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ABSTRACT As an engineering plastic, acrylonitrile butadiene styrene (ABS) has been widely used in the
automobile trims. The odor intensity of ABS can be considered as an important reference for the quality
of in-vehicle air. Currently, many automobile manufacturers employ their own testing methods to measure
the odor intensity of the trims. Different rules lead that the market lacks a unified standard to evaluate the
odor intensity. In this paper, a novel odor evaluation system was proposed to measure the odor intensity of
ABS. According to coefficient of variation (CV), analysis of variance (ANOVA), and principal component
analysis (PCA), eight sensors were selected to compose an array with stability, repeatability, and selectivity.
By means of the pretreatment and the feature extraction, the odor features were quantified by grey relation
analysis (GRA). Then, the regression models were constructed by extreme learning machine (ELM), random
forest (RF), and support vector machine (SVM) to predict the odor intensity. The results indicated that the
quantified data could describe the odor intensity accurately and be predicted well by three models. This
study demonstrated that the system achieved perception and quantification of the odor intensity of ABS.
In conclusion, a self-developed system was put forward, offering a new technique to evaluate the odor
intensity, prospective to replace the manual testing.

INDEX TERMS Acrylonitrile butadiene styrene, odor evaluation system, odor intensity, sensor array.

I. INTRODUCTION
With the development of automobile industry, the quality
of in-vehicle air is getting more and more attention [1].
Despite people spend limited time in vehicles, the high con-
centration of pollutants in this microenvironment account for
a large proportion of air pollutants [2]. For a nonsmoker,
about 10-60 % of entire contaminants root in the exposure
to vehicles [3]. The poisonous contaminants will endanger
human health directly, leading to a series of diseases, such as
allergic rhinitis, asthma, and even leukemia [4]. At present,
pollution of in-vehicle air, hypertension, and AIDS have been
listed as three threats to the human health by World Health
Organization [5].
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The volatile contaminants release from the instrument pan-
els, the door planks, the steering wheels, et al [6], [7]. Since
favorable performances and lower cost, acrylonitrile butadi-
ene styrene (ABS) is employed to process the automobile
trims [8]–[10]. However, somemonomers and emulsionsmay
be remained during the course of polymerization, resulting
in the diffusion of the irritant gases [10]. Besides, the trims
are shaped from the master batches of ABS with high tem-
perature and pressure. The materials release more volatile
organic compounds (VOCs) when vehicles are exposed to the
burning sun [6], [11]. At last, the pigments used for painting
the trims emit the aromas of benzene series, and injure the
respiratory tract and the skin under prolonged exposure to
vehicles’ microenvironment [11].

At present, the traditional physical and chemical analyses
measure the odor intensity by detecting the concentrations
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of substances. However, there are some inevitable disad-
vantages. For instance, the colorimetry [12] is a suboptimal
choice in long sampling period and slow response, and the
electrochemical analysis [13] depends on strict operation
environment. Despite the comprehensive two-dimensional
gas chromatography [14] shows enhanced selectivity and
improved sensitivity for the samples, the preparation of dirty
samples is inevitable [15]. In conclusion, the traditional anal-
ysis methods ignore the measurement of comprehensive odor
intensity. Consequently, auto manufacturers employ respec-
tive experts to test the odor intensity of automobile plastics.
For example, Volkswagen heats and preserves the samples
according to different temperatures and time. And the odor
intensity is divided into six grades [16]. Nevertheless, General
Motors utilizes the higher temperature to heat the samples
and divide the odor intensity into ten grades [17]. Relative
to above companies, TOYOTA detects the smells of parts
from various regions and divides the odor intensity into six
grades, from zero to five [18]. The detailed techniques and
evaluation criteria are shown in Table 1. For different auto
manufacturers, the pretreatment and grades of materials are
inconsistent, but the manual testing is the main method to
measure the odor intensity of ABS. Here, the test methods
and evaluation criteria of three manufacturers are just listed.
Despite artificial sensory evaluation is direct to sense the
odor intensity [19], but causes damage to the health of the
valuators working for a long time. Moreover, the valuators
are probably affected by various factors, such as subjective
preferences, working condition, and physical health [7], [20].
Above all, the automobile manufacturers and part plants
employ their own valuators to measure the odor intensity of
the same product, which gives rise to disputes for the quality
of product. Simultaneously, different automobile manufactur-
ers arise distinctions for the odor intensity, resulting in the
lack of a unified standard in the whole market.

The olfactory bionic technology applies gas sensor
arrays [21], [22] to simulate the signals produced by olfac-
tory cells, and combines with advanced recognition meth-
ods [23], [24]. The thin film on the sensor surface makes full
contact and interaction (including physical adsorption, chem-
ical adsorption, even chemical reaction) with the gases, and
the electrical signals can be converted from chemical infor-
mation [25]. Besides high accurateness and rapid responses,
the sensors need to consider the cross sensitivity in the con-
struction of the sensor array [26]. Szulczyński et al. [27]
employed an electronic nose based on eight gas sensors to
recognize the interaction of several components in the gas
and surveyed the ingredients of the contaminants. On the
other hand, the pattern recognition methods are employed to
classify the signals representing the smell features. Osowski
and Siwek [28] utilized the electronic nose to identify the
distorted data of biological additives in the gasoline by means
of principal component analysis (PCA), wavelet transform,
support vector machine (SVM), etc., summing up the advan-
tages of SVM in reducing errors. In the past few years, the
olfactory bionic technology has progressed in the evaluation

TABLE 1. The test methods and evaluation criteria of three companies.

of the grades of paraffin [29], air quality [30], and the flavors
of beverage [31]–[33].

This study proposed an odor evaluation system designed
with a sampling device, a sensor array, and an analysis soft-
ware to measure the odor intensity of four kinds of ABS.
In order to construct the sensor array, coefficient of variation
analysis (CV), analysis of variance (ANOVA), and PCAwere
applied to select the sensors with stability, repeatability, and
selectivity. The features were extracted from the data obtained
in the stable state. Then, grey relation analysis (GRA) [34]
was implemented to quantify the odor intensity. Finally,
the regression models were established by means of extreme
learning machine (ELM), random forest (RF), and SVM to
predict the quantified values of unknown samples. And the
quantified values have a good performance in the training sets
(R2 > 0.91) and test sets (R2 > 0.88). In conclusion, the odor
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FIGURE 1. The schematic diagram of the ABS odor evaluation system.

intensity of ABS detected by the odor evaluation system was
described in terms of the accurate numbers, rather than rough
grades. Therefore, the self-developed evaluation system pro-
vided a novel technique to measure the odor intensity of ABS,
promising to unify the odor evaluation criteria.

II. MATERIALS AND EXPERIMENT
A. SAMPLES PREPARATION
In this study, four kinds of ABS with the same grade were
purchased from Qi Mei Company (a manufacturer of ABS),
which were high heat-resistant ABS, heat-resistant ABS,
flame-retardant ABS, and polypropylene and glass ABS. Dif-
ferent ABS brands were stored in distinct storage bags to
avoid pollution from other smells. Additionally, the dispos-
able gloves were required to be worn before sampling.

To begin with, weigh the particles of ABS according
to 10g, 20g, 30g, 40g, and 50g. Then, the samples were
placed in bottles with 200 ml and sealed with lids. Eighty
tests were implemented for each kind of ABS (e.g. Brand
high heat-resistant ABS: 10g × 16, 20g × 16, 30g × 16,
40g × 16, 50g × 16), and a sum of 320 samples could be
obtained. After sampling, the bottles were preserved in a cool
and dry environment.

B. DESIGN OF ABS ODOR EVALUATION SYSTEM
1) ABS ODOR EVALUATION SYSTEM
The odor evaluation system consisted of a sampling device,
a sensor array, and an analysis software. The whole construc-
tion of the system is shown in Fig. 1. And Fig. 2 shows the
photograph of the whole system and the interior detection
device.

The sampling device was designed in accordance with
dynamic headspace sampling, including an air generator and
a thermostatic heater. The air generator provided pressure
for the circulation of the gases, where the active carbon was
used to wipe off the vapors and the impurities from air. The
thermostatic heater was employed to generate the volatile
gases by heating the particles of ABS at 40 ◦C.
As for the gas chamber, made up of poly tetra fluoroethy-

lene (PTFE), a synthetic polymer material that is insoluble in
almost all organic solvents. The structure of the gas chamber
is shown in Fig. 2 (b). The sensor array was integrated by ten
sensors. In this paper, eight sensors were applied to detect
the odors, which were MQ-2, MQ-3, MQ-137, TGS-813,

TABLE 2. The characteristics of the sensors.

TGS-821, TGS-825, TGS-830, and TGS-2610, selected from
Table 2. The valves and pumps were applied to control the
cleaning of the gas circuit and gas chamber. The EM936M
(a data acquisition card) collected the multi-channel sensor
response signals and converted the analog signals into digital
signals. At last, the signals were transmitted to a PC.

The analysis software was compiled on C programming
language to accomplish the start-up of the equipment, and
the data communication and storage. At the same time,
the implanted MATLAB software was implemented to com-
plete the pre-processing and the feature extraction of raw
data, and quantify the odor intensity.

2) SENSORS SELECTION
In the construction of the sensor array, the sensors were
supposed to be selectedwith stability, repeatability, and selec-
tivity when responding to the gases. On the other hand, the
high-dimensional data may result in the redundant features.
Thus, based on four finds of ABS, the steps of selecting the
sensors are as follows:

a: COEFFICIENT OF VARIATION
CV, a statistic method, can reflect the variation of the
observed values. The variation is becoming weaker with the
decrease in CV. Also, CV reflects the stability of the sen-
sors [35]. Namely, the larger CV, the worse stability [36].
Table 3 describes the CV of sixteen sensors. It can be
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FIGURE 2. Photograph of the practical ABS odor evaluation system and
the interior detection device: (a) Photograph of the practical ABS odor
evaluation system. Part A is an air generator with a filter, part B is a
thermostatic heater with a sampling bottle, and part C is a detection
device which involves a sensor array, a data acquisition card, two pumps,
and three valves. (b) Photograph of the interior detection device. Part D is
the data acquisition card and part E is the sensor array.

acknowledged that the variable coefficients of MQ-138,
TGS-822, and TGS-861 were more than that of others. Thus,
these three sensors were excluded due to the worse stability.

b: ANALYSIS OF VARIANCE
As a means of hypothesis test, ANOVA mainly makes sta-
tistical analysis for many relevant factors, and compares the
random errors and the systematic errors. In this paper, each
sensor was served as a factor, and the changes of voltage

TABLE 3. The coefficient of variation of the sensors.

TABLE 4. The analysis of variance of the sensors.

valueswere checked throughANOVA. In general, the repeata-
bility of the sensors is becoming better with the decrease in
intra-class quadratic mean. The larger F value or the less
p value means the preferable discrimination of the sensors.
Table 4 describes the ANOVA of sixteen sensors.
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TABLE 5. The coefficient of the first two principal components.

As shown in Table 4, the mean square values of MQ-135
and MQ-138 were more than that of others, meaning that
these two sensors with the poorer repeatability. Moreover,
the p value of TGS-832 was much higher than that of
others. With the above analysis, MQ-135, MQ-138, and
TGS-832 were deleted from the sensor array.

c: PRINCIPAL COMPONENT ANALYSIS
As a multivariate statistical means, PCA is able to trans-
form the initial data into linearly independent characteris-
tic components, and retain most of the information of the
original data. When the cumulative contribution rates in
PCA are more than 80%, the coefficient of PC2 can indicate
the selectivity of the sensors. Namely, the greater coefficient
of PC2, the preferable selectivity. In this study, the cumu-
lative contribution rates of the three principal components
were 87.12%. As shown in Table 5, the coefficients
of PC2 of MQ-135, MQ-138, TGS-831, TGS-2611, and
2m009 were less than that of others, which proved
that these five sensors were provided with the worse
selectivity.

In conclusion, MQ-2, MQ-3, MQ-137, TGS-813,
TGS-821, TGS-825, TGS-830, and TGS-2610 were deter-
mined to constitute the final sensor array.

C. EXPERIMENT APPROACHES
To begin with, the ambient temperature and humidity were
at 20 ± 2 ◦C and 65 ± 5 % RH. Before measuring, open
the equipment and the software interface to preheat the gas
sensors for 1 h until the sensors reach steady voltage values.
The formal operations are as follows:

(1) Define the file names in the light of the experimental
requirements (manufacturers xx, model number xx) and
save the files in the specified path.

(2) The cleaning of gas circuit contains three steps. First of
all, open valve C to allow the pure air from air gener-
ator to flow into the conduit. After that, open valve A
and close valve B and all pumps to wash the left con-
duit for 5 s. Then, keep valve A and valve C on and
open valve B and pump A to wash the right conduit
for 10 s.

(3) After cleaning the gas circuit, keep valve A, valve C, and
pump A on. Close valve B and open pump B to clean the
chamber until the sensors’ signals recovered their own
baseline values. The whole cleaning lasted 300 s with a
flow rate of 1.2 L/min.

(4) Set the heater at 40 ◦C and place the prepared samples
into the heater for 30 min. Afterwards, keep valve A on,
close valve C and pump A, and open valve B. Then,
a sample injection needle was inserted into the bottle, and
the headspace gases gradually entered the gas chamber
and reacted with the sensors in 180 s. Fig. 3 shows the
voltage responses of four sorts of ABS.

(5) Pull out the injection needle and finish this test.
Steps (1) – (4) were repeated to start next test.

It is well known that the response values of the sensors are
sensitive to the environment. Consequently, the response val-
ues could be acquired by eliminating the baseline values. The
response values were calculated by the following formula:

Xi = Xs − Xb (1)

where, Xs is the measured value, and Xb is the baseline
value. To reduce the differences between the data and improve
the convergence rate, the response values were supposed to
be normalized. The min-max normalization formula is as
follows:

xi =
Xi − Xmin

Xmax − Xmin (2)

where, Xmax and Xmin are the maximum andminimum values
of the response values, respectively. And the final normaliza-
tion between [0, 1] was gained.

As shown in Fig. 3, the sensors kept the initial values before
contacting with the gases. After 5 s, the voltage response of
each sensor raised fast and held a stable value at about 120 s.
Therefore, the average value of each voltage response curve
from 120 s to 139 s was obtained as the feature. There were
four sorts of ABS, and four groups of 80× 8 feature matrices
could be gained.
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FIGURE 3. The voltage responses of four sorts of ABS: (a) High heat-resistant ABS, (b) Heat-resistant ABS,
(c) Flame-retardant ABS, (d) Polypropylene and glass ABS.

III. RESEARCH METHODS
A. GREY RELATION ANALYSIS
GRA is a method to analyze the correlation of various factors
in the system, developed by Deng Julong [37]. The contri-
bution of each factor to the system can be concluded based
on the grey relational degree. The geometric similarity of
the data sequence of each factor is studied to determine the
correlation between the factors [38]. The closer the geometry
is, the greater the correlation is. Because of good univer-
sality and reliability, GRA makes progresses in mathemat-
ics and economics [39]. The particular approaches are as
follows:

(1) Determine the referred sequence and the compared
sequence. Suppose there are n evaluation indexes and
m evaluation objects. Hence, the referred sequence could
be described as: x0 = {x0(k)|k = 1, 2, . . . , n}, and
the compared sequence could be described as: xi =
{xi(k)|k = 1, 2, . . . , n; i = 1, 2, . . . ,m}.

(2) The weight of each index is determined as: ωk =
[ω1, ω2, . . . , ωn].

(3) The correlation coefficient is obtained by solving the
following problem:

ζi(k)=
min
i

min
k
|x0(k)−xi(k)|+ρmax

i
max
k
|x0(k)−xi(k)|

|x0(k)− xi(k)| + ρmax
i

max
k
|x0(k)− xi(k)|

,

k = 1, 2, . . . , n (3)

where ρ is the discrimination coefficient (0< ρ <1),
usually recommended to be 0.5.

(4) Finally, the correlation ri can be obtained from
Equation (4):

ri =
n∑

k=1

ωkζi(k) (4)

B. EXTREME LEARNING MACHINE
ELM is a machine learning algorithm based on feedforward
neural network, developed by Huang Guangbin [40]. Com-
pared to the other networks, ELM sets the randomweights (ω)
and thresholds (b) of the hidden layer without adjustment,
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which reduces computation [41]. The output weights (β)
are determined by the activation function and the amount of
hidden layer neurons. Owe to the higher efficiency and the
stronger generalization, ELM has an extensive application in
classification and regression [42]. The detailed steps are as
follows:
(1) N different samples are set by (Xi, ti), where Xi =

[xi1, xi2, . . . , xin]T ∈ Rn, ti = [ti1, ti2, . . . , tin]T ∈ Rm.
The infinitely differentiable activation function of the
hidden layer neuron is g(x), which can be described as:

N∑
i=1

βig(Wi · xj + bj) = oj, j = 1, 2, . . . ,N (5)

where βin is the connection weight of the ith hid-
den layer neuron and nth output layer neuron, βi =
[βi1, βi2, . . . , βin]T . win is the connection weight of the
ith hidden layer neuron and the nth input layer neuron,
Wi = [wi1,wi2, . . . ,win]. bj is the threshold of the
jth neuron on the hidden layer.

(2) The purpose of SLFN is to minimize the output error.
Thus, Wi and bi enable the result to approach to the tj:

N∑
i=1

βig(Wi · xj + bi) = tj, j = 1, 2, . . . ,N (6a)

H (W1, . . . ,WL , b1, . . . , bL ,X1, . . . ,XL)

=

 g(W1 · X1 + b1) . . . g(WL · X1 + bL)
... . . .

...

g(W1 · XN + b1) . . . g(WL · XN + bL)


(6b)

β =

 β
T
1
...

βTL


L×M

, T =

 T T1
...

T T2


N×M

(6c)

where H is the output matrix of the neuron on the hidden
layer.

(3) The output weights are able to be acquired by settling the
least square solution of next formula:

||Hβ − T || = min
β
||Hβ − T || (7a)

The solution is:

β̂ = H+T (7b)

where H+ is the Moore-Penrose generalized inverse of
output matrix.

C. RANDOM FOREST
RF refers to an ensemble learning method that employs ran-
dom growing trees to classify and predict [43], also termed
as random decision trees. The combination of Bagging and
random subspace addresses the weaknesses of single tree,
which is suitable for the classification of high dimensional
data [44].When RF is applied to classification, every decision

tree is performed to categorize the samples. The final cate-
gory is determined by the category winning the most votes.
As for regression, the final result is obtained by the mean of
the predicted values of the decision trees [45]. Because of
speediness and efficiency, this algorithm has progressed in
data mining. The detailed descriptions are as follows:

(1) Bootstrap is adopted to produce T training sets:
S1, S2, . . . , ST , at random.

(2) The decision tree D1,D2, . . . ,DT is set up according to
the correspond training set. m attributes are randomly
screened fromM attributes in a decision tree to compose
a split attribute set. And the best attribute is selected as
the splitting of the node.

(3) Pruning is not permitted when the trees grow.
(4) For the test set x, each decision tree is employed to

acquire the category D1(x),D2(x), . . . ,DT (x).
(5) The output result is the mean of all predicted values of

decision trees.

D. SUPPORT VECTOR MACHINE
As a model of machine learning, SVM makes striking pro-
gresses in pattern classification and regression analysis since
proposed by Vapnik in 1964 [46]. The main theory is that a
hyperplane is instituted to separate two types of data for the
maximum interval. As for the nonlinear data, the nonlinear
transformation is utilized to convert the input space into
a high dimensional space, and the linear classification and
optimal hyperplane could be completed [47]. The nonlinear
transformation is accomplished by kernel function, such as
linear function and polynomial function [48]. The following
steps can express the concrete processing:

(1) Set the training set: T = {(x1, y1), . . . , (xi, yi)}(X × Y )l ,
where xi ∈ X = Rn is the eigenvector, yi ∈ Y =
{1,−1}(i = 1, 2, . . . , l). The hyperplane is expressed as:
ω · x + b = 0. Where ω is the weight vector, and b is the
threshold.

(2) In order to maximize the margin of each category,
the optimization of hyperplane is solved under the fol-
lowing condition:

{
minφ(ω) =

1
2
||ω||2

s.t. yi(ω · xi + b)− 1 ≥ 0, i = 1, . . . , n
(8)

(3) By introducing Lagrange multipliers ai and a∗i , the solu-
tion to the optimal classification plane is converted into
the corresponding dual problem:

max
n∑
i=1

ai −
1
2

n∑
i=1

n∑
j=1

aiajyiyj(xi · xj) (9a)

S.t.


0 ≤ ai ≤ c, i = 1, . . . , n
n∑
i=1

aiyi = 0 (9b)
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FIGURE 4. The weight of each sensor reacting with three kinds of ABS, (a) High heat-resistant ABS, (b) Heat-resistant ABS, (c) Flame-retardant ABS.

where c is the penalty parameter to measure the error of
the model. The optimal solution is:

a∗ = (a∗1, . . . , a
∗
n)
T

b∗ = yi −
n∑
i=1

yia∗i K (xi − xj)
(10)

(4) In this paper, the radial basis function is selected as the
kernel function:

K (x, xi) = exp(−g||x − xi||2), g > 0 (11)

where g is the kernel function parameter, concerned with
the data distribution of feature space. The decision func-
tion can be described as:

f (x) = sgn{
n∑
i=1

a∗i yiK (xi · x)+ b∗}

= sgn{
n∑
i=1

a∗i yi exp(−g||x − xi||
2)+ b∗} (12)

IV. RESULTS AND DISCUSSION
A. QUANTIFICATION OF ODOR INTENSITY
According to GRA, the referred sequence is often the opti-
mal sequence [49]. Compared with other sensors, MQ-2 and
MQ-3 were equipped with striking response values. How-
ever, the response curves of MQ-2 were steadier than that
of MQ-3 in the stable state. Therefore, the feature of MQ-2
was selected as the referred sequence. And the features of
the other sensors were served as the compared sequences.
As shown in Fig. 4, the correlation degree of each sensor was
distinct from one another, which revealed the better contribu-
tion of the sensors in the array. The final quantified results are
shown in Fig. 5. The quantified values of odor intensity were
becoming greater with the increase in the weight of ABS,
which conformedwith the fact that the odor is becomingmore
intense with the increased concentration. Besides, the odor
intensity of different ABS brands was evidently differentiated
by the quantified numbers under the same weight. From the
above, the odor intensity of ABS could be quantified by

FIGURE 5. The quantified results of odor intensity from three kinds
of ABS.

FIGURE 6. The contrast of the quantified values between polypropylene
and glass ABS and other types.

the odor evaluation system. The odor of high heat resistant
ABS was more intense than that of others, and the odor of
flame-retardant ABS was the weakest.
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TABLE 6. Comparison of the regression results of four kinds of ABS by ELM.

FIGURE 7. The fitting effect of the predicted values and the quantified values of four kinds of ABS: (a) High heat-resistant ABS,
(b) Heat-resistant ABS, (c) Flame-retardant ABS, (d) Polypropylene and glass ABS.

To verify the above results, polypropylene and glass ABS,
an extra brand of ABS, was measured by the odor
evaluation system. As shown in Fig. 6, the quantified values
of polypropylene and glass ABS were also getting greater
with the increase in the weight of ABS. Besides, the odor
intensity of polypropylene and glass ABS was distinguished
from that of other brands when the samples were equipped
with the same weight.

B. QUANTITATIVE REGRESSION OF ODOR INTENSITY
The regression models were constructed by ELM, RF, and
SVM. For each brand, 60 groups of data were selected as
the training set at random, and the remaining 20 groups
of data were used as the test set. The input of the model
was composed of the features of the odor and the output
was made up of the quantified values of odor intensity.
In order to describe the predicted performance of the models,
the R2 and the RMSE were introduced. The R2 is termed as

coefficient of determination, used to measure the fitting effect
of the regression model. In general, the larger R2 between
[0, 1] means the better fitting effect. The RMSE, namely
root mean square error, is served as an indicator to evaluate
the deviation between the predicted values and observed
values.

1) REGRESSION ANALYSIS BY ELM
The regression model was constructed by ELM, where the
number of neurons was 20. As shown in Table 6, the R2 >

0.92 in the training sets and the test sets, and the difference
of R2 between the training sets and the corresponding test
sets was less than 0.02. Therefore, ELM possessed good uni-
versality and generalization for four kinds of ABS. Besides,
the quantified values of heat-resistant ABS were predicted
well in the training sets (R2 > 0.98) and the test sets
(R2 > 0.97). The fitting effect of the predicted values and
the quantified values in the test sets is shown in Fig. 7.
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FIGURE 8. The fitting effect of the predicted values and the quantified values of four kinds of ABS: (a) High heat-resistant ABS,
(b) Heat-resistant ABS, (c) Flame-retardant ABS, (d) Polypropylene and glass ABS.

TABLE 7. Comparison of the regression results of four kinds of ABS by RF.

TABLE 8. Comparison of the regression results of four kinds of ABS by SVM.

2) REGRESSION ANALYSIS BY RF
In RF, the number of the decision trees was 500, and the num-
ber of attributes in the split attribute set was 5. Table 7 shows
the regression results of four kinds of ABS. It can be seen
that the training sets with R2 > 0.91 and the test sets
with R2 > 0.89. And the difference of R2 between the

training sets and the corresponding test sets in ELM was
less than that in RF, which proved that ELM was better at
applicability and generalization. Among four kinds of ABS,
the quantified values of polypropylene and glass ABS were
predicted better, with R2 > 0.99 in the training sets and
R2 > 0.98 in the test sets. Fig. 8 shows the fitting effect
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FIGURE 9. The fitting effect of the predicted values and the quantified values of four kinds of ABS: (a) High heat-resistant ABS,
(b) Heat-resistant ABS, (c) Flame-retardant ABS, (d) Polypropylene and glass ABS.

of the predicted values and the quantified values in the test
sets.

3) REGRESSION ANALYSIS BY SVM
The Cuckoo Search (CS) was employed to search the best
parameters (c and g). And the mean square error was utilized
as the fitness function. As shown in Table 8, SVM had a
preferable presentation in the training sets (R2 > 0.98) but
not the test sets (0.88 < R2 < 0.97). The difference of
R2 between the training sets and the corresponding test sets
in SVM was greater than that in the other models, which
certified that SVM was provided with inferior fitting. The
quantified values of polypropylene and glass ABS were also
predicted well by SVM, with R2 > 0.99 in the training sets
and R2 > 0.96 in the test sets. The fitting effect of the
predicted values and the quantified values in the test sets is
shown in Fig. 9.

V. CONCLUSION
In this paper, an odor evaluation system was developed to
detect the odor intensity of four kinds of ABS. Eight sensors
were selected to compose an array. Then, the data preprocess-
ing and the feature extraction were applied to deal with the
data of smells. Finally, the correlations and the weights of
different sensors were obtained to quantify the odor intensity.
According to the quantified consequences, ELM, RF, and
SVMwere introduced to construct the regressionmodels. The
particular conclusions are as follows:
(1) Design of the ABS odor evaluation system: the sys-

tem included a sampling device, a sensor array, and an
analysis software. Eight sensors were screened by CV,

ANOVA, and PCA to construct an array with stability,
repeatability, and selectivity.

(2) Quantification of the odor intensity: the quantified values
were becoming greater with the increase in the weight
of ABS and discriminated the odor intensity of four
kinds of ABS correctly. Among four kinds of ABS,
the high heat-resistant ABS with the maximum odor and
the flame-retardant ABS with the minimum odor.

(3) Construction of the regression models: ELM was
equipped with the better universality (R2 > 0.92),
however, SVM was a suboptimal choice in fitting. The
quantified values of polypropylene and glass ABS were
predicted well by RF and SVM, and the quantified values
of heat-resistant ABS were predicted well by ELM.

This study indicated that the odor evaluation system could
perceive the smells of four kinds of ABS and quantify their
severity, offering a novel technique for the evaluation of
the odor intensity. Thus, this system was likely to substitute
human evaluation in the field of automobiles.
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