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ABSTRACT The Takagi—Sugeno (T-S) fuzzy model identification is a very powerful tool for modelling
of complicated nonlinear system. However, the traditional T-S fuzzy model typically uses the L2-norm loss
function, which is very sensitive to outliers or noises. So an unreliable model may be obtained due to the
presence of outliers or noises. In this paper, the outliers and noises robust T-S fuzzy model identification
method based on the fuzzy c-regression model (FCRM) clustering and the L.1-norm loss function is proposed.
The hyper-plane-shaped clustering algorithm has been proved to be more effective than hyper-sphere-shaped
clustering algorithm in T-S fuzzy model identification. Therefore the FCRM clustering algorithm is used
in T-S fuzzy model identification for structure identification in the antecedent part. A mass of relevant
researches have pointed out that the L.1-norm loss function is more robust to outliers and noises than L2-norm
loss function. In order to reduce the negative influence of outliers and noises, the L1-norm loss function
is employed to enhance the robustness of T-S fuzzy model instead of the L2-norm loss function in the
consequent part. Regression and classification applications have been used to demonstrate the validity of
the proposed method. The experimental results show that the proposed method has significantly improved the
modelling accuracy in dealing with data contaminated by outliers and noises compared with other algorithms.

INDEX TERMS T-S fuzzy model, fuzzy c-regression model, L1-norm loss function, outliers and noises

robustness.

I. INTRODUCTION

With the rapid development of artificial intelligence tech-
niques, the data-driven modelling method [1]-[7] is playing
an important role for modelling of complicated nonlinear
system in the age of big data, where the performance of these
methods crucially rely on the quality of given training data.
However, the training data will inevitably is contaminated
by outliers or noises because of sampling errors, instrument
errors and modelling errors, which will significantly reduce
the accuracy and reliability of the established model. There-
fore, it is very necessary to put forward the outliers and noises

The associate editor coordinating the review of this manuscript and

approving it for publication was Ligang Wu

33792

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

robust data-driven modelling methods to handle the outliers
and noises. Takagi—Sugeno (T-S) fuzzy model proposed by
Takagi and Sugeno is a very effective data-driven mod-
elling method [8]. It contains the following merits: (1) Easy-
implementation [9], [10]; (2) High interpretability [11], [12];
(3) Universal approximation capability [13]-[15]. Therefore
the T-S fuzzy model has been successfully and widely applied
in the field of high precision modelling and many control
problems [16]-[19].

Although the T-S fuzzy model has many advantages,
the performance will be heavily deteriorated due to the
presence of outliers or noises. The traditional T-S fuzzy
model identification approach with L2-norm loss function is
very sensitive to the outliers or noises because the L2-norm
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loss function is prone to be badly affected by outliers and
noises [20]. The unreliable T-S fuzzy model will be obtained
in handling data with outliers or noises, and its performance
can’t be guaranteed. However, until now the outliers and
noises robust T-S fuzzy model identification approach has
not yet been widely researched. So robust T-S fuzzy model
identification is worth to study.

Howeyver, few researches are focused on the robustness of
the T-S fuzzy model with outliers and noises. But related
work on other data-driven modelling methods can provide
reference for building a robust T-S fuzzy model. Some out-
liers and noises robustness methods have been proposed for
regression, classification, fault diagnosis [21], [22] and so on.
Deng et al. [23] introduced the weighted least square scheme
and the regularization term to improve the robustness of the
extreme learning machine. Zhang et al. [24] used a weighted
function to enhance the robustness of the least square support
vector machine model to outliers. Although the weighted
strategy can improve the robustness of algorithms to some
extent, there also remain defects that limit its practical perfor-
mance. The appropriate weight estimation relies heavily on
previously established T-S fuzzy model and has an important
influence on the final output. But we can’t guarantee to obtain
a good previous established T-S fuzzy model.

Most of related researches have proved that the L1-norm
loss function is more robust to outliers and noises due to its
sparsity [26]—[28]. For the L2-norm loss function, the corre-
sponding loss increases in square with the increase of errors.
When training data contains outliers or noises, regression
errors in the outliers will dominate the increase or decrease
of the entire loss function value, which will cause the trained
model at this time to be biased towards outliers. But the loss
of L1-norm function increase linearly with the error, which is
slower than L2-norm loss function. Some studies have proved
that the L1-norm is more robust than L2-norm and it has been
widely applied in handling outliers or noises.

The fuzzy c-regression model (FCRM) clustering algo-
rithm has been proposed for structure identification of T-S
fuzzy model, which is a hyper-plane-shaped clustering algo-
rithm [29]-[38]. The FCRM still has certain limitations
when facing complex datasets with various shapes, sizes, and
densities. So some clustering algorithms which are capable of
clustering of arbitrary shape have been proposed [39]-[47].
Although these clustering algorithms have better perfor-
mance than FCRM for data with various shapes, sizes, and
densities, the FCRM described by several linear regression
models maybe more suitable for the T-S fuzzy model identi-
fication because the final T-S fuzzy model is consisted of mul-
tiple linear regression models. Furthermore, this paper mainly
studies the robustness of the T-S fuzzy model for data with
outliers and noises, and the major innovation of this paper is
in consequent parameters identification no structure identi-
fication. So in this paper, the mostly used FCRM clustering
algorithm is adopted for T-S fuzzy model identification.

The hyper-plane-shaped clustering algorithm FCRM has
been shown to be more effective than hyper-sphere-shaped
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clustering algorithm in T-S fuzzy model identification. Thus,
a robust T-S fuzzy model identification approach based on
the FCRM clustering algorithm and L1-norm loss function
is proposed. The FCRM is used to partition the input-output
data space to obtain the optimal data structure of the T-S fuzzy
model in the antecedent part. With the obtained antecedent
parameters, the L1-norm loss function which has more strong
outliers or noises robustness is introduced to estimate the
output error instead of the traditional L2-norm loss function
in the consequent part. Four regression applications and a
classification application have been used to verify its effec-
tiveness. The experimental results show that the proposed
method has significantly improved the modelling accuracy in
handling data with outliers and noises.

The rest of this paper is organized as follows. In Section II,
the background of T-S fuzzy model and FCRM clustering
algorithm are introduced. In Section III, the novel robust T-S
fuzzy model identification approach is proposed. Section IV
shows experimental results and analysis. Section V presents
the conclusion and future works.

Il. TAKAGI-SUGENO FUZZY MODEL IDENTIFICATION

A. T-S FUZZY MODEL

Assuming a multiple-input-single-output (MISO) system

P(x, y) needs to be identified, in which x € RM is the system

input and y € R is the system output. The T-S fuzzy model of

this system is consisted of several IF-THEN fuzzy rules:
Rule R;: IF x; is A"l and,..., and xs is Ajw THEN

Y =084 0ix) + -+ 0xm (1

where R;(i = 1,2,3, ..., ¢) is the fuzzy rule, c is the num-
ber of fuzzy rules. M is the dimension of the input vector,
x = [x1,x2, ..., xas]7 is the input vector of the fuzzy model,
which is composed of system input and output variables. “T"”
is the transposition operator of matrix. y' is the iy, sub-model
output and {0} ,j =0, ..., M} is the consequent parameter of
ith sub-model

The final output of T-S fuzzy model is comprised of those
sub-models as a form of weighted mean defuzzification:

@

where the weight w' denotes the overall membership grade of
input x belonging to the iy sub-model. It can be calculated
as:

wh = HJA; ;J,Ajg(xj) 3)

where w,i(x;) is fuzzy membership grade of x; belonging to
J

fuzzy set Al.

There are triangular membership function, trapezoid mem-
bership function, Gauss membership function and so on can
be chosen according to specific problems and experimental
results. The Gauss membership function which is mostly used
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in T-S fuzzy model is chosen in this paper:

2

) “

1 Xj — V]l:
M pi(X) = exp(—7 - ( = )
j

where v;, aji represent the center and width of the membership
function respectively.

B. FUZZY C-REGRESSION MODEL CLUSTERING
ALGORITHM
To obtain the center and width of the membership function,
clustering algorithms are employed for fuzzy space partition.
The FCRM has been used to partition the input—output data.
There are N input—output data pairs (xx,yx) (kK =
1, ..., N) and they will be divided into ¢ subclasses using the
FCRM, in which the iy, subclass data samples are described
by a linear regression model:

Ve =1 (o 1) = dyxen + dyxia + -+ dy e + b
= [kal] - ; &)

It is a hyper-plane function. Where x; = [xx1, - - x| s
the ky, input vector, ““-” is the multiplication operator of two
vectors and w; = [ail, cee, ajw, bf)]T is the parameter of the i,
linear regression model.

The distance between the ky, sample to the iy, linear regres-
sion model is defined as follows:

die (@) = (i — Fi G, ) ©6)

Therefore the objective function of FCRM is defined:
min/ (U, @) = 33 Xy ()" die @) o)
sty i quxk=1k=12,--- N

where m € (1, 00) is the fuzzy weighted exponent and it is
often set to be 2. u;; € [0, 1] is the fuzzy membership degree
of ky, sample belonging to the iy, cluster.

The fuzzy membership degree u;; and the linear regression
model parameter w; can be obtained by minimizing the objec-
tive function Eq. (7) [29]:

1
" ®)
T Y i) /d ()P
o = X" DX1 X" Dy ©)
where X = [x1,20,x3,....xn1", Di = diag{un, up, u,

coouint, y = D, y2, 3, ...,yN]T is the actual system out-
put. By iterating Eq. (8) and Eq. (9), the fuzzy membership
degree uj; can be obtained.

C. IDENTIFICATION OF ANTECEDENT PARAMETERS

The main task of identification of antecedent parameters is to
obtain reasonable center and width of membership function
for each sub-model. Once the fuzzy membership matrix has
been obtained, the antecedent parameters composed of the
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center v;; and width oy; of fuzzy membership function can be
calculated:

N . .
Vi = Zk:l Uik Xkj (10)
Y N
Zk:l Uik
o — 230 i g — vi)? (11
y— N
Zk:l Uik

D. IDENTIFICATION OF CONSEQUENT PARAMETERS
The consequent parameters can be calculated from the fol-
lowing matrix equation:

y = Af (12)

where 9 =[6], ..., 9]},1, ...,96, Olf,I]T is the consequent
parameters of T-S fuzzy model and A is the coefficient matrix,
which can be calculated according to Eqs. (2)-(4):

)»{ k}xll )»}le S, )»i Aéxll kéle
)\.llv )»llvaln')LllvaM,-”,)\{:v )\]chNM-”)LICV)CNM
(13)
where )»f.‘ is defined as:
xf:L (14)
PIRTY

The least square method is used to solve the matrix equa-
tion in (12) to obtain the consequent parameters vector 6:

o =@ATa) ATy (15)

where the symbol “—1 is the inverse operator of matrix.

Ill. ROBUST T-S FUZZY MODEL IDENTIFICATION

In order to improve the robustness of T-S fuzzy model to
outliers and noises, the robust T-S fuzzy model identification
approach based on the FCRM algorithm and L1-norm loss
function (RTS-L1) is proposed in this paper.

A. WEIGHTED T-S FUZZY MODEL
The weighted T-S fuzzy model (WTS) identification method
is used to compare with RTS-L1 in this paper. It mainly
includes three stages: (1) Train the traditional T-S fuzzy
model and calculate the training errors of samples. Because
of the presence of outliers or noises, the obtained T-S fuzzy
model may be inaccurate; (2) Carry out a weighted scheme
for T-S fuzzy model based on the training errors in the first
stage. The basic principle of the weighted scheme is that the
samples with high training errors are given small weights.
On the contrary, samples with low training errors are given
large weights, so that the influence of outliers or noises can
be reduced. (3) Retrain the T-S fuzzy model based on the
weighted samples and update the consequent parameters.
The objective function of consequent parameters identi-
fication of the traditional T-S fuzzy model is reported as

VOLUME 8, 2020



N. Zhang et al.: Robust T-S Fuzzy Model Identification Approach Based on FCRM Algorithm and L1-Norm Loss Function

IEEE Access

following:
o2
mm.||e||2 (16)
subject toy — AO = e
where |x]|, = é/ > [x?] is the Lp norm. By solving the

above loss function the optimal solution 6 can be obtained.
The matrix form of the objective function shown in Eq. (16)
can be rewritten as:

J(O) = (y — A0 (y — AB) (17)

For the unconstrained optimization problem, the optimal
solution can be explicitly obtained by setting the gradient of
the objective function J to zero:

0 (6) Iy —A0)" (y—A46))
a6 a6
Ty —yTA0 —0TATy + 0T AT AD)
- 30
=ATA0 — ATy (18)

)

By setting 9/ = 0, the 6 can be obtained shown in
Eq. (15).

For the objective function shown in Eq. (16), the weights
of all samples are assigned to be 1. However, the main idea of
the WTS is to assign weights to the samples based on training
errors. The weighted objective function of WTS is described

as:

min|| Wel|3 (19
subject toy — AO = e

where W = diag{é1, 82, ..., dn} is the weights of samples.
Similar to Eq. (16), the objective function shown in Eq. (19)
can be rewritten as:

Ju(0) = (y — AD) W3(y — A6) (20)

The optimal solution can be explicitly obtained by setting
the gradient of the objective function J,, to zero:

3y (0) 9 (y—AO) W2 (y — A0)

E 36
(T W2y — yT w240 —0TATW2y+0T AT W2A0)
B 90
=ATW?46 —ATw?y 1)

Similar to Eq. (15), the optimal solution 6 has the following
form:

6 = ATW24) AT w2y (22)

Now, the main task is to determine the weights of sam-
ples, the reasonable weights will lead to more reliable robust
T-S fuzzy model. There are some methods to estimate the
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weights based on the model training errors. Suykens et al. [48]
proposed a classical weights estimation method:

1, |el/§| <
si= ezl e < e (23)
) —Cq
1074, otherwise

where § is the robust estimate of the standard variance of
training errors, which has the form as follows:
IOR

§= 2 24
ST 2% 06745 24

where IQR is the interquartile range of the samples errors.
For input vector, IQR is the difference between the 75th and
25th percentiles of samples errors e. The values of ¢; and ¢,
are typically set as 2.5 and 3.

B. ROBUST T-S FUZZY MODEL WITH FCRM AND
L7-NORM LOSS FUNCTION
The majority researches have pointed out that the L1-norm
loss function is more robust to outliers and noises than
L2-norm loss function because of its sparsity. Therefore the
L1-norm loss function is employed for identification of con-
sequent parameters and the robust T-S fuzzy model based on
FCRM and L1-norm loss function (RTS-L1) is proposed in
this paper. The L1-norm loss function of the RTS- L1 has the
form as follows:
minfe]; 05)
subject toy — AO = e
Eq. (25) is a constrained convex optimization problem and it
can be solved by the Augmented Lagrange Multiplier (ALM)
method [49]. The corresponding augmented Lagrangian
function is defined as [50]:

Lpt (ea 9’ )")

= llell; +a” (v =40 — &) + p/2]ly = A0 el (26)
where g is a vector of Lagrange multiplier and b is a constant
penalty factor. The ALM algorithm is used to obtain the

optimal values of (e, 6, g) by iteratively updating the three
parameters:

O+t = (ATAAT (y — ex + gi/b)
k1 = Si/uly — Abky1 + gk /b] 27)
8k+1 = 8k + by—Aby1 — exy1)
The function S, is a shrinkage operator, which has the form
as follows:

Salx] = sign(x) - max{|x| — «, 0} (28)

Based on the above analysis, the detailed process of the
proposed robust T-S fuzzy model identification approach
with FCRM and L1-norm loss function is presented as fol-
lows:

Step 1: Data preprocessing. In order to make sure sample
features are on a similar scale. The min-max Normalization
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FIGURE 1. Predictive curves on training data contaminated by different proportion {—1, 1} outlier.

is used to normalize the original data set to [—1, 1]. Divide
it into training set and testing set and initialize the maximum
number of iterations MaxlIter = 20.

Step 2: Identification of antecedent parameters. Partition
the input-output space of the T-S fuzzy model and calculate
the fuzzy membership matrix based on the FCRM clustering
algorithm. Identify the antecedent parameters according to
Egs. (10)-(11).

Step 3: Calculate the matrix Py = (ATA)'AT and initial-
ize parameters e; = 0, g1 = 0;

Step 4: For k = 1 to Maxlter do:

Step 4.1: 61 = (ATA)AT (y — e; + gi/b)

Step 4.2: ex1 = Siyuly — Abkr1 + g /bl

Step 4.3: gk+1 = gk + b(y — Abk41 — ex+1)

Step4d.4d:k =k +1

Step 4.5: end For.

Step 5: The consequent parameters vector 6 can be
obtained.

IV. EXPERIMENTS AND DISCUSSION
In this section, regression and binary classification appli-
cations are used to verify the performance of the proposed
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RTS-L1 compared with the traditional T-S fuzzy model algo-
rithm (T-S), extreme learning machine (ELM), regularized
extreme learning machine (RELM) [51] and weighted T-S
fuzzy model (WTS). The outliers and noises are added into
training data to test the robustness of the proposed algorithm.
It should be pointed out that outliers or noises only are added
to training data not testing data. In this paper, the Root Mean
Square Error (RMSE) is used as the performance index,
which is defined as.

N A N2
RMSE = | L=t Ok =) % ) (29)

where yy is the kg, original system output, and Vi is the kg
model output.

A. ROBUSTNESS EVALUATION VIA REGRESSION
APPLICATION

In this part, the proposed RTS-L1 is compared with T-S,
ELM, RELM and WTS by using four regression problems:
SinC function, nonlinear differential equation, Box-Jekins
system and Mackey—Glass chaotic time series. The experi-
ments are carried out in the Matlab 9.2.0.538062 (R2017a)
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FIGURE 2. Comparison of testing RMSE of five algorithms for {—1, 1} outliers and [-1, 1] noises on SinC function.

TABLE 1. Training and testing RMSE of f ive algorithms for {—1, 1}outliers on SinC function.

Algorithms 10% 20% 30% 40%
Train Test Train Test Train Test Train Test

T-S 0.2952 0.1223 0.4305 0.1533 0.5221 0.1920 0.5853 0.2615

ELM 0.2993 0.1078 0.4283 0.1387 0.5252 0.1663 0.5810 0.2642

RELM 0.3087 0.0902 0.4405 0.0752 0.5404 0.1018 0.6052 0.1762

WTS 0.3163 5.43¢-4 0.4435 0.0409 0.5328 0.1560 0.5866 0.2587

RTS-L1 0.3162 4.53¢-4 0.4473 0.0007 0.5440 0.0510 0.6268 0.0965
TABLE 2. Training and testing RMSE of five algorithms for [-1, 1] noises on SinC function.
Algorithms 10% 20% 30% 40%

Train Test Train Test Train Test Train Test

T-S 0.1390 0.0595 0.2204 0.0625 0.3014 0.0889 0.3269 0.1054
ELM 0.1412 0.0493 0.2206 0.0607 0.3015 0.0885 0.327 0.0981
RELM 0.1495 0.0531 0.2253 0.0599 0.3091 0.0741 0.3343 0.0825
WTS 0.1473 0.0074 0.2268 0.0043 0.3116 0.0353 0.3322 0.0655
RTS-L1 0.1487 0.0010 0.227 0.0005 0.3130 0.0010 0.3407 0.0008

environment running in Intel (R) Core(TM) i5-3230M pro-
cessor with the speed of 2.6 GHz. All experiments are
repeated 30 times and average errors are recorded.

1) SINC FUNCTION
The regression problem of SinC function is often used to
test the approximation ability of algorithm, which has the
following mathematical expression [52]:
sinx/x, x #0
Y= =0 (30)
The 200 samples and 10001 samples are generated as
training set and testing set respectively, in which x used for
training and testing are generated from the uniform distur-
bance [—10, 10]. The input variable of the fuzzy model is x(k)
and the output variable is y(k). The number of fuzzy rules is
set to be 10. Firstly the outliers are added into the training
set, which is randomly selected from the set {—1, 1} and
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interval [—1, 1]. In order to test the robustness of the proposed
algorithm with the increase of the number of outliers points,
the 10%, 20%, 30% and 40% outliers or noises are taken into
consideration.

Fig. 1 shows the results of regression on testing data using
T-S, ELM, RELM, WTS and RTS-L1 on 10%, 20%, 30% and
40% {—1, 1} outliers level. The T-S and ELM are prone to
be badly affected by outliers, especially for T-S. The RELM
and WTS fit the testing data better than T-S and ELM on low
outliers level (10%-30%), but the WTS arises fluctuations on
40% outliers level. The proposed RTS-L1 fits the testing data
best than other four algorithms.

The experiment is repeated 30 times and the average train-
ing and testing RMSE are given in Table 1. For the purpose of
comparing the performance of the five algorithms intuitively,
the bar chart of testing RMSE are shown in Fig. 2.

From Table 1 and Fig. 2, the traditional T-S makes no
distinction between outliers or noises and normal data, so it
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TABLE 3. Training and testing RMSE of five algorithms for {—1, 1} outliers on NONLINEAR DIFFERENTIAL EQUATION.

10% 20% 30% 40%
Algorithms
Train Test Train Test Train Test Train Test
T-S 0.3406 0.0475 0.4789 0.0981 0.5836 0.1166 0.6720 0.1716
ELM 0.3529 0.1030 0.4791 0.1154 0.5833 0.1071 0.6697 0.1829
RELM 0.3534 0.1036 0.4791 0.1187 0.5835 0.1090 0.6697 0.1765
WTS 0.3472 0.0344 0.4838 0.0608 0.5869 0.1481 0.6725 0.1548
RTS-L1 0.3475 0.0320 0.4884 0.0549 0.5987 0.0788 0.6781 0.1284
TABLE 4. Training and testing RMSE of five algorithms for [-1, 1] noises on NONLINEAR DIFFERENTIAL EQUATION.
10% 20% 30% 40%
Algorithms
Train Test Train Test Train Test Train Test
T-S 0.7140 0.1244 0.8699 0.2420 1.1365 0.2895 1.2881 0.3764
ELM 0.7281 0.1796 0.8701 0.2393 1.1334 0.3093 1.2966 0.3999
RELM 0.7284 0.1798 0.8705 0.2393 1.1326 0.3077 1.2973 0.4104
WTS 0.7290 0.0511 0.8940 0.0864 1.1661 0.1307 1.3103 0.1507
RTS-L1 0.7322 0.0488 0.9040 0.0693 1.1851 0.0695 1.3293 0.0680
0.2 T T T T T
I T-s TS
I = v 0.4 I ELM 1
[ RELM I RELM
0.15 - [E==0wTs _ oo 0.35 [ wrts ]
I RTS-L1 03 I RTS-L1
L
w W 0.25
S 011 d 2
o ¥ 0.2
0.15
0.05 1 0.1
0.05
0 — — 0
10% 20% 30% 40% 10% 20% 30% 40%
Outliers Noises

FIGURE 3. Comparison of testing RMSE of five algorithms for {—1, 1} outliers and [—1, 1] noises on nonlinear differential equation.

can obtain better training effect, but it fails for the testing
process. The ELM and RELM have a better performance
than T-S except for the ELM on 40% outliers level. The
RELM obtains smaller testing RMSE than ELM due to its
regularization term. Although the WTS obtains significant
improvement than T-S, ELM and RELM, it doesn’t obtain
a better result than RELM on 30% and 40% {—1, 1} outliers.
However, the proposed RTS-L1 obtains the best result on all
outliers level.

Furthermore, the uniform distribution [—1, 1] noises are
considered to add into training data for evaluating the noises
robustness of algorithms. The experimental results with
respect to [—1, 1] noises are shown in Table 2 and Fig. 2.

From Table 2 and Fig. 2, we can find that the T-S, ELM
and RELM have obtained similar testing results, but the
WTS and RTS-L1 gain significant improvement. However,
the proposed RTS-L1 have improved at least one order of
magnitude in testing RMSE than WTS.

33798

From these experimental results, it is can be seen that the
RTS-L1 have significantly improved the outliers and noises
robustness of T-S fuzzy model.

2) NONLINEAR DIFFERENTIAL EQUATION
The nonlinear system is described by a second-order highly
nonlinear difference equation [53]:

y(k — Dy(k —2)(y(k — 1) +2.5)
L+ y2k — D+ y2(k —2)

The 500 data points are generated for training process and
500 data points are generated for testing process, where the
uniform distribution in the interval [-2,2] for training data and
a sinusoidal signal as u(k) = sin(2k/25) for testing data. The
number of fuzzy rules is set to be four for T-S, WTS and
RTS-L1 algorithms. The fuzzy model has three inputs u(k),
y(k-1), y(k-2) and a output y(k). Tables 3 and 4 show the
average training and testing RMSE of the five algorithms with

y(k) = +uk) 3D
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TABLE 5. Training and testing RMSE of five algorithms for {—1, 1} outliers on Box-Jekins system.

10% 20% 30% 40%
Algorithms
Train Test Train Test Train Test Train Test
T-S 0.2977 0.1646 0.4561 0.2342 0.536 0.3239 0.6316 0.3228
ELM 0.3102 0.2056 0.4547 0.2298 0.5541 0.2868 0.6373 0.2947
RELM 0.3101 0.2034 0.4535 0.2259 0.5531 0.2899 0.6388 0.2891
WTS 03128 0.1492 0.4674 0.1863 0.5447 0.3473 0.6331 03124
RTS-L1 0.3229 0.1068 0.4677 0.1519 0.5582 0.2046 0.6527 0.2668
TABLE 6. Training and testing RMSE of five algorithms for [-1, 1] noises on Box-Jekins system.
Algorithms 10% 20% 30% 40%
Train Test Train Test Train Test Train Test
T-S 0.189 0.1435 0.2585 0.2054 0.3253 0.262 0.3807 0.2368
ELM 0.187 0.1445 0.2595 0.1959 0.3282 0.2397 0.3816 0.2315
RELM 0.1882 0.1422 0.2591 0.2021 0.3265 0.2342 0.3795 0.2343
WTS 0.1993 0.1345 0.2653 0.1829 0.3334 0.258 0.3864 0.2543
RTS-L1 0.2036 0.1097 0.269 0.1643 0.3408 0.1828 0.3882 0.2269
0.35 T T 0.3 T T T
I T-s _ I T-s
0.3 | ELM R 025_-El_M M —
[ RELM ’ [ RELM
0.25 | |[EwTs 1 Cwrs
0.2 || N RTS-L1 4
w - 1 L ]
2 2 015 :
o E 14
0.1 b
| 0.05 b
L | | 0 || || ||
10% 20% 30% 40% 10% 20% 30% 40%
Outliers Noises

FIGURE 4. Comparison of testing RMSE of five algorithms for {—1, 1} outliers and [-1, 1] noises on Box-Jekins system.

TABLE 7. Training and testing RMSE of five algorithms for {—1, 1} outliers on Mackey-Glass chaotic time series.

10% 20% 30% 40%
Algorithms

Train Test Train Test Train Test Train Test
T-S 0.3099 0.0657 0.4387 0.0828 0.5402 0.0882 0.6077 0.1757
ELM 0.31 0.0652 0.439 0.0873 0.538 0.1 0.6098 0.1628
RELM 0.3141 0.0476 0.4438 0.0673 0.543 0.0591 0.619 0.1056
WTS 0.3167 0.0074 0.4471 0.0072 0.5478 0.0103 0.6208 0.2856
RTS-L1 0.3165 0.0076 0.4469 0.0075 0.5478 0.0101 0.6316 0.0061

respect to {—1, 1} outliers and [—1, 1] noises on nonlinear
difference equation data set, the corresponding bar chart of
testing RMSE is compared in Fig. 3.

From Tables 3-4 and Fig. 3, the ELM and RELM
have very similar testing RMSE for {—1, 1} outliers and
[—1, 1] noises, and they fail to T-S in most cases. The
WTS is better than T-S, ELM and RELM except for

VOLUME 8, 2020

30% {—1, 1} outliers. The proposed RTS-L1 has future
improved the robustness and stability compared with the
WTS. Take the result of [—1, 1] noises as an example,
compared with the original T-S algorithm, the modelling
accuracy of the proposed RTS-L1 has been promoted to be
0.0488, 0.0693, 0.0695 and 0.068 from 0.1244, 0.242, 0.2895
and 0.3764.
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TABLE 8. Training and testing RMSE of five algorithms for [-5, 5] noises on Mackey-Glass chaotic time series.

10% 20% 30% 40%
Algorithms
Train Test Train Test Train Test Train Test
T-S 0.7861 0.1503 1.2396 0.3081 1.4819 0.2623 1.849 0.2935
ELM 0.7885 0.1371 1.2391 0.3078 1.4829 0.2579 1.8432 0.3270
RELM 0.7913 0.1127 1.2498 0.2452 1.4918 0.1901 1.8551 0.2326
WTS 0.7999 0.0130 1.2715 0.0501 1.5025 0.0395 1.8693 0.0889
RTS-L1 0.8003 0.0125 1.2773 0.0096 1.5047 0.0076 1.8718 0.0095
0.3 - - - - 0.35 -
I T-s B
I ELM 0.3
0.25 I RELM b
Cwrs
0 |(HEEERTSLI | 0.25
L w 0.2
2 o5t . 2
o X 0.15
017 h
0.1
0.05 1 0.05
0 — 0
10% 20% 30% 40% 10% 20% 30% 40%
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FIGURE 5. Comparison of testing RMSE of five algorithms for {—1, 1) outliers and [—1, 1] noises on Mackey-Glass chaotic time series.

TABLE 9. Training and testing accuracy of five algorithms for {1, 1} outliers on breast cancer data set.

10% 20% 30% 40%
Algorithms

Train Test Train Test Train Test Train Test
T-S 0.8667 0.9316 0.8024 0.8821 0.7476 0.9011 0.4762 0.7605
ELM 0.8409 0.9065 0.7692 0.8873 0.7265 0.8915 0.5545 0.7823
RELM 0.8358 0.9041 0.7644 0.8878 0.7249 0.8871 0.5641 0.8096
WTS 09119 0.9696 0.8571 0.9696 0.8143 0.9772 0.4762 0.7605
RTS-L1 0.9071 0.9696 0.8429 0.962 0.8119 0.9772 0.7548 0.962

3) BOX-JEKINS SYSTEM

The Box-Jekins gas furnace system data set consisted
of 296 data pairs describes the nonlinear relationship between
the system input gas flow rate and the system output CO2 con-
centration [54]. The first 204 data pairs are considered as
training set and the remaining data as testing set. The variable
y(k) is taken a fuzzy model output and the five variables
u(k), u(k-1), y(k-1), y(k-2) and y(k-3) are taken as fuzzy
model input. The different proportion of {—1, 1} outliers
and [—1, 1] noises are added to training set and the cor-
responding experimental results are shown in Tables 5-6
and Fig. 4.

Table 5 provides relevant comparison of training and test-
ing RMSE of different algorithms on Box-Jekins system data
with {—1, 1} outliers. The ELM and RELM which have the
similar testing RMSE are better than T-S except for 10%
outliers. The result of WTS is slightly better than T-S, ELM
and RELM on 10% and 20% outliers, but worse on 30% and
40% outliers.
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FIGURE 6. Comparison of testing RMSE of five algorithms on breast
cancer data set on breast cancer data set.

Table 6 provides relevant comparison of training and test-
ing RMSE of different algorithms on Box-Jekins system data
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with [—1, 1] outliers. The T-S, ELM and RELM obtained a
similar result. And the T-S also only obtained the better result
on low outliers level. However, the RTS-L1 obtain the best
result on 10%-40% outliers and noises level. It is superior to
other methods listed in the table.

4) MACKEY-GLASS CHAOTIC TIME SERIES
As one of the famous time series predictive problems,
the Mackey—Glass chaotic time series has been successfully
and widely used to test the learning and generalization ability
of different algorithms, which has the form as follows [55]:
dx(t) 0.2x(t — 17)
dt 14+ x19¢—17)

There are 1000 input-output data pairs generated by the
Eq. (32), where the first 500 data points are taken as the
training set and the remaining 500 data points are taken as
the testing set. The past four values x(¢-18), x(z-12), x(z-6)
and x(¢) are used to predictive the future value x(¢+6) in
the fuzzy model. All experiments are repeated 30 times and
the average training RMSE and testing RMSE are shown
in Tables 7-8 with respect to {—1, 1} outliers and [—35, 5]
noises.

Table 7 shows that the WTS and RTS-L1 obtain smaller
testing RMSE than T-S, ELM and RELM. The WTS and
RTS-L1 have similar results on 10%, 20% and 30% outlier
lever, but RTS-L1 significantly performs better than WTS
when the outliers contamination rate is high (40%). From
Table 8, the proposed RTS-L1 outperforms other algorithms
on all noises level, especially in high noise level (20%,
30% and 40%). The bar chart of the testing RMSE of five
algorithms is represented in Fig. 5.

—0.1x() (32)

B. ROBUSTNESS EVALUATION VIA BINARY
CLASSIFICATION APPLICATION

The experimental results analysis of the proposed method
for regression applications have been done above. In this
part, a binary classification application is employed to verify
the robustness of the proposed method. The Breast Cancer
Wisconsin (Original) Data Set is used, which is consisted
of 699 samples and each sample has 10 attributes and 2 pos-
sible classes: benign or malignant. In this data set, the benign
is denoted by 1 and malignant is denoted by —1. Different
from the regression applications, the outliers are added into
training data set by changing the class of training samples.
The different proportions of outliers are added into train-
ing data and the training and testing classification accuracy
of five algorithms are shown in Table 9. Fig. 6 shows the
corresponding classification accuracy of testing data for five
algorithms.

From Table 9 and Fig. 6, the proposed RTS-L1 method
has obtained higher classification accuracy for all outliers
lever, but the WTS does not obtain expected results when the
contamination rate is 40%. The training and testing outputs
of T-S, ELM, RELM, WTS and RTS-L1 on 10%, 20%,
30% and 40% noises are shown in Fig. 7 (a)-(d). As can
be seen from Fig. 7, the majority of outputs of RTS-L1 are
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closely surround the desired output, but the outputs of other
algorithms are more dispersed, especially for original T-S.
Therefore the RTS-L1 shows more advantages than other
algorithms.

The comparison experiments on regression problems
and binary classification problem including of SinC func-
tion, nonlinear differential equation, Box-Jekins system,
Mackey—Glass chaotic time series and Breast Cancer Wis-
consin (Original) Data Set have been conducted. The T-S,
ELM, RELM and WTS all use the L2-norm loss function
as their objective function, but the L2-norm loss function is
very sensitive to outliers or noises. The L1-norm loss function
used in this paper is more robust to outliers or noises and
the experiment results have demonstrated. The experimental
results have shown that the proposed RTS-L1 is superior to
T-S, ELM, RELM and WTS in most cases and show strong
robustness for data with outliers and noises.

However, compared with T-S, ELM, RELM and WTS, the
RTS-L1 has more points located in “output = —1”" for some
positive data in Fig. 7 and the WTS has the similar phe-
nomenon. Although the most of outputs of RTS-L1 closely
surround the desired outputs, the misclassification of RTS-L1
can prefer crisp values of {—1, 1} rather than fuzzy outputs.
There still have certain limitations when the proposed method
is applied in a binary classification application and the
Ll-norm loss function may be more suitable to deal with
the regression problem with outliers or noises. Therefore the
robust classification algorithm will be studied in our future
work.

V. CONCLUSION AND FUTURE WORKS
In this paper, we have proposed the outliers and noises robust
T-S fuzzy model identification method based on FCRM
clustering algorithm and L1-norm loss function. The FCRM
which is a hyper-plane-shaped clustering algorithm is used
to obtain the more reasonable fuzzy space structure. The
Ll-norm loss function which has been proved to be more
robust to outliers and noises than L2-norm loss function is
employed in T-S fuzzy model identification instead of the
L2-norm loss function. The augmented Lagrange multiplier
iteration algorithm is used to solve the L1-norm loss function
to guarantee its effectiveness and efficiency. Experimental
results on several test problems including four regression
applications and a classification application have shown that,
compared with traditional T-S, ELM, RELM and WTS,
the proposed RTS-L1 show more advantages on all datasets
in dealing with data contaminated by outliers and noises.

Although the proposed RTS-L1 is more superior than other
algorithms listed in this paper, it still has certain limitations
that the misclassification of RTS-L1 can prefer crisp values
of {—1, 1} rather than fuzzy outputs when it is applied in a
binary classification application. Thus, our future work will
focus on the following aspects:

(a) A robust classification algorithm will be studied in our
future work.

(b) The intelligent optimization algorithm can be used to
determine the optimal number of fuzzy rules [56]-[58].
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