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ABSTRACT Fusion of panchromatic image (PANI) and hyperspectral image (HSI) to obtain an output
image with high spatial and spectral resolutions has received increasing interests recently. We propose a
new image fusion method for HSI and PANI by combining adaptive tensor with a multi-scale Retinex
algorithm in this paper. In the proposed method, an adaptive tensor based method is presented to effectively
extract the structure information of HSI, and multi-scale Retinex algorithm is introduced to obtain the spatial
and structure details of PANI. To integrate spatial structure information, a gradient-based weighted fusion
strategy is proposed to combine spatial details of HSI and PANI. The integrated structure details are injected
to generate the fused HSI. Experiments using both simulated and real remote sensing data sets demonstrated
that the proposed fusion algorithm performs better than the state-of-the-art algorithms in visual inspection
and objective assessment.

INDEX TERMS Image fusion, hyperspectral image, panchromatic image, adaptive tensor, multi-scale
Retinex algorithm.

I. INTRODUCTION
Due to the technical constraints, information collected by a
single sensor only reflects partial characteristics of an object,
but cannot reflect complete characteristics. Multiple sensors
can reflect more complete characteristics and information.
The hyperspectral (HS) remote sensing sensors provide the
HS imagery (HSI) which has abundant spectral informa-
tion [1]. The Panchromatic (PAN) remote sensing sensors are
capable of providing the PAN image (PANI) that possesses
high spatial resolution (HSR). The HSI is a three-dimensional
data, and has been used in various fields [2]–[5]. However,
the HSI usually has low spatial resolution (LSR). Similarly,
the PANI contains limited spectral information. The plentiful
spatial information provided by the PAN images (PANIs)
is helpful to locate the objects accurately [6]. The HS
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images (HSIs) that have high spectral resolution are utilized
to recognize the materials [6]. For the sake of combining the
aforementioned advantages of the two images, the PANI and
HSI fusion is necessary and significative.

Some HSI and PANI fusion approaches have been
proposed by many scholars. The popular approaches are mul-
tiresolution analysis (MRA) [7]–[10] and component sub-
stitution (CS) [12]–[15]. MRA methods, such as smoothing
filter-based intensity modulation (SFIM) [7], MTF general-
ized Laplacian pyramid (MTFGLP) [8], and MTFGLP with
high pass modulation (MGH) [9], inject the spatial details of
PANI into HSI. These algorithms generally yield good spec-
tral preservation performance, but have huge computational
burden and complex actual implementation [10].

Some well-known algorithms in the CS methods are prin-
cipal component analysis (PCA) [11], [12], Gram-Schmidt
(GS) [13], adaptive GS (GSA) [14], intensity-hue-saturation
(IHS) [15], and partial replacement adaptive CS [16].

30522 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-3925-2884
https://orcid.org/0000-0002-0234-6270
https://orcid.org/0000-0001-8354-7500
https://orcid.org/0000-0003-0106-6709
https://orcid.org/0000-0002-2517-2867


J. Qu et al.: Hyperspectral and PANI Fusion via Adaptive Tensor and Multi-Scale Retinex Algorithm

Generally, CS algorithms decompose the HSI into spectral
and spatial components, substitute spatial information with
PANI, and construct the fused HSI via using the inverse trans-
formation. These algorithms generally have the advantages
that they are fast and simple, and have excellent spatial per-
formance [14]. However, they usually have serious spectral
distortion [17].

Bayesian and matrix factorization methods which are
proposed in this decade generally yield satisfactory fusion
results, but these methods usually take high computational
cost [18]. Bayesian approaches contain methods such as
Bayesian HySure [18], Bayesian sparse (BSF) [19], [20], and
Bayesian naive [21]. These methods employ a appropriate
prior distribution to solve a optimized model [6]. Matrix
factorization based methods such as constrained nonnegative
matrix factorization (CNMF) [22] usually utilize nonnegative
matrix factorization (NMF) [23], [24] to obtain the fused
image.

In addition, some advanced and innovative ideas for the
fusion processing have been proposed recently [25]–[32].
Among them, the more popular fusion methods are based on
deep learning [27]–[31]. Dian et al. learned the image priors
through convolutional neural network (CNN)-based residual
learning to sharpen the HSI [28]. Shao et al. adopted a two
branches CNN network to extract features of HSI and PANI,
and utilized one main thread to fuse the extracted features for
generating the fused HSI [29]. Zhang et al. presented an end-
to-end bidirectional pyramid network [31], and this network
processed HSI and PANI in two separate branches level by
level.

Structure tensor matrix at a pixel has two eigenvalues
which describe the spatial structure information at this pixel.
The larger eigenvalue represents the edge intensity of this
pixel. Multi-scale Retinex algorithm can decompose an
image into shape-dependent and reflectance components.
Based on the idea of tensor matrix and Multi-scale Retinex
algorithm, we present a new HSI and PANI fusion method,
where an adaptive tensor based algorithm is presented to
extract the details of HSI. Meanwhile, three-scale Retinex
algorithm is introduced to obtain the structure details of
PANI. Then, the proposed approach presents a gradient based
weighted way to acquire the integrated spatial details of HSI
and PANI. The validity and effectiveness of the proposed
approach is verified by testing experiments and compar-
ing with other hyperspectral remote sensing image fusion
methods.

The rest of the paper is organized as follows. Section 2 intro-
duces related work. Section 3 provides the details of the
proposed method. Section 4 displays experimental results.
Finally, Section 5 gives the conclusions.

II. RELATED WORK
A. STRUCTURE TENSOR
Structure tensor [33] which represents the gradient and struc-
ture details of an image has been successfully used in various

applications [34]–[38]. For an image U, structure tensor J is
defined as

J = ∇U∇UT
=

[
U2
x UxUy

UxUy U2
y

]
(1)

where ∇U =
[
Ux Uy

]T is the gradient operator, Ux =
∂U
∂x

andUy =
∂U
∂y are x and y derivatives ofU, and ()T is transpose

operation. To consider the structure information of neighbor-
hood at this pixel, the Gaussian function is convoluted with J
as

JG =
[

Gτ ∗ U2
x Gτ ∗ UxUy

Gτ ∗ UxUy Gτ ∗ U2
y

]
(2)

where JG represents the resulting tensor matrix, Gτ repre-
sents Gaussian function, τ represents standard deviation, and
∗ represents the convolution operation. Since JG is a positive
semi-definite matrix, it has two nonnegative eigenvectors and
can be decomposed as

JG =
[
ν1 ν2

] [ β1 0
0 β2

]
( ν1 ν2 )T (3)

where ν1 and ν2 are the eigenvectors, and β1 and β2 are the
corresponding nonnegative eigenvalues. The eigenvalues β1
and β2 describe the spatial structure information.
If β1 ≈ β2 ≈ 0, the region is flat area. When β1 > β2 ≈ 0,
the region is edge area. If β1 ≥ β2 > 0, the area is a
corner. The larger eigenvalue indicates the edge intensity of
the image at this pixel. The corresponding eigenvector is the
gradient direction of this pixel.

B. INTRINSIC IMAGE DECOMPOSITION AND RETINEX
ALGORITHM
Intrinsic image decomposition (IID) has been used in many
image processing problems [39], [41]. Given an image,
the IID is represented as

O(x, y) = S(x, y)× R(x, y) (4)

where O is an input image, S is an illumination and
shape-dependent component, and R is a reflectance compo-
nent. The reflectance component R is related to the mate-
rial of objects, and the illumination shading information S
depends on the illumination of the scenes and the texture
and structure information of objects. In [41], IID is utlized
to obtain reflectance and illumination components of HSI,
where R is extracted as spectral component of HSI, and
S is served as spatial and texture structure details of HSI. IID
is introduced to PANI in this paper, and the illumination and
shape-dependent component S that is the spatial and structure
information is extracted.

How to solve the intrinsic image decomposition equa-
tion is a challenging topic. Various methods have been
proposed to solve this ill-posed equation, such as Retinex
algorithm [42], [43], global optimization method [44], and
extra constraints method [45]. Retinex algorithm can effec-
tively show the detail information, decompose the reflectance
and illumination components, and compress the dynamic
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FIGURE 1. Schematic diagram of the proposed method.

range. Compared with the single scale Retinex algorithm,
multi-scale Retinex algorithm is more effective in detail con-
trast and extraction aspects [43]. In this paper, multi-scale
Retinex algorithm is adopted for the intrinsic decomposition
of PANI.

III. PROPOSED METHOD
This section describes the proposed method that are based
on adaptive tensor and multi-scale Retinex algorithm.
Fig. 1 shows its schematic diagram. Let H ∈ Rl×w×d denote
the LSR HSI, and P ∈ RL×W×1 denote the HSR PANI.
When H ∈ Rl×w×d and P ∈ RL×W×1 are given, these two
images can be fused to generate a new HSI which has high
spatial and spectral resolution. Let Ĥ ∈ RL×W×d denote the
fused HSI. Here, l and L (note that l < L) are the respective
heights of two images, w and W (note that w < W ) are the
respective widths, and d is the number of the HSI bands. The
objective of HSI and PANI fusion is to effectively improve
spatial resolution while preserving the spectral information
of the original HSI.

A. ADAPTIVE TENSOR BASED METHOD FOR HSI
The original HSI H is interpolated to generate the same
dimension as PANI. Let H̃ ∈ RL×W×d represent the

interpolated HSI. An adaptive tensor based algorithm is pre-
sented to extract the spatial information of HSI. Based on
Equation (1) and (2), for each pixel of each band, the structure
tensor matrix is obtained, and the Gaussian function Gτ is
applied to the obtained structure tensor as

Jmi =

[
(H̃m

x,i)
2 H̃m

x,iH̃
m
y,i

H̃m
x,iH̃

m
y,i (H̃m

y,i)
2

]
(5)

J
m
i =

[
Gτ ∗ (H̃m

x,i)
2

Gτ ∗ H̃m
x,iH̃

m
y,i

Gτ ∗ H̃m
x,iH̃

m
y,i Gτ ∗ (H̃m

y,i)
2

]
(6)

for m = 1, 2, . . . , d , where i = (x, y) is the ith pixel,
x = 1, 2, . . . ,L, y = 1, 2, . . . ,W , H̃m

x,i and H̃
m
y,i are the x and

y partial derivatives at pixel i of themth band, Jmi is the tensor
matrix at pixel i of the mth band, J

m
i is the convolutional

tensor matrix at pixel i of the mth band, and the standard
deviation τ is set to 0.5. The convolutional tensor which is
a semi-definite matrix can be decomposed as

J
m
i =

[
νm1,i νm2,i

] [ βm1,i 0
0 βm2,i

]
( νm1,i ν

m
2,i )

T (7)

where νm1,i and ν
m
2,i are the eigenvectors at pixel i of the mth

band, and βm1,i and β
m
2,i are the eigenvalues at pixel i of the

mth band. Assume that βm1,i is greater than β
m
2,i. The larger
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eigenvalue βm1,i indicates the edge intensity at pixel i of the
mth band.

The spatial component of HSI is obtained by the following
weighted formula

IH,i =
d∑

m=1

ami H̃
m
i (8)

where IH ∈ RL×W×1 denotes the spatial details of HSI,
IH,i denotes the spatial information at pixel i, H̃m

i denotes
the intensity of the interpolated HSI at pixel i of the mth
band, and ami represents the weighting coefficient at pixel i
of the mth band. The weighting coefficient ami is adaptively
acquired by analyzing the larger eigenvalue βm1,i. Since β

m
1,i

describes the edge intensity at pixel i of the mth band,
the greater βm1,i, the more spatial information at pixel i of the
mth band. Therefore, the weighting coefficient ami is adap-
tively obtained.

ami =
βm1,i
d∑

m=1
βm1,i

. (9)

B. MULTI-SCALE RETINEX ALGORITHM FOR PANI
For the sake of enhancing the spatial information, Laplacian
of Gaussian (LoG) approach is applied to PANI. The LoG
method employs a Gaussian lowpass filter to reduce noise,
and utilizes a Laplace operator to sharpen the details. The
obtained result is finally added with the original PANI.

P̃ = P+ h [P ∗ fL] (10)

where P̃ ∈ RL×W×1 denotes the enhanced PANI, ∗ denotes
the convolution operator, and fL denotes the function of LoG
operator which is defined as

fL(x, y) =
x2 + y2 − 2σ 2

σ 4 exp(−
x2 + y2

2σ 2 ) (11)

where σ denotes the standard deviation. In Equation (10),
h is a constant related to the central coefficient of the LoG
kernel. If the central coefficient is positive, h is equal to 1.
Conversely, h is−1. In this work, the coefficient is a negative
value, and h is −1.
To decompose the illumination and reflectance compo-

nents of the enhanced PANI, Multi-scale Retinex algo-
rithm is introduced. According to [41], the illumination and
shape-dependent component describes spatial and structure
information. Based on Equation (4), the intrinsic image
decomposition of P̃ is represented as

P̃(x, y) = SP(x, y)× RP(x, y) (12)

where SP ∈ RL×W×1 represents the illumination and
shape-dependent component of the enhanced PANI, andRP ∈

RL×W×1 is the reflectance information of the enhanced PANI.
On the basis of the multi-scale Retinex algorithm, three
scales which are high, medium and low are selected, and the

reflectance component which is related to the materials is
estimated as

rP(x, y)= log(RP(x, y))

=
1
3

3∑
n=1

[
log(̃P(x, y))− log(̃P(x, y) ∗ gn(x, y))

]
(13)

where rP is the log form of RP, and gn is the Gaussian
surround function which can be expressed as

gn(x, y) = Qn exp(−(x2 + y2)
/
2ω2

n),

s.t
∫∫

gn(x, y)dxdy = 1 (14)

for n = 1, 2, 3,, where ωn represents the scale factor of gn,
ω1, ω2, ω3 are set to 16, 32, and 64. Qn which is determined
by constraint condition is the normalization factor. In Equa-
tion (13), the convolution part P̃(x, y) ∗ gn(x, y) is calculated
in the frequency domain.

P̃(x, y) ∗ gn(x, y) = =−1([=(̃P(x, y))]× [=(gn(x, y))]) (15)

where = denotes Fourier transform and =−1 denotes inverse
Fourier transform. The reflectance component which depends
on the intrinsic nature and materials of objects is obtained
by using Equation (13), and then the illumination and
shape-dependent component that describes the texture and
structure information is acquired by

SP(x, y) =
P̃(x, y)
RP(x, y)

=
P̃(x, y)

exp(rP(x, y))
(16)

C. GRADIENT BASED WEIGHTED FUSION STRATEGY
After the spatial details of HSI IH and the structure infor-
mation of PANI SP are extracted, a gradient based weighted
fusion strategy is presented to obtain the integrated spa-
tial details. Gradient operation is applied to IH and SP.
A larger gradient value at each pixel indicates more spatial
information. This gradient based weighted fusion strategy is
described as

Di =
I2Hx,i + I2Hy,i

(I2Hx,i + I2Hy,i)+ (S2Px,i + S2Py,i)
IH,i

+
S2Px,i + S2Py,i

(I2Hx,i + I2Hy,i)+ (S2Px,i + S2Py,i)
SP,i (17)

where D ∈ RL×W×1 represents the integrated spatial details,
Di represents the spatial information at pixel i, IHx , IHy, SPx ,
and SPy are the x and x partial derivatives of IH and SP,
respectively, and IHx,i, IHy,i, SPx,i, and SPy,i are their values
at pixel i. By this weighted strategy, the spatial information
of HSI and PANI is considered simultaneously.

In order to inject the integrated spatial information D
into the interpolated HSI H̃ with less spectral and spa-
tial distortion, a gains matrix T is constructed as follows.
The proportion between each pair of HSI bands remains
unchanged to maintain spectral information. Then, a tradeoff
parameter λ is defined to control the amount of the
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TABLE 1. Characteristics of the tested data sets.

injected structure information, which reduces spatial distor-
tion. Define

Tm = λ
H̃m

(1
/
d)
∑d

m=1 H̃m
(18)

where Tm is the gains matrix of the mth band. The fused
HSI with high spectral and spatial resolution is generated by
combining the integrated spatial details with the interpolated
HSI for each band as

Ĥm
= H̃m

+ Tm · D (19)

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATA SETS
For the sake of assessing the performance of the proposed
approach (named as ATMR), three synthetic data sets and one
real data set are used in the experiments. Three synthetic data
sets include Salinas, Moffett field, and Washington DC, and
the real data set is Hyperion. Several characteristics of these
four tested data sets are summarized in Table 1.

Moffett field data set was collected by the Airborne Visi-
ble/Infrared Imaging Spectrometer (AVIRIS), and is a stan-
dard data product of AVIRIS [6]. These HSIs have 224 bands
ranging from 0.4− 2.5µm, and 176 bands are used for exper-
imentation after removing the noise bands and water absorp-
tion bands. The spatial resolution of PANI and HSI are 20m
and 100m. The tested PANI and HSI are of size 250 × 150
pixels and 50× 30 pixels.

Salinas data set is another standard data product which was
collected by AVIRIS [6]. This data set includes 224 bands
covering the spectral range 0.4− 2.5µm with the spatial
resolution of 3.7m. 20water absorption bands (108-112, 154-
167, and 224) are discarded, and 204 bands are applied to
experimentation. The spatial size of the tested PANI and HSI
are 200× 200 and 40× 40.

Washington DC data set was acquired by Hyperspectral
Digital Imagery Collection Experiment (HYDICE) sensor.
This HSI has 210 bands spanning 0.4− 2.4µm spectral
range. Bands in the 0.9− 1.4µm spectral region where the
atmosphere is opaque are removed, and 191 bands are left for
the experiments. The dimensions of the experimental HSI and
PANI are 50× 50 and 250× 250.
For the synthetic data sets, including Salinas, Moffett field,

and Washington DC, the HSIs are available, and the PANIs
are not available. The available HSI is served as the reference
HSI. Based on Wald′s protocol [46], the synthetic HSI and
PANI are generated from the available HSI. The reference

HSI is spatially blurred by applying a Gaussian kernel and
downsampled by a factor of 5 to create the simulated LSR
HSI. The simulated high resolution PANI is created via aver-
aging the visible range bands of the reference HSI.

Hyperion data set was provided by the Hyperion instru-
ment which is carried on the EO-I spacecraft [6]. The EO-I
spacecraft also carried another instrument that was Advanced
Land Imager (ALI) [6]. The HSIs that were collected by
Hyperion instrument contain 242 bands covering spectral
range of 0.4− 2.5µm. The noise and water absorption bands
are removed, and 171 bands are utilized to be tested. ALI
instrument provided PANI with the spatial resolution of 10m.
The size of PANI and HSI in the experiment are 360 × 360
and 120× 120.

B. COMPARED METHODS AND FUSION QUALITY
METRICS
The proposed ATMR method is compared with several
popular hyperspectral remote sensing image fusion meth-
ods, including MGH [9], BSF [19], CNMF [23], GS [13],
guided filter PCA (GFPCA) [47], GSA [14], an image
segmentation-based method (SEGM) [25], and an optimiza-
tion constraint equation and sliding window-based method
(OCSW) [26]. To compare the performance of each approach,
several widely used quality metrics are used. The first quality
index is cross correlation (CC) [48], which is a spatial quality
measure. CC characterizes the geometric distortion, and the
maximum value is 1. spectral angle mapper (SAM) index is
used for measuring the degree of spectral distortion [48], and
the optimal value is 0. The third index is root mean squared
error (RMSE). Erreur relative global adimensionnelle de
synthse (ERGAS) [49] is the fourth index. The RMSE and
ERGAS metrics are global measures which evaluate spatial
and spectral qualities respectively, and 0 is their ideal value.

Salinas, Moffett field, andWashington DC data sets are the
synthetic data sets. The synthetic data sets use the available
HSI serving as the reference HSI. The synthetic HSI and
PANI which are generated from the HSR HSI are fused by
each method to obtain the fused HSIs. The fused HSIs are
compared with the reference HSI to evaluate the objective
performance.

Hyperion data set which is a real data set is utilized to
evaluate the fusion capability in real hyperspectral image.
For the real data set, we generally can not obtain the reference
HSI. To assess the objective performance of each method,
the original available low resolution HSI is served as the
reference HSI. This reference HSI and the real PANI are all
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FIGURE 2. Effect of tradeoff parameter.

degraded to obtain the degraded HSI and PANI on the basis
of Wald′s protocol [46]. The degraded HSI and PANI are
fused to generate the fused HSI, which is compared with the
original HSI to assess the objective performance.

C. PARAMETER DISCUSSION
In this part, we analyze the effect of tradeoff parameter λ.
λ controls the quantity of the injected spatial information.
Since λ controls the spatial distortion, we use the CC, RMSE
and ERGAS indexes that evaluate the spatial quality to deter-
mine an optimal value of λ. The experiment is performed
on the Moffett field data set, and experimental results are
shown in Fig. 2. We analyze the results of CC, RMSE and
ERGAS, and find that the better results are obtained when λ
is set to 0.12. Thus, for the Moffett field data set, we set the
value of λ as 0.12. The same way is applied on the Salinas,
Washington DC, and Hyperion data sets, and the values of λ
for these three data sets are 0.05, 0.07, and 0.05, respectively.

D. EXPERIMENTAL RESULTS WITH THE SIMULATED
HYPERSPECTRAL DATA SET
The first and third row of Fig. 3 show the fused HSIs gen-
erated by different approaches for the Moffett field data set.
Fig. 3(a1) is the reference HSI. Visually, the fused result of
the GS approach suffers from spectral distortion, especially
in some urban regions. Compared with other approaches,
GFPCA looks blurry, and the spatial details of the fused HSI
is not sufficient. Although the GSA, SEGH, and CNMF algo-
rithms have good capability in the spatial aspect, their results
yield slight spectral distortion. By comparison, the MGH,
OCSW, BSF, and ATMR methods acquire better fusion
effects. The MGH, OCSW, BSF, and ATMR methods all
have good fidelity of the spatial details. However, by further
comparison, the MGH and ATMR approaches yield better
performance in maintaining the spectral information com-
pared with the BSF and OCSW approaches. The fused result
of the MGH method is too sharp in certain regions, such
as building regions. The proposed ATMR offers excellent
capability in both spectral and spatial aspects. The second and
fourth row of Fig. 3 display error images (absolute values) of
each method to further illustrate the fusion quality of each
method. Fig. 3(a2) shows the standard image. ATMR causes
the smallest differences between the fused and reference
HSIs. Objective indexes for Moffett field data are computed

and reported in Table 2. The MGH provides the best CC
value, and followed by the ATMR. For the SAM, ERGAS,
and RMSE indexes, the proposed ATMR obtains the best
results, and demonstrates the excellent fusion performance.

The first and third row of Fig. 4 are given to show the
subjective fusion images of each compared method for the
Salinas data set. The spectral fusion property of the GS
approach is unsatisfactory. Spectral distortion of the GS
approach is serious, especially in soil and vegetable areas.
Compared with the GS approach, the spectral performance of
the fused HSI of the GFPCA algorithm is improved. But the
GFPCA method has the insufficient spatial details in many
regions. Although the OCSW and BSF algorithms seem have
the excellent fusion property, the OCSW and BSF algorithms
have a little spatial distortion in the edge and vegetable
regions. The SEGM causes spectral distortion, especially in
some edges. The visual analysis shows that the CNMF and
GSA approaches have excellent spectral preserving property,
but spatial structures and details in some vegetable regions
are insufficient. The MGH and the ATMR perform well,
but the spatial details of the MGH algorithm are too sharp.
Same as the Moffett field data, the second and fourth row
of Fig. 4 show the error images of each method for the
Salinas data. A visual comparison shows that the ATMR has
the minimum differences. The quantitative metrics are given
in Table 3, and the ATMR outperforms the other competing
methods in both spectral and spatial aspects.

The first and third row of Fig. 5 show the fused HSIs
of different algorithms for Washington DC data. Fig. 5(a1)
displays the reference HSI. Visually, the GS and CNMF
methods effectively improve the spatial information, but these
two methods introduce spectral distortion in some building
and road regions. Same as the conclusions drawn in the
Salinas and Moffett field data, some spatial structure infor-
mation is missing in the fusion result obtained by the GFPCA
method on Washington DC data. GSA approach exhibits the
good spectral preservation effect. However, the spatial details
produced by the GS approach are slightly deficient, such as
in the building roof areas. The fused HSIs generated byMGH
and OCSW have good spatial fidelity, but have slight spectral
distortion. The SEGM, BSF, and ATMRmethods produce the
better vision effect than other competitive methods. To better
demonstrate the advantage of the ATMR algorithm, the sec-
ond and fourth row of Fig. 5 display the error images of
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FIGURE 3. The first and third row: fusion results of each method for Moffett field data. The second and fourth row: error
images of each method for Moffett field data. (a1-a2) Reference image. (b1-b2) GS. (c1-c2) GFPCA. (d1-d2) CNMF. (e1-e2)
MGH. (f1-f2)GSA. (g1-g2) SEGM. (h1-h2) OCSW. (i1-i2) BSF. (j1-j2) ATMR.

TABLE 2. Quantitative results for Moffett field data.

each algorithm. The error image from the ATMR method
is the closet to the standard one as shown in Fig. 5(a2).
This demonstrates that ATMR has superior performance
in enhancing spatial information and preserving spectral

information. Furthermore, the quantitative results are
obtained and reported in Table 4, indicating that ATMR
achieves the best fusion quality. The ATMR method obtains
the smallest SAM, RMSE, and ERGAS values.
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FIGURE 4. The first and third row: fusion results of each method for Salinas data. The second and fourth row: error images of
each method for Salinas data. (a1-a2) Reference image. (b1-b2) GS. (c1-c2) GFPCA. (d1-d2) CNMF. (e1-e2) MGH. (f1-f2)GSA.
(g1-g2) SEGM. (h1-h2) OCSW. (i1-i2) BSF. (j1-j2) ATMR.

TABLE 3. Quantitative results for Salinas data.

TABLE 4. Quantitative results for Washington DC data.

E. EXPERIMENTAL RESULTS WITH THE REAL
HYPERSPECTRAL DATA SET
Fig. 6(a) and Fig. 6(b) show the real LSR HSI and HSR
PANI, respectively. Fig. 6(c) shows the interpolated HSI.
Fig. 6(d)-(l) presents the fused HSIs generated by each
algorithm. The GS algorithm has significant spectral

distortion, and the GFPCA algorithm exhibits obvious spa-
tial distortion. By the comparisons of these fused results,
CNMF, GSA, and SEGM perform good spectral fidelity,
but they exhibit slight spatial blur. By careful observa-
tion, the MGH, OCSW, BSF, and the proposed ATMR
approaches have good vision appearance in the spatial
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FIGURE 5. The first and third row: fusion results of each method for Washington DC data. The second and fourth row: error
images of each method for Washington DC data. (a1-a2) Reference image. (b1-b2) GS. (c1-c2) GFPCA. (d1-d2) CNMF. (e1-e2)
MGH. (f1-f2)GSA. (g1-g2) SEGM. (h1-h2) OCSW. (i1-i2) BSF. (j1-j2) ATMR.

FIGURE 6. Fusion results of each method for Hyperion data.(a)HS image.(b) PAN image. (c) Interpolated HS image. (d) GS. (e) GFPCA. (f) CNMF.
(g) MGH. (h)GSA. (i) SEGM. (j) OCSW. (k) BSF. (l) ASTMR.

and spectral aspects. Table 5 presents the objective per-
formance results of Hyperion data. It is evident that the
ATMR performs the best. The values of SAM, RMSE,
and ERGAS are the smallest, and the CC has the largest
value.

The time complexity of different algorithms is compared,
and the average computational times (s) of each method are
shown in Table 6. As shown in Table 6, the GFPCA, GS,
and GSA approaches are very fast. However, the pansharp-
ened HSIs generated by these approaches are unsatisfactory.
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TABLE 5. Quantitative results for Hyperion data.

TABLE 6. Average competing time of different algorithms.

MGH is also fast, but the spatial details of the fused HSI
obtained by MGH may be too sharp. That is, they will be
able to provide the simple fusion framework with low com-
putational complexity by compromising fusion performance.
The proposed ASTMR is slower than the CNMF, SEGM, and
OCSW algorithms, and is faster than BSF. ASTMR is not
very competitive in terms of the running time, but ASTMR
has better fusion performance than other algorithms in both
spatial and spectral aspects. We will develop parallel process-
ing system to accelerate the running speed of the ASTMR
method in the future research.

V. CONCLUSION
In this paper, a novel HSI and PANI fusion approach called
ATMR is proposed. It presents an adaptive tensor method
to obtain the spatial information of HSI, and introduces the
Multi-scale Retinex algorithm to obtain the structure infor-
mation of PANI. In addition, it employs a gradient based
weighted fusion strategy to integrate the obtained spatial
details of HSI and PANI. The proposed ASTMR algorithm
is tested on four hyperspectral data sets which demonstrates
it can effectively enhance spatial resolution and maintain
spectral information of HSI.
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