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ABSTRACT With the trend of Industry 4.0, the global machine tool industry is developing towards smart
manufacturing. The ball bearing is a key component of the rotary axis of machine tool, and its functionality
is to bear the external load on the axis as well as maintain the center position of the axis. A damaged bearing
will result in abnormal vibration and noise, and thus will lead to the damage of the machine and produced
workpieces. Therefore, inspection and identification of ball bearing failures is particularly important. This
paper discusses the fault signals of ball bearings published by the Society for Machinery Failure Prevention
Technology (MFPT) and creates a recognition model for the ball bearing state based on different fault states,
and then we adopt two different approaches for feature extraction. The first approach implements Finite
Impulse Response Filter (FIR) and Approximate Entropy (ApEn) to extract the signal features. The second
approach utilizes the Chen-Lee chaotic system for analysis and takes its chaotic attractor as the feature of
the state recognition. The comparison of model recognition accuracy for Back Propagation Neural Network
(BPNN), Support Vector Machine (SVM), and K Nearest Neighbor (KNN) was conducted after acquiring
the features through the two approaches in this paper. The results of the experiments in this paper show that
both of the feature extraction approaches enable the state to be recognized easily. The Chen-Lee chaotic
system with BPNN not only reaches 100% identification rate and it has the highest overall efficiency; it
takes only 0.054 second to complete the feature extraction for 63 sets of data; this study is able to provide
timely and precise solution for the failure of key mechanical components.

INDEX TERMS Ball bearing, back propagation neural network, support vector machine, fault detection,

approximate entropy, Chen-Lee chaotic system.

I. INTRODUCTION

Ball bearings are carriers for supporting the mechanical
rotating body, to reduce the coefficient of friction during
rotation and ensure the rotational precision of mechanical
components. Therefore, ball bearings are crucial parts of
transmission equipment. If the equipped ball bearings are
damaged, they may cause abnormal noise during machine
operation or even cause the machine to stop operating which
will affect the production capacity. The researchers focus on
the implementation of malfunction inspection and analysis
without stopping the machine operation in order to reduce
the possible loss of production cost due to the damage of ball
bearings. Many researches have conducted on malfunction
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diagnosis and lifespan analysis of ball bearing [1]-[3] in
the running state. However, the ISO [4] stipulated industrial
standards for ball bearing state make the definition of the
ball bearing state much clearer; most researches are ded-
icated to measure the current on the loading driver for
analysis [5], [6], the audio frequency variation during ball
bearing operation [7], [8], abnormal temperature [9], [10]
variation in ball bearing, and the feature of vibration vari-
ation generated during ball bearing operation [11], [12].
Most of the research methods discuss the amplitude of
frequency spectrum based on converting the time-domain
signal to the frequency-domain signal [13], [14]. For exam-
ple, the Fast Fourier transform (FFT) [15], [16] and wavelet
transform [17], [18] are applied for feature extraction; how-
ever, the fast Fourier transform is not able to precisely
describe the local feature of a signal, and the wavelet
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transform has difficulty to process in real time due to a
large amount of computations; and thus the efficiency and
accuracy of signal pre-process will be the key for technology
advancement in this stage.

Therefore, this paper discusses the fault signals of
ball bearings published by the Society for Machin-
ery Failure Prevention Technology (MFPT) and adopts
two different approaches for feature extraction. The first
approach implements Finite Impulse Response Filter
(FIR) [19]-[21] for signal decomposition and Approximate
Entropy (ApEn) [22], [23] for feature extraction. The second
approach utilizes the Chen-Lee chaotic system [24]—[26]
for analysis and takes its chaotic attractor as the feature of
the state recognition. The feature data extracted from the
two approaches are substituted into the Back Propagation
Neural Network (BPNN) [27], [28] for model training, test-
ing, and classification of identification rate. The classifica-
tion of accuracy rate and overall efficiency for the Support
Vector Machine (SVM) [29], [30] and K Nearest Neighbor
(KNN) [31], [32] are then compared for further discussion.

Il. METHODS

A. EXPERIMENTAL EQUIPMENT

The simulation data used in this essay are the analytic out-
comes from the database of malfunction signals of ball bear-
ing provided by MFPT, wherein the ball bearing equipped in
the experimental equipment in the database is developed and
manufactured by RBC Bearings Incorporated. Please refer
to TABLE 1 for the detailed structural parameters of the
ball bearing, of which the sampling frequencies of vibration
signals are 97,656Hz and 48,828Hz. TABLE 2 is the detailed
malfunction specifications of a ball bearing, including load
under normal status, load by outer ring malfunction, as well as
load by inner ring malfunction. The software for verification
is Matlab 2019a, where the toolbox used is Machine Learn-
ing Toolbox 11.5, Deep Learning Toolbox 12.1 and Neural
Network Training Toolbox.

TABLE 1. Ball bearing parameters.

Type Parameters
Roller Dia. 0.235(inch)
Pitch Dia. 1.245(inch)
Number of Element 8
Contact Angle 0°

TABLE 2. Malfunction type of ball bearing.

B. EXPERIMENTAL STRUCTURE

The designed experimental flow of this study is as FIGURE 1.
In the beginning, various status of a bearing in the database
acquired by the accelerometer will be classified. Original
sampling frequency of the signals under normal status is
97,656Hz, six seconds for each sampling, therefore the length
of data point is 585,936 and there are three data (585936 x 3).
Original sampling frequency of the signals of outer ring status
is 48,828Hz, three seconds for each sampling, therefore the
length of data point is 146,484 and there are seven datum
(146,484 x7). Original sampling frequency of the signals of
inner ring status is 48,828Hz, three seconds for each sam-
pling, therefore the length of data point is 146,484 and there
are seven datum (146,484 x7). In order to unify all the data
lengths as well as numbers in regard to each status, we process
the original bearing status by reducing the frequencies and
creating the segments, while we do not use any repeated sam-
ple during signal processing. As aresult, there are 48,828 data
points in length by respective segmentation and 21 data
for three different status (48,828 x21x3), i.e. normal status,
outer ring breakdown and inner ring breakdown, to be the
classification resources of normal-stated signals in this study.
As shown in TABLE 3.
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FIGURE 1. Flow chart of experiment.

Type Parameters
Sampling Frequency 97,656/48,828 (Hz) TABLE 3. Number of data records in three different states.
Load of Normal Status 270 (Pounds)

Load of Outer Ring 25/50/100/150/200/250/300 State Number of data records
Malfunction (Pounds) Normal 21

Load of Inner Ring 0/50/100/150/200/250/300 Outrace fault 21
Malfunction (Pounds) Inner race fault 21
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The damaged parts of the bearing are usually the inner
race, outrace and the ball. The causes of damage are due
to the increased vibration and generated heat which are
closely related to the circumstance of vibration signal of the
bearing. The obtained vibration signals are quite different
as the damage spots of the bearing are different. The fault
characteristic frequency formula refers to [33]. The formula
is shown in (1) ~ (3).

ﬁ:%(l-k%cosa)fr (D
Jo= % <1 - %Cosa)fr (2)

_ D 1 dp 2 3
fo = % - <B COSO!) Ir 3)

where Formula (1) is the characteristic frequency of inner
race fault, Formula (2) is the characteristic frequency of
outrace fault, and Formula (3) is the characteristic frequency
of ball fault. In the above three formulas, N represents the
number of rolling element, d;, represents the Roller Dia,
D represents the Pitch Dia, o represents the Contact angle,
and f, represents the rotation frequency of the bearing; the
unit is rotor speed/minute.

In this essay, FIR is collocated with ApEn and Chen-Lee
chaos system, creating two distinct methods to perform fea-
ture extraction. The first one is to use FFT to transform the
time-domain into frequency-domain of the vibration signals
by the three status of a ball bearing, and then we can use the
frequency response graph to judge the wave bands with the
features of each bearing status to implement band-pass filtra-
tion, where the filtration scope is from 105Hz to 10,200Hz.
Therefore, we can keep these wave bands of various status
for feature extraction by ApEn subsequently. The filtered
signals will then be adopted with ApEn to obtain the fea-
tures from three different status, for this reason the number
of feature which can process 63 signals is 63. The second
method is to create the nonlinear feature mapping of the
vibration signals in time-domain of the three status, and then
to make the deduction between rated signals and test signals
to obtain the chaotic dynamic error distribution mapping as
well as chaotic dynamic error centroid coordinates to be our
identification features. After analyzing and comparing via
experiment, we use the x coordinate of the chaotic centroid
to be the feature to identify bearing status, as a result, both
the numbers of datum and features are as the same as the first
method. At last of the experiment, we use BPNN, SVM and
K-NN to classify identification, as well as compare the time
spent on feature extraction, training and testing.

C. FINITE IMPULSE RESPONSE FILTER

Finite impulse response filter, of which the abbreviation is
FIR, is one member of the digital filters. Because the response
for an impulse input signal in FIR is approximately O, this
kind of response is rather limited, where its mission is to
change the spectrum of the inputted signals via computation.
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FIR has several merits: finite long-term output digital signals
are subject to the limitation by inputting the digital sig-
nals, being easier to optimize than Infinite Impulse Response
Filter (IIR) [34], as well as that all the polar coordinates are
relatively stable within the unit circle after Z transformation,
where the relations between input-output are represented as a
difference equation (1) shown as below:

K
ym) =Y bpx(n — k) @
k=0

wherein x(n) is the outer input signal, y(n) is FIR output
signal, K is the order of filter, and by is filter impulse response
that can also represent the filter coefficient. This study is to
perform band-pass filtration ranged from 105Hz to 10,200Hz
among all the signals.

D. APPROXIMATE ENTROPY
Approximate Entropy (ApEn) is a solution to extract features.
It is a complexity index, which can reflect if there is any
similar outcome or condition within the same data segments.
If there is any abnormality in the datum, we can clearly see
the statistical variation on out conclusion. So far this method
can be introduced into a certain researches with analysis
on complexity of frequency band, as for the descriptions of
ApEn are as below [35], [36]:

Set the original data as X(n) = x(1), x(2) - - - x(N),wherein
is the total number of the data points, and sequence {x(i)}
is sequentially composed by m-dimensional vector {x(i)};
i.e. a set of m-dimensional vector composed of a continuous
sequence is shown as (2):

X(@i) = [x(@), xG + 1), ..., x({ +m — D],
i=1,2,..N—m+1 (5

Define the distance d | X (i), X (j)| between X (i) and X (j) as
the maximum distance of each correspondent element as (3):

diX(@D, X() = max  [|x(i+k) —x(G+K)  (6)

wherein |l <i<N-—-m+landl <j<N —m+ 1.

Given noise filtration coefficient r, that satisfies the data
numbers of the conditions d[x(7), x(j)] < r. Comparing the
sum of the value thereof with N — m + 1, then we can obtain
the proportion of the similar numbers by total numbers, which
is defined as the equation (4):

1 N—m+1 . .
N T Doty 4D =20
Lo ldlx@) = x(ll < 7
0. ldlx() = x()]| = r

Cl'(r) =

wherein d(i, j) = @)

Afterwards we take the logarithm of C}"(r) to calculate the
averages among all the i of C/"(r) and record them as ¢"(r),
which is defined as (5):

1 N—m—+1
o= ; InC}"(r) ®)
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Set that the dimension m plus 1 to become m + 1 then
we can acquire Ci’"+1(r) and ¢;”+1(r), thereupon the value
of ApEn can be calculated through (6):

ApEn(m, 1) = lim [¢"()—¢" '] ©)

Because the actual data points N are impossible to be
infinite, we change (6) to (7):

ApEn(m, r,N) = ¢"(r) — ¢" 1 (r) (10)

E. CHEN-LEE CHAOQOS SYSTEM DYNAMIC ERROR

Chaos system is a part of the non-linear system theories,
of which one of it features is very sensitive to any minor
variation of inputted signals. If the input changes even if only
a little, the correspondent output will significantly change.
Also, the chaos system possesses strange attractor, the out-
putted movement status will be a motion track with order
but no cycle. The Chen-Lee chaos system is designed for
a dynamic system, used as the non-linear transformation
mapping, wherein we utilize both the coordinates of chaotic
dynamic error mapping and chaotic dynamic error centroid as
the identification features. The Chen-Lee dynamic equation
is shown as (8).

X =—-yz+ax
&=);z+ﬁy (11)
z=§xy+)/z

In order to obtain the Chen-Lee chaos system dynamic
error, we modify the equation above as the formats of rated
ideal signal system and test signal system, which are shown
as (9) and (10).

Xm = —YmZm + OXp

Ym = XmZm + BYm (12)
. 1

Im = gxm)’m +Vim

XS' = —YsZs + 0

Vs = XsZs + BYs (13)

73 = %xxys + vz
whereas the system dynamic error is the reduction between
rated ideal signal system and test signal system.

For the convenience for the reduction of these two sys-
tems, we can modify these two equations above to matrix
format [24], which are represented as (11) and (12):

X, | [« 0 —Im Xim

=0 B m 14
Ym | = 1 Ym (14)
Z _ | 0 g-xm Y Zm

x; ] g 2 Vs X5

Y | = AR I BY (15)
Zg _ 0 gxs Y s
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This study seeks to introduce the concept of discrete signal
processing, therefore the vibration signals in time-domain
(chaotic dynamic) of both rated ideal signal system and test
signal system are shown as below [24]-[26], [37]-[39]:

nli] = {n[1], n[2], n[3] - - - n[il} (16)
t[i] = {e[1], ¢[2], ¢[3] - - - ¢[i]} a7

Following the idea described in the preceding paragraphs,
it is easy to define the parameters of rated signal system (11)
as xp[i] = nli + 11, yulil = nli + 2] and z,[i] = n[i + 3],
as well as define the parameters of test signal system (12) as
xs[i] = t[i + 11, ys[i] = t[i + 2] and z,[i] = ¢[i 4 3]. In order
to obtain the chaos system dynamic error, we deduct (11)
from (12). The equation of chaos system dynamic error is
shown as (14).

el «a 0 0 e —e2e3
elil|=]0 g 0 e | + 61163 (18)
esli] 0 0 Y €3 gelez

In (15), e1[i] = xulil — xslil, e2[i] = ymlil — ys[i] and
e3lil = zmlil — zs[i], wherein «, B and y are the system
parameters and satisfy ¢ > 0, 8 <0and0 <o < (=B +y)
to guarantee that the system features strange attractor[40].
After the comparison by the experiment in this study, we will
use the x coordinate of the chaotic centroid as the feature
physical quantity when we analyze the malfunction of a ball
bearing.

F. BACK PROPAGATION NEURAL NETWORK

Back Propagation Neural Network (BPNN) is composed of
Multi-Layer Perceptron (MLP) [41], [42] and Error Back
Propagation (EBP or BP) [43], where the fundamental the-
orem is use Gradient Descent [44] to minimize the error
function. Back Propagation Neural Network is a supervised
learning network, which is also the most representative and
widely applicable one among all the neural networks.

This paper utilizes BPNN as the main classifier and the
basic structure includes Input Layer, Hidden Layer and Out-
put Layer. The setting for the amount of neuron in hidden
layer will highly affect the diagnostic accuracy rate. This
paper adopts the BPNN to provide features to the input layer
after preprocessing the signals. The output of the output layer
is a label for the ball bearing state provided by the database,
so that the training of the model can be completed and the
subsequent identification can be verified.

BPNN is as a typical MLP, of which the different layer will
be connected through weight and error. Input of the next layer
is the processed outcome from the previous layer through
nonlinear activation function, and the formula is as (16):

m—1
Si=f (Z w,-jx,-—i-bj) (19)
i=0

wherein S; is the inputted value of the 7™ hidden layer, whilst
w;; is the weight to connect each process unit of different
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layers, x; is the inputted value of the i unit, and b; is the
bias. f(x) is an activation function named as Sigmoid, which
is defined as (17):

1
fO) = (20)

— e*X

When there is an error between expected value and actual
value, BPNN will feedback the error layer by layer to both
the weight and bias of the modification model of each hidden
layer, and then re-deliver the inputted value of training datum
to the next layer according to the calculation of the whole
new weight and bias of each layer, where this process will
be repeatedly exercised until the error value is acceptable.
In order to reduce the difference between the inputted value
and target value of the network, the error modification thereof
is shown as (18):

1 .
E=2 Y 0050 Q1)
icoutputs

Wherein y(; is the actual value and j; is the expected
value.

Ill. EXPERIMENTAL OUTCOMES AND DISCUSSIONS

A. FEATURE EXTRACTION OUTCOMES OF FIR AND APEN
First, the time-domain signals of the normal, outrace fault and
inner race fault are shown on the left of FIGURE 2 (a) to
(c) for the conversion of frequency-domain and frequency-
domain through FFT. The feature band of each bearing
state can be determined according to the frequency-domain
response map. On the right of FIGURE 2 (d) to (f), it can be
seen that the feature band in normal state is 9889 to 10140 Hz,
the feature band in outrace fault is 1121 to 1281 Hz, and
the feature band in inner race fault is 4525 to 4774 Hz. The
Bandpass filter is implemented to filter all signals with a
filtering range of 105 to 10200 Hz for subsequent feature
extraction and classifier recognition. The filtering range in
the frequency-domain is indicated in a red box on the right of
FIGURE 2 (d) to (f).

All the signals which have been filtered by band-pass filter
will be adopted with ApEn for feature extraction, and the
proportion of the similar numbers by total numbers can be
obtained through the computation and reduction of order by
ApEn, as well as that we can clearly see the change upon
statistical outcomes. FIGURE 3 respectively represent the
signal maps of data size after feature extraction by ApEn
for normal status, outer ring malfunction and inner ring mal-
function; also, we can see in FIGURE 3 that all the features
extracted are independent of each other by each status, and
all the sizes and distribution areas of each status can be easily
identified. After calculating by ApEn as show in Table 4, the

TABLE 4. After calculating by ApEn, the standard deviation and mean
value of each state are as follows.

standard deviation and mean value of each state, proving that
the features independently of each other. In TABLE 5, the
T-test was used to calculate the significance between each
state after ApEn is applied.

B. CHEN-LEE CHAOS SYSTEM NONLINEAR FEATURE
MAPPING RESULTS

If we exercise non-linear feature mapping upon the
time-domain map of the three bearing status in FIGURE 2,
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FIGURE 2. Time-domain and frequency-domain map of three bearing.
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FIGURE 3. Feature distribution map of three bearing status by ApEn.

TABLE 5. Significance between each state after ApEn is applied (using
the T-test).

Normal Outrace fault Inner race fault Normal state to Outrace fault to Inner race fault
Means 0.3939 0.3462 0.1812 Outrace fault Inner race fault to Normal state
SDs 0.0009 0.0344 0.0348 P-value 0.153x10° 2.19x10T 7.92x10"
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we can divide the status features as being independent in high
efficiency through the sensitivity upon the minor variation of
chaos system to signals. From FIGURE 4 (a) to (c) we can see
the graph distribution and size difference between the maps
of normal status, outer ring malfunction and inner ring mal-
function after analyzing them by the Chen-Lee chaos system.
Through the experiment and comparison in this study, we take
the coordinate of chaos centroid to be the physical quantity
for ball bearing malfunction analyses. From FIGURE 5 there

are the feature extraction maps of normal status, outer ring
malfunction and inner ring malfunction after analyzing by the
Chen-Lee chaos system.

FIGURE 5 shows the distributional proportion map of
combining the feature signals of the three bearing status, and
we can understand that the data value from the 18" data
to the 21" data of outer ring malfunction is approximate to
the one calculated from the 1t data to the 6" data of inner
ring malfunction, which might cause the subsequent mis-
judgment of identification by the classifier. After calculating
by Chen-Lee Chaos System as show in Table 6, the standard
deviation and mean value of each state. proving that the
features independently of each other. In III-C, the T-test was
used to calculate the significance between each state after the
Chen-Lee Chaos System is applied.

TABLE 6. After calculating by Chen-Lee Chaos System, the standard
deviation and mean value of each state are as follows.

Normal Outrace fault Inner race fault
Means 0.1379 -0.1102 -1.7212
SDs 0.0173 0.2469 0.9012

TABLE 7. Significance between each state after Chen-Lee Chaos System
is applied (using the T-test).

Normal state to
Outrace fault

Outrace fault to
Inner race fault

Inner race fault
to Normal state
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FIGURE 4. Chen-Lee chaos system dynamic error distribution map.
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FIGURE 5. Chen-Lee chaos system feature distribution maps of three
bearing status.
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C. BPNN IDENTIFICATION RESULTS AND COMPARISON
OF OTHER CLASSIFICATION MODELS

The inner parameter configuration of BPNN does not have
any certain accordance and specification. As a result, this
study is to fix the parameters for training function, neural
number and training data number. Also, the training function
introduced in this study is Trainscg, and GPU is used here to
assist the computation; neural number is set as 1,000 and the
data training volume is 90% to perform the test on the 10%
volume. Under the same parameter conditions, we implement
the training upon the datum with two different pre-processing
to compare the time spent as well as the difference of identi-
fication rates between the two data pre-processing measures.
Furthermore, we are to compare the datum of which the
features are not yet extracted by BPNN, SVM and K-NN.

It can be discovered form TABLE 8 and TABLE 10 that
the feature extraction time for the proposed Chen-Lee Chaos
system in this paper is much faster than the time for the FIR
with ApEn. On the basis of original data comparison, we can
see that the two proposed approaches for feature extraction
in this paper are able to increase the identification rate in all
three classifiers as well as reduce the model training time
and testing time. Among these three classifiers, the BPNN
has less testing time under the circumstances without losing
its recognition accuracy. Both feature extraction methods as
well as a randomly selected raw signal which was used to
calculate the mean and standard deviation with the results
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TABLE 8. Spend time comparison between three classifier models.

Feature Training Test
Classifier Method Extraction Time Time(seconds)
Time(seconds) (seconds)
Original Data 0 267.80 1.889
FIR+ApEn 3197.95 5.32 0.106
BPNN Chen-Lee
Chaos 0.545 5.715 0.114
System
Original Data 0 335.4 42.3
FIR+ApEn 3197.95 5.654 0.134
SVM Chen-Lee
Chaos 0.545 5.062 0.86
System
Original Data 0 334.1 36.77
FIR+ApEn 3197.95 1.122 0.147
K-NN Chen-Lee
Chaos 0.545 0.97 0.145
System
Note: Filtering range of FIR filter is between 105 and 10200Hz, the number of hidden
layers in the BPNN model is 100, and the training function is trainscg.

TABLE 9. Standard deviations and means of the signal after feature

extraction.
.. Chen-Lee
Original Data FIR+ApEn Chaos System
Means -0.1399 0.3939 0.1379
SDs 0.8531 0.000902 0.0173

TABLE 10. 10 identification rate comparison between three classifier
models (10-fold cross-validation).

Data Data
. Trainin Testin Identification
Classifier Method Proponifn Proponi‘in Rate(%)
(%) (%)
Original Data 38.3
BPNN FIR+ApEn 80 10 100
Chen-Lee Chaos System 100
Original Data 65.1
SVM FIR+ApEn 80 10 100
Chen-Lee Chaos System 100
Original Data 65.1
K-NN FIR+ApEn 80 10 100
Chen-Lee Chaos System 100

shown in TABLE 9. In addition, we also compare with other
research paper using the same database. A research paper
published by David Verstraete uses STFT for the time and
frequency conversion [45], and implements an in-depth learn-
ing network for identification as well as compares the clas-
sification of accuracy rate. The identification rate is similar
to the results obtained in this paper which is close to 100%;
however, the classifier used in the research paper published
by David Verstraete is an in-depth learning network with a
longer training and testing time, and it also has longer feature
extraction time of the Short-time Fourier Transform. In gen-
eral, the proposed approach in this paper has higher efficiency
and thus it has the advantage of system construction in a
real time, as well as the possibility of being extended to the
micro-processing systems.

IV. CONCLUSION

This study seeks to propose a judgement system on ball
bearing malfunction status with efficiency as well as robust
classification. Also, we aim at the open datum in regard
to a ball bearing released by Machinery Failure Prevention
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Technology, trying to exercise feature extraction and mapping
by using two signal pre-processing methods and then using
the three classification models to classify and diagnose the
ball bearing status, and at the same time comparing the preci-
sion and overall computational efficiency between the meth-
ods that have been described as above. Therefore, we can
come to the conclusion in this essay that although the coloca-
tion of FIR and ApEn has a very tremendous effect on feature
extraction, as well as the features extracted thereof are all rela-
tively independent in each status, it needs 3,197.95 seconds to
pre-process the signals. Out of the cause of effectiveness, it is
not appropriate to be introduced into a real-time diagnostic
system. As a result, in order to solve the efficiency problem
caused by signal pre-processing, we adopt the Chen-Lee
chaos system as our malfunction diagnosis measure to imple-
ment nonlinear feature mapping for the vibration signals
of a ball bearing. Through the sensitivity upon the minor
variation of the signals by this chaos system, we can make
each feature status independent, where the precision of clas-
sification and total time spent can be referred in TABLE 8 and
TABLE 10 that all the precision rates of every classification
model are 100%, while the total time spent on pre-processing
is 0.545 seconds. Comparing with the method regarding the
collocation of FIR and ApEn, not only the precision rate of
Chen-Lee chaos system holds at a good quality, but is also
better than the former one in computational efficiency. It has
been therefore proved that Chen-Lee chaos system is highly
effective and practical for the diagnosis on ball bearing status,
and is very promising to be applied in the real-time diagnosis
system in the future.
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