Table 3, the rotation error is higher in theUKF
combination where we have the largest 90% error intervals
and the highest MAE and SD values. This error is mainly
motivated by the poor orientation Gaussian model approxi-
mation. When comparing UKF+UBiF and UKF+UBiGaF,
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FIGURE 8. Tested landing sequence: {X ,Y } (left), Z (center left), {α, β} (center right) and γ (right).

TABLE 2. Translation error (meters).

TABLE 3. Rotation error (degrees).

FIGURE 9. Obtained translation error (meters): X (left), Y (center and Z (right).)

the rotation error is higher in the vast majority of combi-
nations for UKF+UBiF. When we increase the number of
particles to N = 1500, the rotation error in UBiF is higher
by approximately 50% when compared with the UBiGaF.
In one overall analysis, the obtained rotation error in both

combinations starts getting close to zero when we get closer
to the landing area (Figure 10). The rotation error for UKF,
UKF+UBiF andUKF+UBiGaF usingN = 1500 can be seen
in Figure 9 and Figure 10. An example of real video tracking
for UBiGaF using N = 1500 can be seen in Figure 11.
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FIGURE 10. Obtained rotation error (degrees): α (left), β (center and γ (right).)

FIGURE 11. Real video estimate example using UKF+UBiGaF using N = 1500 (red pixels).

VI. CONCLUSION AND FUTURE WORK
A ground-based 3D model-based approach for UAV tracking
using Unscented filters was introduced and tested. The pro-
posed tracking architecture incorporate directional statistics
on a UPF scheme, combining a UKF for translational motion
filtering with a UBiF or UBiGaF for rotational motion filter-
ing. The developed new filter UBiGaF was able to represent
the covariance between the angular position and velocity,
obtaining better results than previous approaches. The UBiF
rotation error is 50% higher when comparedwith the UBiGaF
when we use 1500 particles. Future work will focus on the
inclusion of aerodynamics constraints in the UAV motion
model.

APPENDIXES
APPENDIX A
UNSCENTED KALMAN FILTER
In the UKF, a Gaussian approximation to the distributions
of the n-dimensional state and process noises are used to
generate a set of points (sigma points) that are sufficient

to represent their statistics using a UT. The process noise
covarianceQt−1 (n× nmatrix) and the state covariance Pt−1
(n×nmatrix) are transformed into a 2n set of points δxt−1(i)
that represent perturbations to the current state according to:

δxt−1(i) = ±
(√
ι · (Pt−1 +Qt−1)

)
i

i = 1, . . . , 2n (23)

the parameter ι is a scaling parameter given by ι = α2(n+k),
where α is a positive real (0 ≤ α ≤ 1) parameter that controls
the high order effects resulting from the existing nonlinearity,
k is another real parameter (k ≥ 0) that will control the
distance between the sigma points and their average [41].
The matrices Pt−1 and Qt−1 are symmetric and positive
definite, so it is possible to use the Cholesky decomposition
to compute

√
ι · (Pt−1 +Qt−1) [42]. The computation of the

sigma points Xi is now done by adding directly δxt (i) to the
mean value of the state vector xt according to:

Xi = xt−1 + δxt−1(i) i = 1, . . . , 2n and X0 = xt (24)
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A. PREDICTION
The process model F(.) is then applied to the obtained sigma
points, generating the transformed sigma points:

X ′i = F(Xi, 0) i = 0, . . . , 2n (25)

No additional noise is considered at this step because
the noise was already added at the sigma point’s creation
step (24). The a priori state estimate is obtained calculating
the mean of the transformed sigma points X ′i according to:

x̄t =
2n∑
i=0

Wm
i X
′
i (26)

The weights are given by [43]:

Wm
0 =

λ

n+ λ
andWm

i = W c
i =

1
2(n+ λ)

(27)

with λ given by λ = α2(n+ k)− n.
To estimate the a priori state covariance each propagated

sigma point is removed from its mean to create the set of error
vectors:

δx̄t (i) = X ′i − x̄t (28)

then:

Pxxt =
2n∑
i=0

W c
i δx̄t (i) δx̄t (i)

T (29)

where the scaling weights W c
i are given by (27), except W c

0
alternatively given by [44]:

W c
0 =

λ

n+ λ
+ (1− α2 + β) (30)

where β is a non-negative term which incorporates
knowledge of the higher order moments(the chosen α and
β determine the accuracy of third and higher order moments
for non-Gaussian inputs [43]) of the distribution [41].

The transformed sigma points are now projected into the
measurement space according to:

Zi = H(X ′i , 0) (31)

The measurement expected value is computed as:

z̄t =
2n∑
i=1

Wm
i Zi (32)

B. MEASUREMENT UPDATE
The measurement covariance estimate Pzzt is given by:

Pzzt =
2n∑
i=0

W c
i [Zi − z̄t ] [Zi − z̄t ]T (33)

The innovation vector νt is obtained comparing the actual
measurement zt to the measurement estimate z̄t :

νt = zt − z̄t (34)

The innovation covariance Pννt is obtained adding the mea-
surement noise Rt to the measurement covariance Pzzt :

Pννt = Pzzt + Rt (35)

The cross-correlation matrix Pxzt is obtained from Zi and
X ′i , according to:

Pxzt =
2n∑
i=0

W c
i
[
X ′i − x̄t

]
[Zi − z̄t ]T (36)

The Kalman gain is then computed from:

Kt = Pxzt (P
νν
t )−1 (37)

Finally, the a posteriori state estimate is obtained accord-
ing to:

xt = x̄t +Ktνt (38)

and the state covariance Pt is given by:

Pt = Pxxt −KtPννt KT
t (39)

APPENDIX B
BINGHAM DISTRIBUTION
The Bi distribution is an antipodally symmetric distribution
(opposite points on S have equal probability) that represents
a zero-mean Gaussian distribution inRd projected on the unit
hypersphere Sd−1 [9], [35]. The Probability Density Function
(PDF) for the Bi distribution is obtained by [35]:

PB(q;M,Z) =
1

F(Z)
exp(q

TMZMT q) (40)

where q ∈ Sd−1 ⊂ Rd
: || q || = 1 is a unit vector (when

using quaternions d = 4),M ∈ Rd×d is an orthogonal matrix
(a square matrix whose columns and rows are orthonormal
vectors) describing the orientation of the distribution, F(Z) is
the normalization constant and Z = diag(z1, z2, . . . , zd−1, 0)
with nondecreasing negative diagonal elements is the con-
centration matrix that controls the spread of the distribution
around its mean. Adding a multiple of the identity matrix toZ
or changing the order of a column ofM and the corresponding
Z columns do not change the distribution, so we can force
the last entry of Z to be zero for computational simplicity,
and because of this, the last column of M represents the
distribution mode [35], [38].

A. NORMALIZATION CONSTANT
The main difficulty in the utilization of the Bi distribution
consists in the computation of the normalization constant
since the distribution must integrate to one over its domain.
The normalization constant is obtained by:

F(Z) =
∫
Sd−1

exp(q
TMZMT q) dq =

∫
Sd−1

exp(q
TZq) dq (41)

where F(Z) does not depend on the matrix M, since the
orientation of the distribution peaks does not change its value.
Since we are using this distribution in a real-time approach,
we choose to interpolate tabulated values from a precomputed
lookup table for computational efficiency.
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B. PRODUCT
The product of two Bi distributions is closed under multipli-
cation after renormalization and is given by [37]:

PB1 (M1,Z1) · PB2 (M2,Z2) =
1

F(Z)
exp(q

TMZMT q) (42)

where F(Z) is the new normalization constant,M are the unit
eigenvectors and D are the eigenvalues on the diagonal in
ascending order of (M1Z1MT

1+M2Z2MT
2 ),Z = D−λdd Id×d

and λdd is the largest eigenvalue.

C. ROTATION
When we are in S3 is possible to change (rotate) the ori-
entation of a Bi distribution PB (q;M,Z) (40) by a fixed
quaternion g ∈ S3 according to [9], [11], [38]:

PB (r;M⊗ g,Z) when r = q ⊗ g (43)

where ⊗ represents the composition of orientations, M ⊗
g ≡ [m1 ⊗ g,m2 ⊗ g,m3 ⊗ g ,m4 ⊗ g] and m are
the columns of M. Since the quaternion multiplication is
not commutative we have that r ∼ PB (g⊗M,Z) when
r = g ⊗ q.

D. COVARIANCE
The covariance is a sufficient statistics for the Bi distribution
since the Bi distribution is the maximum entropy distribu-
tion on the hypersphere which matches the sample inertia
matrix [45]. The covariance of the Bi PDF is given by [35]:

Cov(q) = E(qqT )− (E(q))2 = E(qqT ) (44)

where (E(q))2 = 0 is a consequence of the antipodal symme-
try and E(qqT ) is given by:

M · diag

( d
dz1
F(Z)

F(Z)
, . . . , 1−

∑d−1
i=1

d
dzi
F(Z)

F(Z)

)
·MT (45)

where the values of the gradient of F with respect to Z are
precomputed and accessed by interpolation as made for the
normalization constant.

The covariance of the composition (composition is a direc-
tional analog to the addition of random vectors in linear
space) of two Bi distributions can be obtained using the
method of moments [11]. Using this method, we can approxi-
mate the resulting composition covariance directly from their
covariance matrices combination.

E. INFERENCE
It is possible to estimate the parameters of a Bi distribution
which approximates a set of samples [35]. The inertia matrix
for a set of N samples q = [q1, . . . ,qN ] is given by [35]:

S =
1
N

N∑
i=1

qiqTi (46)

The Maximum Likelihood Estimation (MLE) M̂ for a set of
samples is an eigenvalue problem since the columns of M̂ are

eigenvectors κ of S [35]. The MLE Ẑ can be found setting the
partial log-likelihood function on Z to zero. This leads to:

d
dzj
F(Z)

F(Z)
=

1
N

N∑
i=1

(
κTj qi

)2
= κTj Sκ j = 0 (47)

where κ j are the eigenvectors of S. This calculation can
be made using the Constrained Optimization BY Linear
Approximations (COBYLA) algorithm [46].

F. SAMPLING
Is hard to sample directly from the Bi distribution because of
the normalization constant. To solve this problem is used a
Metropolis-Hasting sampler [47] with proposal distribution
given by a projected zero-mean Gaussian with covariance S
(either from (45) or (46)) and target distribution provided by
the Bi density [11], [35].

APPENDIX C
BINGHAM FILTER SIGMA POINTS CREATION
The created sigma points follow the same principle as used
in the UT applied in the UKF for the translation case
(Appendix A).We need to use 4d−2 samples that correspond
in this case to fourteen samples (d = 4). Since the distribution
is antipodally symmetric, it is sufficient to consider only one
pole (adapting the respective weights). The canonical sigma
points are given by:

q̃1,2 = [± sinα1, 0, 0, cosα1]T (48)

q̃3,4 = [0,± sinα2, 0, cosα2]T (49)

q̃5,6 = [0, 0, ± sinα3, cosα3]T (50)

q̃7 = [0, 0, 0, 1]T (51)

where q̃7 is the sample located on the pole (identity quater-
nion). The canonical distribution will be employed since it
simplifies the needed mathematical approach because the
parameters will be dimensionless.

The covariance of the estimated Bi distribution is obtained
by (45):

EPB
{
xtxTt

}
=M · diag(f1, f2, f3, f4) ·MT (52)

The deviation for each one of the canonical sigma points is
obtained from αi:

αi = sin−1

√√√√√
 3fi

3fi +
(
1− 1

N

)
f4

 (53)

The weights of the sigma points are given by:

w1,2
=

f1 +
1− 1

N f4
3

4
(54)

w3,4
=

f2 +
1− 1

N f4
3

4
(55)

w5,6
=

f3 +
1− 1

N f4
3

4
(56)

w7
=

f4
N

(57)
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where N is equal to the number of used sigma points and
w7 is the weight for the central sigma point. Each canonical
sigma point q̃ is multiplied by M (in the UBiF we use Me

t q̃
as described in Section IV-D) originating the set of sigma
points q that represent our Bi distributionPB. The sigma point
propagation is made adding a quaternion motion based on the
angular velocities with noise to each one of the sigma points.

APPENDIX D
BINGHAM-GAUSS
Is possible to use the definition of conditional probability to
construct a distribution that consists in the product of a Bi
distribution and a Gaussian distribution conditioned on the Bi
distributed random variables. The BiGa PDF is given by [7]:

PBG
(
q,ω;M,Z,mω,Pq,Pω,Pqω

)
= PG(ω;mω + PTqωP

−1
q q,Pω − PTqωP

−1
q Pqω)PB(q;M,Z)

(58)

where M and Z are the orientation matrix and the matrix of
concentration parameters of the Bi part defined by Pq (46)
and PG is a Gaussian PDF given by:

PG(ω;µ, σ 2) =
1

√
2πσ 2

e
−

(
ω−µ
σ

)2
(59)

with mean µ = mω + PTqωP
−1
q q and variance

σ 2
= Pω − PTqωP

−1
q Pqω as shown in (58).

A. DISTRIBUTION PARAMETERS
The parametersmω, Pω, Pq and Pqω (58) are given by:

mω = EPBG [ω] ∈ Rr (60)

Pω = EPBG
[
(ω −mω) (ω −mω)

T
]
∈ Rr×r (61)

Pq = EPBG
[
qqT

]
∈ Rd×d (62)

Pqω = EPBG
[
q(ω −mω)T

]
∈ Rd×r (63)

B. ANTIPODAL SYMMETRY
We have to guarantee that this distribution is antipodally sym-
metric with q and−q representing the same attitude. The PDF
described in (58) needs to be divided into two hemispheres of
the unit hypersphere to guarantee that condition [7]. TheBiGa
PDF becomes represented as:

PBG =

{
PBG

(
q,ω;mω,Pω,Pq,Pqω

)
q ∈ S+

PBG
(
q,ω;mω,Pω,Pq,−Pqω

)
q ∈ S−

(64)

where S+ and S− represent the hemispheres. For each q its
position on the hypersphere is obtained analyzing its last
nonzero element. If it is negative the quaternion belongs to
S− otherwise belongs to S+.

APPENDIX E
BINGHAM-GAUSS FILTER SIGMA POINTS CREATION
We follow the same approach to create the canonical sigma
points as described in Appendix C for the Bi case but adding a

Euclidean part describing the angular velocity. The canonical
sigma points that represent the deviation for the Euclidean
part are defined as [10]:

r̃1,2 = [

q̃1,2︷ ︸︸ ︷
[0, 0, 0, 1]T ,

ω̃1,2︷ ︸︸ ︷
[±δ, 0, 0]T ]T (65)

r̃3,4 = [

q̃3,4︷ ︸︸ ︷
[0, 0, 0, 1]T ,

ω̃3,4︷ ︸︸ ︷
[0,±δ, 0]T ]T (66)

r̃5,6 = [

q̃5,6︷ ︸︸ ︷
[0, 0, 0, 1]T ,

ω̃5,6︷ ︸︸ ︷
[0, 0,±δ]T ]T (67)

The angular deviations in the first three states of the attitude
quaternion are introduced while the Euclidean part is held
constant at zero to guarantee that the perturbed quaternion
remains on the unit hypersphere according to [10]:

r̃7,8 = [

q̃7,8︷ ︸︸ ︷
[± sinα1, 0, 0, cosα1]T ,

ω̃7,8︷ ︸︸ ︷
[0, 0, 0]T ]T (68)

r̃9,10 = [

q̃9,10︷ ︸︸ ︷
[0,± sinα2, 0, cosα2]T ,

ω̃9,10︷ ︸︸ ︷
[0, 0, 0]T ]T (69)

r̃11,12 = [

q̃11,12︷ ︸︸ ︷
[0, 0,± sinα3, cosα3]T ,

ω̃11,12︷ ︸︸ ︷
[0, 0, 0]T ]T (70)

The central sigma point is given by:

r̃13 = [

q̃13︷ ︸︸ ︷
[0, 0, 0, 1]T ,

ω̃13︷ ︸︸ ︷
[0, 0, 0]T ]T (71)

The parameters αi and δ are given by:

αi = sin−1
(√

fi
ωBi

)
and δ =

√
r
ωG

(72)

The weights for the sigma points one to six are given by:

w1,...,6
=
ωG

4r
=

2rfs+1
N4r

=
2fs+1

4(2r + 2s+ 1)
(73)

where r and s are equal to three in this case, N is equal to
thirteen (the number of sigma points) and fs+1 is obtained
analyzing the second moment of the canonical BiGa distribu-
tion (the zeroth and first moment is one and zero respectively)
according to:

EpBG
{
zzT
}
= diag [[1 1 1] [f1 f2 f3 f4]] (74)

where the covariance can be obtained as described in (45) for
the Bi part of the BiGa distribution alone. The weights for the
sigma points seven to twelve are given by:

w7,8
=
ωB1
4
=
f1 +

1− 1
N −

2r
N f4

s

4
(75)

w9,10
=
ωB2
4
=
f2 +

1− 1
N −

2r
N f4

s

4
(76)

w11,12
=
ωB3
4
=
f3 +

1− 1
N −

2r
N f4

s

4
(77)
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The weight for the central sigma point is given by:

w13
=
ωC

2
=

f4
2N

(78)

Each sigma point is transformed from the canonical repre-
sentation using the following relations [7]:

q = Mp (79)

ω =

√
Pω + PTqωP

−1
q Pqω Z + PTqωP

−1
q Mp+mω q ∈ Ss+

(80)

ω =

√
Pω + PTqωP

−1
q Pqω Z − PTqωP

−1
q Mp+mω q ∈ Ss−

(81)

where p corresponds to the quaternion part and Z correspond
to the Euclidean part of the created canonical sigma points z
originating theZ sigma points. This transformation is similar
to what is performed in the Bi case but now taking into
account the Euclidean part of the sigma point vector as seen
in (80) and (81).

The parameters mω, Pω, Pq and Pqω as described in (60)
to (63) can be obtained from the sigma points according to:

mω ≈ 2
N∑
i=1

wifω
(
Z i
)

(82)

Pω ≈ 2
N∑
i=1

wi
(
fω
(
Z i
)
−mω

) (
fω
(
Z i
)
−mω

)T
(83)

Pq ≈ 2
N∑
i=1

wifq
(
Z i
)
fq
(
Z i
)T

(84)

Pqω ≈ 2
N∑
i=1

wifq
(
Z i
) (

fω
(
Z i
)
−mω

)T
(85)

where Z i is the sigma point i, fω is the angular velocity part
of the considered sigma point and fq is the quaternion part of
the considered sigma point.

REFERENCES
[1] K. W. Williams, ‘‘A summary of unmanned aircraft accident/incident data:

Human factors implications,’’ Civil Aerosp. Med. Inst., Federal Aviation
Admin., Washington, DC, USA, Tech. Rep. DOT/FAA/AM-04/24, 2004.

[2] G. Wild, J. Murray, and G. Baxter, ‘‘Exploring civil drone accidents and
incidents to help prevent potential air disasters,’’ Aerospace, vol. 3, no. 3,
p. 22, Jul. 2016.

[3] N. P. Santos, V. Lobo, and A. Bernardino, ‘‘Unmanned aerial vehicle
tracking using a particle filter based approach,’’ in Proc. IEEE Underwater
Technol.(UT), Kaohsiung, Taiwan, Apr. 2019, pp. 1–10.

[4] J. R. Azinheira and P. Rives, ‘‘Image-based visual servoing for vanishing
features and ground lines tracking: Application to a UAV automatic land-
ing,’’ Int. J. Optomechatronics, vol. 2, no. 3, pp. 275–295, Sep. 2008.

[5] D. Eynard, P. Vasseur, C. Demonceaux, and V. Frémont, ‘‘Real time UAV
altitude, attitude and motion estimation from hybrid stereovision,’’ Auto.
Robots, vol. 33, nos. 1–2, pp. 157–172, Aug. 2012.

[6] N.Metni, T. Hamel, and F. Derkx, ‘‘Visual tracking control of aerial robotic
systems with adaptive depth estimation,’’ in Proc. 44th IEEE Conf. Decis.
Control, Oct. 2006, pp. 6078–6084.

[7] J. Darling and K. J. DeMars, ‘‘The bingham-gauss mixture filter for pose
estimation,’’ in Proc. AIAA/AAS Astrodynamics Spec. Conf., Sep. 2016,
p. 5631.

[8] N. P. Santos, V. Lobo, and A. Bernardino, ‘‘A ground-based vision system
for UaV tracking,’’ in Proc. OCEANS Genova, Italy, May 2015, pp. 1–9.

[9] I. Gilitschenski, G. Kurz, S. J. Julier, and U. D. Hanebeck, ‘‘Unscented
orientation estimation based on the bingham distribution,’’ IEEE Trans.
Autom. Control, vol. 61, no. 1, pp. 172–177, Jan. 2016.

[10] J. E. Darling and K. J. DeMars, ‘‘Rigid body attitude uncertainty propa-
gation using the gauss-bingham distribution,’’ in Proc. AAS/AIAA Space
Flight Mech. Meeting, 2015, pp. 15–347.

[11] J. Glover and L. P. Kaelbling, ‘‘Tracking 3-D rotations with the quaternion
Bingham filter,’’ Comput. Sci. Artif. Intell. Lab., Cambridge, MA, USA,
Tech. Rep. MIT-CSAIL-TR-2013-005, 2013.

[12] N. P. Santos, V. Lobo, and A. Bernardino, ‘‘3D model-based estimation
for UAV tracking,’’ in Proc. OCEANS MTS/IEEE, Charleston, SC, USA,
Oct. 2018.

[13] B.-K. Seo, J. Park, and J.-I. Park, ‘‘3-D visual tracking for mobile aug-
mented reality applications,’’ in Proc. IEEE Int. Conf. Multimedia Expo,
Jul. 2011, pp. 1–4.

[14] P. Vicente, L. Jamone, and A. Bernardino, ‘‘Robotic hand pose estimation
based on stereo vision and GPU-enabled internal graphical simulation,’’
J. Intell. Robotic Syst., vol. 83, nos. 3–4, pp. 339–358, Sep. 2016.

[15] J. Li-Chee-Ming and C. Armenakis, ‘‘A feasibility study on using ViSP’S
3D model-based tracker for UAV pose estimation in outdoor environ-
ments,’’ in Proc. Int. Archives Photogram., Remote Sens. Spatial Inf. Sci.,
vol. 40, no. 1, p. 329, 2015.

[16] Z. Cao, Y. Sheikh, and N. K. Banerjee, ‘‘Real-time scalable 6DOF pose
estimation for textureless objects,’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2016, pp. 2441–2448.

[17] C. Teuliere, L. Eck, E. Marchand, and N. Guenard, ‘‘3D model-based
tracking for UAV position control,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Oct. 2010, pp. 1084–1089.

[18] N. P. Santos, F. Melicio, V. Lobo, and A. Bernardino, ‘‘A ground-
based vision system for UAV pose estimation,’’ Int. J. Mechatron-
ics Robot. (IJMR), vol. 1, no. 4, p. 7, 2014. [Online]. Available:
http://ojs.unsysdigital.com/index.php/ijrm/article/view/180

[19] N. P. Santos, V. Lobo, and A. Bernardino, ‘‘Particle filtering based opti-
mization applied to 3Dmodel-based estimation for UAV pose estimation,’’
in Proc. OCEANS, Aberdeen, U.K., Jun. 2017, pp. 1–10.

[20] E. J. Leffens, F. L. Markley, and M. D. Shuster, ‘‘Kalman filtering for
spacecraft attitude estimation,’’ J. Guid., Control, Dyn., vol. 5, no. 5,
pp. 417–429, Sep. 1982.

[21] F. L.Markley, N. Berman, andU. Shaked, ‘‘Deterministic EKF-like estima-
tor for spacecraft attitude estimation,’’ in Proc. Amer. Control Conf. (ACC),
Aug. 2005, pp. 247–251.

[22] E. A. Wan and R. Van Der Merwe, ‘‘The unscented Kalman filter for non-
linear estimation,’’ in Proc. IEEE Adapt. Syst. Signal Process., Commun.,
Control Symp., 2000, pp. 153–158.

[23] Y. Cheng and J. Crassidis, ‘‘Particle filtering for sequential spacecraft
attitude estimation,’’ in Proc. AIAA Guid., Navigat., Control Conf. Exhibit,
Aug. 2004, p. 5337.

[24] Y. Xia and X.-J. Wu, ‘‘Adaptive ball particle filter and its application to
visual tracking,’’ IETE Tech. Rev., vol. 32, no. 6, pp. 462–470, Nov. 2015.

[25] T. A. Myhre and O. Egeland, ‘‘Parameter estimation for visual tracking
of a spherical pendulum with particle filter,’’ in Proc. IEEE Int. Conf.
Multisensor Fusion Integr. Intell. Syst. (MFI), Sep. 2015, pp. 116–121.

[26] C. Chang and R. Ansari, ‘‘Kernel particle filter for visual tracking,’’ IEEE
Signal Process. Lett., vol. 12, no. 3, pp. 242–245, Mar. 2005.

[27] C. Gonzales and S. Dubuisson, ‘‘Combinatorial resampling particle filter:
An effective and efficient method for articulated object tracking,’’ Int. J.
Comput. Vis., vol. 112, no. 3, pp. 255–284, May 2015.

[28] Y.-M. Chan, S.-S. Huang, L.-C. Fu, P.-Y. Hsiao, and M.-F. Lo, ‘‘Vehicle
detection and tracking under various lighting conditions using a particle
filter,’’ IET Intell. Transp. Syst., vol. 6, no. 1, p. 1, 2012.

[29] B. Sugandi, H. Kim, J. K. Tan, and S. Ishikawa, ‘‘Object tracking based on
color information employing particle filter algorithm,’’ inObject Tracking.
Rijeka, Croatia: InTech, 2011.

[30] Y. Rui and Y. Chen, ‘‘Better proposal distributions: Object tracking using
unscented particle filter,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit. (CVPR), Aug. 2005, p. 2.

[31] P. Li, T. Zhang, and A. E. C. Pece, ‘‘Visual contour tracking based on
particle filters,’’ Image Vis. Comput., vol. 21, no. 1, pp. 111–123, Jan. 2003.

[32] R.-H. Guo and Z. Qin, ‘‘An unscented particle filter for ground maneuver-
ing target tracking,’’ J. ZhejiangUniv.-Sci. A, vol. 8, no. 10, pp. 1588–1595,
Oct. 2007.

[33] W. Guo, C. Han, and M. Lei, ‘‘Improved unscented particle filter for
nonlinear Bayesian estimation,’’ in Proc. 10th Int. Conf. Inf. Fusion, 2007,
pp. 1–6.

33896 VOLUME 8, 2020



N. Pessanha Santos et al.: Directional Statistics for 3D Model-Based UAV Tracking

[34] J. E. Darling and K. J. DeMars, ‘‘Uncertainty propagation of corre-
lated quaternion and Euclidean states using partially-conditioned Gaus-
sian mixtures,’’ in Proc. 19th Int. Conf. Inf. Fusion (FUSION), 2016,
pp. 1805–1812.

[35] C. Bingham, ‘‘An antipodally symmetric distribution on the sphere,’’ Ann.
Statist., vol. 2, no. 6, pp. 1201–1225, Nov. 1974.

[36] I. Gilitschenski, G. Kurz, S. J. Julier, and U. D. Hanebeck, ‘‘Efficient
Bingham filtering based on saddlepoint approximations,’’ in Proc. Int.
Conf. Multisensor Fusion Inf. Integr. Intell. Syst. (MFI), Sep. 2014, pp. 1–7.

[37] J. Glover and L. P. Kaelbling, ‘‘Tracking the spin on a ping pong ball with
the quaternion bingham filter,’’ in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), May 2014, pp. 4133–4140.

[38] G. Kurz, I. Gilitschenski, S. Julier, and U. D. Hanebeck, ‘‘Recursive
bingham filter for directional estimation involving 180 degree symmetry,’’
J. Adv. Inf. Fusion, vol. 9, no. 2, pp. 90–105, 2014.

[39] J. Redmon and A. Farhadi, ‘‘YOLOv3: An incremental improve-
ment,’’ 2018, arXiv:1804.02767. [Online]. Available: http://arxiv.org/abs/
1804.02767z

[40] A. J. Haug, Bayesian Estimation Tracking: A Practical Guide. Hoboken,
NJ, USA: Wiley, 2012.

[41] A. Doucet, N. De Freitas, K. Murphy, and S. Russell, ‘‘Rao-blackwellised
particle filtering for dynamic Bayesian networks,’’ in Proc. 16th Conf.
Uncertainty Artif. Intell. San Mateo, CA, USA: Morgan Kaufmann, 2000,
pp. 176–183.

[42] N. J. Higham, ‘‘Analysis of the Cholesky decomposition of a semi-definite
matrix,’’ in Reliable Numerical Computation. Oxford, U.K.: Oxford Univ.
Press, 1990, pp. 161–185.

[43] S. S. Haykin, Kalman Filtering Neural Networks. Hoboken, NJ, USA:
Wiley, 2001.

[44] Y.-J. Cheon and J.-H. Kim, ‘‘Unscented filtering in a unit quaternion space
for spacecraft attitude estimation,’’ in Proc. IEEE Int. Symp. Ind. Electron.,
Jun. 2007, pp. 66–71.

[45] K. Mardia, Characterizations of Directional Distributions. Dordrecht,
The Netherlands: Springer, 1975, pp. 365–385.

[46] M. J. D. Powell, ‘‘Direct search algorithms for optimization calculations,’’
Acta Numerica, vol. 7, pp. 287–336, Jan. 1998.

[47] W. K. Hastings, ‘‘Monte Carlo sampling methods usingMarkov chains and
their applications,’’ Biometrika, vol. 57, no. 1, pp. 97–109, Apr. 1970.

NUNO PESSANHA SANTOS received the M.Sc.
degree in naval military sciences in weapons and
electronics engineering from the Portuguese Naval
Academy, Alfeite, Portugal, in 2010, and theM.Sc.
degree in electrical engineering (specialization in
automation and industrial electronics) from the
High Institute of Engineering of Lisbon, Lisbon,
Portugal. He is currently pursuing the Ph.D.
degree with the Instituto Superior Técnico (IST),
Lisbon University, Portugal. He currently works

as an Electrical Engineer Officer at the Portuguese Navy Ships Directorate
and is an Associate Researcher at the Portuguese Navy Research Center
(CINAV). His primary research interests focus on applications of computer
vision, machine learning, motion estimation, and algorithm design applied
to advanced robotics.

VICTOR LOBO received the Ph.D. degree in 2003.
He was the Director of the Portuguese Navy
Research Center (CINAV), from 2012 to 2019.
He is currently a Full Professor with the Por-
tuguese Naval Academy, Alfeite, Portugal, and
an invited Full Professor with the Information
Management School, Nova University, Lisbon,
Portugal. He has participated in several national
and international research projects as a Principal
Investigator and Technical Manager. He has grad-

uated four Ph.D. students and more than 60 M.Sc. students. He published
more than 100 research papers in peer-reviewed journals and peer-reviewed
conferences. His primary research interests focus on data mining, machine
learning, and advanced robotics.

ALEXANDRE BERNARDINO received the Ph.D.
degree in 2004. He is currently an Associate Pro-
fessor with the Department of Electrical and Com-
puter Engineering and a Senior Researcher with
the Computer and Robot Vision Laboratory, Insti-
tute for Systems and Robotics, Instituto Superior
Técnico (IST), and the faculty of engineering at
Lisbon University. He has participated in sev-
eral national and international research projects as
a Principal Investigator and Technical Manager.

He has graduated 12 Ph.D. students and more than 80 M.Sc. students.
He published more than 40 research articles in peer-reviewed journals and
more than 100 papers on peer-reviewed conferences in the field of robotics,
vision, and cognitive systems. His primary research interests focus on the
application of computer vision, machine learning, cognitive science, and
control theory to advanced robotics and automation systems. He was a Co-
Supervisor of the Ph.D. Thesis that received the IBM Prize 2014 and the
Supervisor of the Best Robotics Portuguese M.Sc. Thesis Award of 2012.
He is currently the Chair of the IEEE Portugal Robotics and Automation
Chapter. He is an Associate Editor of the journal Frontiers in Robotics and
AI and major robotics conferences (ICRA and IROS).

VOLUME 8, 2020 33897


