
SPECIAL SECTION ON CLOUD - FOG - EDGE COMPUTING IN CYBER-PHYSICAL-SOCIAL
SYSTEMS (CPSS)

Received January 25, 2020, accepted February 4, 2020, date of publication February 14, 2020, date of current version February 26, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2973929

Dynamic Resource Allocation for Scalable Video
Streaming in OFDMA Wireless Networks
LIBO JIAO 1, HAO YIN2, AND YULEI WU 3, (Senior Member, IEEE)
1Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
2Research Institute of Information Technology, Tsinghua University, Beijing 100084, China
3College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K.

Corresponding authors: Hao Yin (h-yin@mail.tsinghua.edu.cn) and Yulei Wu (y.l.wu@exeter.ac.uk)

This work was supported in part by the National Key Research and Development Program under Grant 2016YFB1000102, in part by the
National Natural Science Foundation of China under Grant 61972222, Grant 61672318, and Grant 61631013, and in part by the projects of
Tsinghua National Laboratory for Information Science and Technology (TNList).

ABSTRACT Mobile video streaming is a successful example of Cyber-Physical-Social Systems (CPSS).
How to schedule network resources and provide better mobile video streaming services for mobile users
are very important. Scalable video streaming is regarded as a promising technology in wireless networks
where the cognitive femtocells are overlaid within the coverage area of a macrocell network. In this paper,
we study dynamic resource allocation for scalable video streaming over cache-enabled wireless networks
with time-varying channel conditions. We formulate the scalable video streaming problem as a stochastic
optimization problem which aims at maximizing the time-averaged system utility subject to the time-
averaged video cache constraint at the server and the cross-tier interference constraint on the primary
user under the sparse deployment scenario of femtocells. By employing the Lyapunov optimization theory,
we design a dynamic cache and resource allocation (DCRA) algorithm to solve this problem. Furthermore,
the problem is decomposed into three subproblems, i.e., video layer selection, cache placement, and wireless
resource allocation. Via solving these subproblems, we derive the video layer selection and cache placement
strategies, and a wireless resource allocation algorithm to manage the cross-tier interference. Simulation
results demonstrate the advantages of the proposed DCRA for streaming scalable video over time-varying
wireless networks.

INDEX TERMS Cognitive femtocell, interferencemitigation, orthogonal frequency-divisionmultiple access
(OFDMA), resource allocation, stochastic optimization.

I. INTRODUCTION
Cyber-physical-social systems (CPSS), which integrates the
cyber, physical and social spaces together, have been a key
research area for more than ten years [1]. Nowadays, with
the development of pervasive mobile devices, edge comput-
ing and wireless communication technologies (e.g., 5G [2]),
CPSS has the potential to provide better mobile services
in a more efficient way. As an example of CPSS, mobile
video streaming plays an important role in real life [3],
[4]. According to the prediction of mobile data traffic by
Cisco [5], mobile video traffic is expected to account for
more than 78.6% of the global mobile data traffic by 2022.
While such demands pose a stringent challenge on mobile
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networks, how to schedule network resources and provide
better scalable video streaming services for mobile users
in CPSS is a challenging problem. Cache-enabled wireless
networks, consisting of a diverse of macrocell and cognitive-
radio (CR)-enabled femtocells [6], have been recognized as
a promising solution to improve the user perceived mobile
video quality and reduce data traffic going through the back-
haul network. However, many challenging problems should
be solved to fully reap their potential gains, such as inter-
ference mitigation, wireless resource allocation and dynamic
network state information [7].

Orthogonal frequency-division multiple access (OFDMA)
has been widely adopted in cognitive femtocells to improve
network capacity. Due to spectrum scarcity, frequency
spectrum can be shared between primary macrocell and
secondary femtocells to improve the utilization of radio
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spectrum. However, the cross-tier or cotier interference can
seriously restrict the network performance. Hence, the con-
cept of interference temperature is introduced to constrain the
total allowable interference in a spectral band. In the literature
[8], by employing Fuzzy Logic System (FLS) to estimate
the instantaneous channel gain, a power allocation scheme
was proposed for the OFDMA-based femtocell network to
maximize the total network capacity under the dynamic com-
munication environments. Interference graph was introduced
to solve the severe inter-cell interference in the densely
deployed small base stations (SBS) [9]. A joint power allo-
cation and sensing time optimizing algorithm, subject to the
constraints of transmit power, minimum rate requirements
and the interference among primary user and secondary users,
was proposed to maximize the achievable throughput for the
CR network [10]. A novel joint spectrum and power manage-
ment scheme was presented to maximize the total throughput
of the full-duplex ultra-dense network (FDUDN), under the
cross-tier interference and quality-of-service constraints [11].
Lin et al. studied the joint user association and spectrum
allocation for multi-tier heterogeneous networks (HetNets) in
the interference-limited regime [12].

With rapid advancement of edge computing, the video
server located closely to mobile users can provide more flexi-
ble services for mobile users in CPSS. Scalable Video Coding
(SVC) [13]–[16] has been widely used for flexible video
streaming by adjusting the number of enhancement layers
in response to time-varying wireless channel conditions. For
instance, a femtocell equipment (FE) can receive a high-
quality video streaming containing more enhancement layers
when the wireless communication channel is good, whereas
the FE can receive a low-quality video streaming containing
fewer enhancement layers when the channel is poor. Scalable
video streaming in wireless networks has been investigated
in many studies. Considering the cache placement, video
quality decision and wireless resource allocation, a dynamic
cache algorithmwas presented to maximize video quality and
backhaul saving in single cache-enabled vehicular networks
[17]. A dynamic resource allocation algorithm for streaming
scalable videos over SDN-aided dense small-cell networks
was presented in [18], which aims for maximizing the time-
averaged quality of experience (QoE). To solve the problems
caused by vehicle’s mobility and hard service deadline con-
straints, a deep reinforcement learning algorithm with the
multi-timescale framework considering joint optimal caching
and computing allocation strategywas proposed in [19]. Zhao
et al. proposed a dynamic bitrate adaptation scheme to maxi-
mize the user’s QoE over heterogeneous wireless networks by
considering fundamental uncertainties of wireless networks
(i.e., the stochastic throughput) [20]. An optimal resource
allocation of a downlink non-orthogonal multiple access
(NOMA) system was proposed to maximize a long-term
network utility by jointly optimizing the data rate control and
the power allocation among multiple users in [21]. However,
all these works did not consider the interference management
in spectrum-sharing femtocell deployment networks.

In this paper, we study video layer selection, cache place-
ment, wireless resource allocation in OFDMA-based wireless
networks under the cross-tier interference temperature con-
straint and network stability constraint. The key contributions
of this paper can be summarized as follows
• Since the femtocell is enabled with cognitive capabil-
ities, the scheduling of video streaming in the femto-
cells should not affect the data transmission of primary
macrocells. Thus, the cross-tier interference is consid-
ered in this paper.

• We formulate the scheduling of video streaming as
a novel stochastic optimization problem to maximize
the time-averaged system utility, which takes into
account three factors of video streaming, including
video quality, quality switching, and cache capacity
under the constraints of the cross-tier interference limit
and network stability. By exploiting Lyapunov optimiza-
tion technique, the formulated optimization problem
is further decomposed into three distinct and tractable
subproblems.

• Without requiring the complete knowledge of wire-
less channel statistics, we develop a dynamic cache
and resource allocation (DCRA) algorithm to efficiently
solve the three subproblems at each time slot, which
target at video layer selection, cache placement, and
wireless resource allocation, subject to the interfer-
ence temperature limit constraint and network stability
constraint.

• We theoretically analyze the performance of the pro-
posed DCRA algorithm. And we conduct extensive sim-
ulation experiments to verify the theoretical analysis and
advantages of DCRA.

The remainder of the paper is outlined as follows.
Section II elaborates the system model. In Section III,
we present themathematical problem formulation. Section IV
is devoted to deriving our joint video layer selection, cache
placement, and wireless resource allocation conceived for
scalable video streaming. Section V presents our experimen-
tal results for characterizing the attainable performance of the
proposed approach. Finally, Section VI concludes the paper.

II. THE SYSTEM MODEL
As shown in Fig. 1, we consider a downlink OFDMA-based
cache-enabled wireless network, where I cochannel cognitive
femtocells are overlaid randomly within the coverage area of
a primary macrocell. There are E active macrocell equipment
(MEs) in the macrocell and J FEs asking for video services
in each femtocell. We assume that all femtocells in wireless
networks operate in closed access where only specified regis-
tered FEs can communicate with their femtocell base station
(FBS), and MEs can only access to their macrocell base
station (MBS). A video server is collocated with the MBS
to provide storing and streaming video services to FEs and
MEs in wireless networks. All femtocells can communicate
with the primary macrocell via optical fibers. It should be
noted that we consider the sparse deployment scenario of
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FIGURE 1. The system model.

femtocells within the primary macrocell [22], that results in
a higher cross-tier interference between femtocells and the
macrocell than the cotier interference between neighboring
femtocells. Each FBS maintains a transmission queue, con-
taining the video data from the video server that should be
sent to each preregistered FE. In addition, we assume the
wireless network operates in a slotted structure, and each time
slot t ∈ {0, 1, 2, ...}.

A. SCALABLE VIDEO STREAMING MODEL
In this paper, the SVC technique is adopted to support adap-
tive video transmission due to its beneficial flexibility in
adjusting the quality of video streams. Each video is encoded
into a base layer containing the minimum quality representa-
tion and (L − 1) enhancement layers for additional quality.

The Mean Opinion Score (MOS) [18] and the Peak Signal
to Noise Ratio (PSNR) [23] are commonly employed as met-
rics to measure the video quality. Without loss of generality,
we utilize the MOS level as the QoE metric to quantify
the perceived video quality in the problem formulation. Let
lij(t) and qij(t) denote the number of video layers and the
correspondingMOS level for FE j in femtocell i at time slot t ,
respectively. qij(t) is a video quality function, which is written
as

qij(t) = f1[lij(t)], f1 : lij(t)→ MOS. (1)

Let sij(t) denote data packet size of the video slice contain-
ing the first lij(t) video layers. Then, we have

sij(t) = f2[lij(t)], f2 : lij(t)→ Data Size. (2)

Generally, the more enhancement video layers means the
higher MOS level and the greater volumes of video data.
For example, for a video with four enhancement layers, i.e.,
lij(t) ∈ {1, 2, 3, 4, 5}, the MOS level can be commonly
expressed using 5-point (i.e., 1-bad, 2-poor, 3-fair, 4-good,
and 5-excellent) [24], and the data packet size can also be
expressed by 5-level (i.e., 1-30 kb/s, 2-60 kb/s, 3-120 kb/s,
4-250 kb/s, and 5-500 kb/s).

The manager utilizes the prevalent network conditions to
make video layer selection and cache placement to adjust
the number of enhancement layers and to decide the cache
placement at each time slot, respectively. However, the inter-
val of video layer selection and cache placement decision
is much longer than the length of the physical transmission
time slot. This is because the video layer switching and
cache placement are usually operated at every video slice
time which equals hundreds of milliseconds. In contrast,
wireless resource allocation is usually conducted on the order
of several milliseconds, which is the duration of wireless
channel conditions change due to the high user mobility.
For simplicity, we assume that the duration of each video
slice is constant and equals T times the physical transmission
time slot length. Hence, both video layer selection and cache
placement are operated every T physical transmission time
slots.

B. CACHE PLACEMENT POLICY
Denoted by xij(t), the binary cache placement decision vari-
able for FE j in femtocell i at time slot t , where if the selected
video slice is cached in the video server, xij(t) = 1; otherwise,
xij(t) = 0. Since the cache space of video servers is limited,
a fixed number of cache partitions is maintained for each FE
to cache the video data. Thus, the cache space constraint for
each FE is given as follows

Rij = lim
t→∞

sup
1
t

t−1∑
τ=0

xij(τ )sij(τ ) ≤ ηij,∀i, j (3)

where ηij is the time-averaged value of maximum cache
partitions of the video server for FE j in femtocell i.

C. RADIO RESOURCE MODEL
To improve the transmission rate and alleviate cross-tier inter-
ference, each FBS optimizes the wireless resource allocation
(e.g., transmit power allocation for each subchannel and sub-
channel assignment for all FEs) at beginning of each physical
transmission time slot.

By employing OFDMA technique, the channel can be
transformed into K subchannels in wireless networks, each
of which is with a bandwidth of W . Based on the standard
assumption in OFDMA network [25], each subchannel k
can be assigned to at most one FE at each time slot. The
binary subchannel assignment variable for the access link is
denoted as aijk (t) ∈ {0, 1}. If subchannel k is assigned to
FE j in femtocell i at time slot t , aijk (t) = 1 and otherwise,
aijk (t) = 0. Therefore, we have the following constraint

J∑
j=1

aijk (t) ≤ 1,∀i, k, t (4)

Let pfijk (t) denote the transmit power from FBS i to FE j
on subchannel k at time slot t . We assume that the maximum
transmit power of each FBS at each time slot t is limited by a
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predefined threshold Pmax. Hence, we have
J∑
j=1

K∑
k=1

aijk (t)p
f
ijk (t) ≤ Pmax,∀i, t (5)

By constraining cross-tier interference from cognitive fem-
tocell to primary macrocell user e to a predefined interference
level I thk on each subchannel, we employ the interference
temperature limit to protect the data transmission of primary
macrocell. Let gfiek (t) denote the interference gain on sub-
channel k from FBS i to ME e in time slot t . Thus, we have

I∑
i=1

J∑
j=1

aijk (t)p
f
ijk (t)g

f
iek (t) ≤ I

th
k ,∀k, t (6)

Denoted by gfijk (t), the channel gains on subchannel k from
FBS i to FE j in time slot t . The interference subchannel gains
on subchannel k from MBS to FE j in femtocell i in time slot
t is also indicated by gmijk (t). Then, the instantaneous received
signal-to-interference-plus-noise ratio (SINR) from FBS i at
FE j on subchannel k at time slot t , denoted by γ fijk (t), is given
by

γ
f
ijk (t) =

pfijk (t)g
f
ijk (t)

pmek (t)g
m
ijk (t)+ σ

2 (7)

where pmek is the transmit power on subchannel k from MBS
to ME e at time slot t , pmekg

m
ijk (t) is the interference power

caused by ME e at the FBS i on subchannel k at time slot t ,
and σ 2 represents the power spectral density of additive white
Guassian noise.

According to the Shannon’s capacity, the instantaneous
received data rate from FBS i at FE j on subchannel k at time
slot t is given by

Cijk (t) = W log2
(
1+ γ fijk (t)

)
(8)

D. DYNAMIC QUEUE SETUP
Based on the system model introduced previously,
the dynamics of the queues for the data queue Qij(t) for FE j
in femtocell i at time slot t evolves according to the following
queue dynamics

Qij(t + 1) = [Qij(t)− Cij(t)]+ + sij(t) (9)

where Cij(t) =
∑K

k=1 aijk (t)Cijk (t) denotes the achievable
data rate at FE j in femtocell i at time slot t , and [x]+ ,
max(x, 0). To ensure the network stability, we must guarantee
the queues are strongly stable. Thus, we have the following
definition.
Definition 1: An individual queue Qij(t) is called strongly

stable if the following condition holds:

lim sup
t→∞

1
t

t−1∑
τ=0

E{Qij(τ )} <∞ (10)

where it indicates that a network is stable if all the upper
bound of time-averaged queues length in the network are
finite [26].

III. PROBLEM FORMULATION
In this section, we first formulate the system utility func-
tion by considering three time-averaged factors, including
video quality, quality variation and cache capacity. Hence,
the instantaneous system utility function can be defined as

SU (t) = w1qij(t)− w2|qij(t)− qij(t − 1)| + w3xij(t)sij(t)

(11)

where w1, w2 and w3 are the weights of video quality, quality
variation and cache capacity, respectively.

Since our aim is to maximize the time-averaged system
utility, the system utility maximization of our scalable video
streaming problem in wireless networks is formulated as the
following stochastic optimization problem

P: max
L(τ ),X(τ ),P(τ ),A(τ )

lim sup
t→∞

1
t

t−1∑
τ=0

SU (τ )

s.t. C1: Rij ≤ ηij,∀i, j

C2: xij(τ ) ∈ {0, 1}, ∀i, j, τ

C3: 1 ≤ lij(τ ) ≤ L, ∀i, j, τ

C4: pfijk (τ ) ≥ 0, ∀i, j, k, τ

C5:
J∑
j=1

K∑
k=1

aijk (τ )p
f
ijk (τ ) ≤ Pmax, ∀i, τ

C6: aijk (τ ) ∈ {0, 1}, ∀i, j, k, τ

C7:
J∑
j=1

aijk (τ ) ≤ 1, ∀i, k, τ

C8:
I∑
i=1

J∑
j=1

aijk (τ )p
f
ijk (τ )g

f
iek (τ ) ≤ I

th
k , ∀k, τ

C9: Queue Qij is strongly stable, ∀i, j. (12)

where L(τ ) = {lij(τ )}, X(τ ) = {xij(τ )}, P(τ ) = {p
f
ijk (τ )} and

A(τ ) = {aijk (τ )} denote the number vector of enhancement
layers for the selected video slices, cache placement vector,
transmit power allocation vector, and subchannel assignment
vector of wireless networks, respectively. C1 and C2 repre-
sent the cache placement constraints. C3 is the video layer
selection constraint. C4 and C5 are the transmit power allo-
cation constraints. C6 and C7 are the subchannel assignment
constraints due to the OFDMA assumption. C8 represents
that the cross-tier interference power on subchannel k should
not exceed I thk . C9 is the network stability constraint.
Theoretically, the Problem P is a classical constrained

stochastic optimization problem and can be solved using
dynamic programming (DP)-based methods [28] or deep
learning technique [29], [30] if the prior knowledge of the
stochastic process concerning the channel state information
(CSI) is available. However, these solutions are computation-
ally complex and suffer from the curse of dimensionality.
Moreover, it is difficult to obtain a prior knowledge of CSI
in real wireless networks. This motivates us to employ the
powerful Lyapunov optimization theory [26], [27] to develop
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an online cache placement and wireless resource allocation
algorithm, since the algorithm designed on Lyapunov opti-
mization technique does not rely any prior statistical knowl-
edge of wireless networks and also has low computational
complexity.

IV. DYNAMIC CACHE AND RESOURCE ALLOCATION
ALGORITHM
In this section, we design a dynamic cache and resource
allocation (DCRA) algorithm by invoking Lyapunov opti-
mization theory for transforming the time-averaged stochas-
tic optimization problem into a static minimization problem
at each time slot. Furthermore, the minimization problem
is divided into three independent subproblems including
video layer selection, cache placement, and wireless resource
allocation.

A. LYAPUNOV STOCHASTIC OPTIMIZATION
FORMULATION
Since the constraint C1 is based upon time-averaged values,
the virtual queue Yij(t) over time is established to transform
the time-averaged constraint on the cache storage, which can
be modeled as

Yij(t + 1) = [Yij(t)− ηij]+ + Rij(t) (13)

Then, the time-averaged constraint C1 can be satisfied
through maintaining the stability of virtual cache queue Yij
according to the rate stability theorem [26].

By introducing the virtual cache queue Yij, we can formu-
late the transformed problem as

P1: max
L(τ ),X(τ ),P(τ ),A(τ )

lim sup
t→∞

1
t

t−1∑
τ=0

SU (τ )

s.t. C2, C3, C4, C5, C6, C7, C8, C9, and

C10: Queue Yij is strongly stable, ∀i, j.

(14)

To solve the optimization objective problem P1, we define
the quadratic Lyapunov function as

L(G(t)) =
1
2

I∑
i=1

J∑
j=1

Qij(t)2 +
1
2

I∑
i=1

J∑
j=1

Yij(t)2 (15)

where G(t) = [Q(t),Y (t)] denotes a concatenated vector of
data backlog and virtual cache queue length. Furthermore,
the corresponding T -slot conditional Lyapunov drift 1T (t)
from the time slot t to the time slot (t + T ) is defined as

1T (t) = E{L(G(t + T ))− L(G(t))|G(t)} (16)

Since the objective of the joint video layer selection, cache
placement, and wireless resource allocation is to maximize
the system utility subject to the constraints, we integrate
Lyapunov drift and the instantaneous system utility in T time
slots, and define the T -slot Lyapunov drift-minus-reward

term1(t) in the context of Lyapunov optimization framework
as

1(t) = 1T (t)− β
t+T−1∑
τ=t

E{SU (τ )|G(t)} (17)

where β is a positive weight factor of constants which tunes
the tradeoff between the system utility and network stability
in our control strategy.
According to the design rule of Lyapunov optimization

technique, the goal of network optimization objective is to
realize the video layer selection, cache placement, and wire-
less resource allocation by minimizing the upper bound of the
Lyapunov drift-minus-reward term at each time slot. Then,
the following theorem gives the result
Theorem 1: For any queue backlogs and actions, the upper

bound of 1(t) is presented as follows

1(t) = 1T (t)− β
t+T−1∑
τ=t

E {SU (τ )|G(t)}

≤ B− β
t+T−1∑
τ=t

E {SU (τ )|G(t)}

+

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

E
{
Qij(t)(sij(t)− Cij(τ ))|G(t)

}
+

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

E
{
Yij(t)(Rij(t)− ηij)|G(t)

}
(18)

where B is a positive constant, which is defined as

B ,
1
2
T 2IJ

(
s2max + C

2
max + R

2
max + η

2
max

)
(19)

Proof: See Appendix A.
Exploiting Theorem 1, we reformulate P1 to minimize the

Right-Hand Side (R.H.S) of (18) at each time slot, subject to
the instantaneous constraints in P1.

We can observe that the queues backlog, Qij(t) and Yij(t),
impact the upper bound of 1(t). Moreover, the Problem P
depends on the queue state information (QSI) and current
network parameters including CSI which is reported back
to the manager at each FBS from feedback channel without
any delay and error. Then, each FBS operates video layer
selection, cache placement and wireless resource allocation
with the help ofMBS based on these information at beginning
of each time slot.
Theorem 2: For any positive value of β, the time-averaged

system utility SUsub obtained by solving the Problem P
satisfies

SUsub ≥ SU∗ −
B
βT

(20)

where SU∗ is the optimal system utility of the Problem P.
Proof: See Appendix B.
Theorem 2 implies that the sub-optimal time-averaged sys-

tem utility is withinO(1/β) of the optimal system utility SU∗.
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That is, when β is sufficiently large, the sub-optimal system
utility asymptotically approaches the optimum system utility.
While, the control parameter β controls the tradeoff between
the system utility and queue stability. Specifically, a larger
value of β increases the system utility but may degrade the
queue stability of data queue Q(t) and virtual cache queue
Y (t). Hence, an experiment has been conducted to analyze
the performance sensitivity about the tradeoff factor β in
Section V.

B. ALGORITHM DESIGN
In this section, we design the proposed DCRA method to
achieve the optimal video layer selection, cache placement,
and wireless resource allocation.

The pseudo code of the DCRA algorithm is detailed in
Algorithm 1, which performs the following three operations:
(1) Joint video layer selection and cache placement, which
determine the quality of video slice and cache placement for
each FE; (2) Wireless resource allocation in each FBS, which
performs transmit power allocation for each subchannel and
subchannel assignment for their FEs; (3) Queues updating for
Q(t) and Y (t).

Algorithm 1Dynamic Cache and Resource Allocation Algo-
rithm (DCRA).
1: Input: I , J , K , t , T , W , β, η, σ
2: Initialization: τ ← 0, Q(0)← 0, Y (0)← 0
3: while τ < t do
4: Compute X(τ ) according to (22).
5: Obtain L(τ ) by enumerating all possible layers.
6: Compute P(τ ) and A(τ ) according to Algorithm 2.
7: Update queues Q(τ ) and Y (τ ) according to (9) and

(13).
8: τ ← τ + 1.
9: end while

1) JOINT VIDEO LAYER SELECTION AND CACHE PLACEMENT
After decoupling the video layer selection lij(t) and cache
placement xij(t) from R.H.S of (18) and rearranging the
objective function, the subproblem for joint video layer selec-
tion and cache placement is obtained as follows

min
lij(t),xij(t)

(Yij(t)− βw3)xij(t)sij(t)+ Qij(t)sij(t)

−β
(
w1qij(t)− w2|qij(t)− qij(t − 1)|

)
s.t. C2 and C3. (21)

which is a mixed combinatorial programming problem.
According to the similar technique [17], the optimal cache
placement solution is

xij(t) =
{
1, if Yij(t)− βw3 < 0
0, otherwise.

(22)

Then, by substituting the optimal cache placement decision
xij(t) into (21), the subproblem can be recast to

min
lij(t)

(Yij(t)− βw3)x∗ij(t)sij(t)+ Qij(t)sij(t)

−β(w1qij(t)− w2|qij(t)− qij(t − 1)|)

s.t. C3. (23)

Considering the fact that the video sequence is encoded
into a very limited number of layers, we can use brute-
force method to find the optimal number of video layers by
enumerating all possible layers lij(t) ∈ {1, 2, ..,L} at each
time slot.

2) WIRELESS RESOURCE ALLOCATION
We tackle the wireless resource allocation subproblem
embedded in (18), where transmit power allocation P(t) and
subchannel assignment A(t) should be determined as follows

max
P(t),A(t)

I∑
i=1

J∑
j=1

K∑
k=1

Qij(nT )aijk (t)Cijk (t)

s.t. C4, C5, C6, C7, and C8. (24)

The optimization problem in (24) is a nonconvex mixed
integer programming problem. To solve this problem, we first
relax subchannel assignment constraint C6 so that aijk (t)
takes value in a continuous interval [0, 1]. Then, the original
problem (24) is transformed into a convex problem and can
be solved by employing the Lagrangian dual decomposition
method [22]. At last, we get the optimal transmit power allo-
cation and subchannel assignment in the following theorem.
Theorem 3 (Optimal Wireless Resource Allocation): The

optimal power allocation and subcarrier assignment decisions
in (24) are given by

pf ∗ijk (t) =

 Qij(nT )W(
λi + θkg

f
iek (t)

)
ln 2
−
pmek (t)g

m
ijk (t)+ σ

2

gfijk (t)

+(25)
And the optimal subchannel assignment aijk (t) is expressed
as

a∗ijk (t) =

{
1, j = argmax

u
3iuk (t) and 3iuk (t) ≥ 0;

0, otherwise.
(26)

where λi and θk are the Lagrange multiplier associating the
instantaneous transmit power allocation constraint C5 and
cross-tier interference constraint C8, respectively, and

3ijk (t) = Qij(nT )W log2

1+
pf ∗ijk (t)g

f
ijk (t)

pmek (t)g
m
ijk (t)+ σ

2


−λip

f ∗
ijk (t)− θkp

f ∗
ijk (t)g

f
iek (t) (27)

We employ a subgradient method to update the Lagrange
multiplier, which is given as

λ
f+1
i =

λfi − ϑ f1
Pmax −

J∑
j=1

K∑
k=1

aijk (t)p
f ∗
ijk (t)

+ (28)
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Algorithm 2 Wireless Resource Allocation (WRA).
1: Input: λ, θ , maximum iteration number Fmax, and con-

vergence factor ε1, ε2
2: Initialization: f ← 1
3: while convergence or f < Fmax do
4: for i = 1 to I do
5: for j = 1 to J do
6: for k = 1 to K do
7: each FBS computes pf ∗ijk (t) according to (25).
8: each FBS computes a∗ijk (t) according to (26).
9: each FBS updates λ according to (28).
10: end for
11: end for
12: end for
13: Primary MBS updates θ according to (29), then send

these values to all FBS.
14: f ← f + 1
15: end while

θ
f+1
k =

θ fk − ϑ f2
I thk − I∑

i=1

J∑
j=1

aijk (t)p
f ∗
ijk (t)g

f
iek (t)

+
(29)

Algorithm 2 describes the pseudo code to accomplish the
wireless resource allocation.

V. SIMULATIONS RESULTS AND DISCUSSIONS
In this section, we evaluate the performance of the proposed
DCRA algorithm. In the simulations, the radius of macrocell
and each femtocell are set to 500 m and 20 m, respectively.
The femtocells are uniformly and randomly distributedwithin
the area of macrocell. The bandwidth of each subchannel
are W = 10 MHz, pmek = 1 W, Pmax = 0.1 W. The
number of femtocell is I = 3 and each of femtocell has
J = 4 FEs. The fading gain g(t) between a FE and the
FBS/MBS is characterized by the path loss and shadow fading
as g(t) = 10(−Pd (d)+8B)/10, where path loss model isPd (d) =
38.4+20 log10(d), d is the distance from a FE to a FBS/MBS,
and 8B is random variable with mean zero and deviation
6 dB. The maximum number of video layers is L = 5. The
MOS-rate function of videos are characterized by q = bl,
where l ∈ {1, 2, . . . ,L}.

Fig. 2 depicts the data backlog, MOS level and sys-
tem utility, with respect to different values of β =

[50, 500, 1000, 1500, 2000, 2500]. As demonstrated pictori-
ally in Fig. 2, the time-averaged system utility achieved by
DCRA algorithm converges gradually to the optimal value
with the increase in β, which validates Theorem 2. However,
a larger value of β increases the upper bound of the date queue
backlog, leading to network congestion. Therefore, the value
of β can adjust the tradeoff between the system utility and
queue backlog.

Fig. 3 shows the network performance versus those for
different cross-tier interference limits. With an increasing I thk ,

FIGURE 2. Network performance versus the value of β.

FIGURE 3. Network performance versus the value of interference
threshold.

FIGURE 4. Network performance versus the value of b.

we observe that the queue backlog is decreased, and both
MOS level and system utility are increased. Intuitively, this is
because a larger value of I thk means that more transmit power
is allocated to the FEs for transmission and thus the network
performance is increased.

Fig. 4 shows the network performance by varying the
video size parameter b. It can be seen that the queue backlog
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FIGURE 5. Network performance versus the network bandwidth.

FIGURE 6. Network performance versus the value of η.

is increased and the MOS level is decreased with a larger
value of b. However, we also observe that the system utility
increases rapidly with b when b < 15, and then slow down
decreasing when b > 15. The reason is that the larger value
of bmeans larger data packet size for each enhancement layer
and queue backlog is increased, thus MOS level is decreased
for maintaining the network stability. From the changing of
system utility, we can conclude that there exists a suitable b
that can make the system utility best.

Fig. 5 plots the network performance with different values
of network bandwidth W . We can observe that the queue
backlog decreases with the increase inW , andMOS level and
system utility increase when W < 1.1 MHz, and then slow
down increasing and start to stabilize when W > 1.1 MHz.
This is because more sufficient network bandwidth can trans-
mit more video data to users in the same video slice time, thus
both MOS level and system utility are also increased.

Fig. 6 shows the performance of MOS level and system
utility with respect to different values of η, respectively.
We can observe that both MOS level and system utility are
increased with the increase in η. This is because a large value
of η denotes a large cache space for each FE.

FIGURE 7. Network performance versus the value of I th
k .

FIGURE 8. Queue backlog length comparison with β = 500.

Fig. 7 (a) and (b) show the channel interference at
time slot t = 500 for the K = 20 subchan-
nels, with and without interference constraints, respec-
tively. The cross-tier interference level I thk = 1.5×10−10.
We can observe that the cross-tier interference is kept under
the predefined level I thk , so the interference temperature
limit policy can protect the MEs from severe cross-tier
interference.

Finally, we compare the network performance of DCRA
with two baselines in Fig. 8 and Fig. 9. Baseline 1 is the
dynamic cache algorithm in [17], which maximizes the video
quality and cache capacity without the consideration of trans-
mit power allocation and subchannel assignment. Baseline 2
is the video quality maximization algorithm without the con-
sideration of caching at each FBS. From the comparisons
in Fig. 8, the queue length of Baseline 1 algorithm is the
largest among the three algorithms. This is because Base-
line 1 adopts constant transmit power without considering
subchannel assignment. Additionally, from the Fig. 9, Base-
line 2 achieves the worst network performance among the
three algorithms, since it ignores the video caching at video
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FIGURE 9. Network performance comparison versus the value of β.

server. Finally, we can conclude DCRA achieves the best
network performance and has small queue length.

VI. CONCLUSION
In this paper, we have studied the dynamic resource allocation
for streaming scalable videos over wireless networks with
cross-tier interference. An interference temperature limit has
been introduced to protect the macrocell users from cross-tier
interference. The stochastic optimization problem has been
formulated to maximize the time-averaged system utility sub-
ject to the constraints of video server cache storage limit and
cross-tier interference temperature limit. We have designed a
dynamic cache and resource allocation (DCRA) algorithm to
solve the stochastic optimization problem. Simulation results
have verified that the proposed DCRA is effective for stream-
ing scalable videos over time-varying wireless networks.

APPENDIXES
APPENDIX A
PROOF OF THEOREM 1
Squaring both sides of (9) and (13) produces

Qij(t + 1)2 ≤ Qij(t)2 + Cij(t)2 + sij(t)2

+2Qij(t)(sij(t)− Cij(t)) (30)

and

Yij(t + 1)2 ≤ Yij(t)2 + Rij(t)2 + η2ij
+2Yij(t)(Rij(t)− ηij) (31)

Plugging (30) and (31) into the one-slot Lyapunov drift
yields

E{L(G(t + 1))− L(G(t))|G(t)}

=
1
2

I∑
i=1

J∑
j=1

E
{
Qij(t + 1)2 − Qij(t)2|G(t)

}

+
1
2

I∑
i=1

J∑
j=1

E
{
Yij(t + 1)2 − Yij(t)2|G(t)

}

≤ B1 +
I∑
i=1

J∑
j=1

Qij(t)E
{
sij(t)− Cij(t)|G(t)

}
+

I∑
i=1

J∑
j=1

Yij(t)E
{
Rij(t)− ηij|G(t)

}
(32)

where B1 is a positive constant, which is defined as

B1 ,
1
2
IJ
(
s2max + C

2
max + R

2
max + η

2
max

)
(33)

By summing (32) over [t, t + T − 1], we obtain the upper
bound of the Lyapunov drift 1T (t) as

1T (t) =
1
2

I∑
i=1

J∑
j=1

E
{
Qij(t + T )2 − Qij(t)2|G(t)

}

+
1
2

I∑
i=1

J∑
j=1

E
{
Yij(t + T )2 − Yij(t)2|G(t)

}

≤ B2 +
t+T−1∑
τ=t

I∑
i=1

J∑
j=1

E
{
Qij(τ )sij(τ )|G(t)

}
−

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

E
{
Qij(τ )Cij(τ )|G(t)

}
+

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

E
{
Yij(τ )Rij(τ )|G(t)

}
−

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

E
{
Yij(τ )ηij|G(t)

}
(34)

where B2 is given as

B2 ,
1
2
TIJ

(
s2max + C

2
max + R

2
max + η

2
max

)
(35)

We can observe sij(τ ) is the packet size of video and Rij(τ )
is the cache capacity in the (34). Both of them depend on the
decision of video layer selection and cache placement, which
is taken every T time slots. Hence, we have sij(τ ) = sij(t) and
Rij(τ ) = Rij(t) for all τ ∈ [t, t + T − 1]. By employing the
fact that for any τ ∈ [t, t + T − 1], we have

Qij(t)−(τ − t)Cmax ≤ Qij(τ ) ≤ Qij(t)+ (τ − t)smax (36)

Yij(t)− (τ − t)ηmax ≤ Yij(τ ) ≤ Yij(t)+ (τ − t)Rmax (37)

We have
t+T−1∑
τ=t

I∑
i=1

J∑
j=1

Qij(τ )sij(τ )

=

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

Qij(τ )sij(t)

≤

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

[
Qij(t)sij(t)+ (τ − t)s2max

]

=

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

Qij(t)sij(t)+
1
2
T (T − 1)IJs2max (38)
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and

−

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

Qij(τ )Cij(τ )

≤

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

[
−Qij(t)Cij(τ )+ (τ − t)C2

max

]

= −

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

Qij(t)Cij(τ )+
1
2
T (T − 1)IJC2

max

(39)

and
t+T−1∑
τ=t

I∑
i=1

J∑
j=1

Yij(τ )Rij(τ )

=

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

Yij(τ )Rij(t)

≤

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

[
Yij(t)Rij(t)+ (τ − t)R2max

]

=

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

Yij(t)Rij(t)+
1
2
T (T − 1)IJR2max (40)

and

−

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

Yij(τ )ηij

≤

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

[
−Yij(t)ηij + (τ − t)η2max

]

= −

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

Yij(t)ηij +
1
2
T (T − 1)IJη2max (41)

Substituting (38), (39), (40), and (41) into (34) we have

1T (t)− β
t+T−1∑
τ=t

E {SU (τ )|G(t)}

≤ B− β
t+T−1∑
τ=t

E {SU (τ )|G(t)}

+

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

E
{
Qij(t)(sij(t)− Cij(τ ))|G(t)

}
+

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

E
{
Yij(t)(Rij(t)− ηij)|G(t)

}
(42)

where B is a positive constant, which is defined as

B , B1 +
1
2
T (T − 1)IJ

(
s2max + C

2
max + R

2
max + η

2
max

)
=

1
2
T 2IJ

(
s2max + C

2
max + R

2
max + η

2
max

)
(43)

APPENDIX B
Accoring to [26], there exists a stationary optimal policy ω-
only policy that achieves the optimal system utility SU∗.
Then, under any feasible decisions, which satisfy C1-C10,
we have

1T (t)− β
t+T−1∑
τ=t

E {SU (τ )|G(t)}

≤ B− β
t+T−1∑
τ=t

E
{
SU∗(τ )|G(t)

}
+

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

E
{
Qij(t)(s∗ij(τ )− C

∗
ij (τ ))|G(t)

}

+

t+T−1∑
τ=t

I∑
i=1

J∑
j=1

E
{
Yij(t)(R∗ij(τ )− ηij)|G(t)

}
(44)

where s∗ij(τ ), R
∗
ij(τ ), and C∗ij (τ ) denotes the packet size of

video slice, cache capacity and transmission rate for FE j
in femtocell i under the optimal ω-only policy, respectively.
Both the second and third terms is non-positive because of
the queue stability constraint strategy. Since SUsub is a sub-
optimal system utility, thus SUsub ≤ SU∗ holds. Then,
we have

1T (t)− β
t+T−1∑
τ=t

E {SUsub(τ )} ≤ B− β
t+T−1∑
τ=t

E
{
SU∗(τ )

}
(45)

By taking the iterated expectations of the above inequality
and summing over t ∈ {0,T , 2T , . . . ,NT }, we have

1
2

I∑
i=1

J∑
j=1

E
{
Qij(NT )2 − Qij(0)2|G(t)

}

+
1
2

I∑
i=1

J∑
j=1

E
{
Yij(NT )2 − Yij(0)2|G(t)

}

−β

NT−1∑
τ=0

E {SUsub(τ )}

≤ NB− β
NT−1∑
τ=0

E
{
SU∗(τ )

}
(46)

Dividing both sides of the above inequality with βNT ,
taking a limit as N → ∞, and rearranging and neglecting
appropriate terms, we get

lim
N→∞

1
NT

NT−1∑
τ=0

E{SUsub(τ )}

≥ lim
N→∞

1
NT

NT−1∑
τ=0

E{SU∗(τ )} −
B
βT

(47)

hence, SUsub ≥ SU∗ − B
βT .
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