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ABSTRACT As an emerging computing model close to the end-user, fog computing can move tasks from
the cloud to the fog device to process, and make up for the lack of cloud computing in terms of mobile
support, delay and location-aware. Due to the less computing resources and weak processing ability of fog
devices, the lightweight computing has been the primary choice, higher requirements are imposed for time
and load. Therefore, in the Cloud-fog computing architecture, a new task scheduling method(I-FASC) is
proposed for the characteristics of tasks and resources, including an improved firework algorithm (I-FA) is
proposed by introducing the explosion radius detection mechanism of fireworks. By two sets of experiments
show this method can better reduce the processing time of the task and ensure better overall load balancing
of fog devices in a cloud-fog computing system.

INDEX TERMS Cloud computing, fog computing, Internet of Things (IoT), task scheduling.

I. INTRODUCTION
Cloud computing is becoming more and more popular as a
new distributed computing in the Internet era. By 2019, more
than 70% of the calculations will be completed on the cloud
server. Cloud computing provides users with efficient, secure
computing and storage services, and it has been bringing
huge economic benefits inmanyfields [1]–[4]. However, with
the rapid development of smart devices, artificial intelligence
and other Internet of things [5], the connectivity of objects
are stronger and getting stronger, the number of devices
connected to network is growing explosively, and lots of
devices at the edge of the network need low latency and high
reliability. Because the cloud data center is far away from
the end user, the ultra-long distance transmission reduces
the real-time performance and a large number of Internet
of Things (IoT) applications are processed in the cloud data
center, which increases the burden of the cloud [6]. In order
to make up for the shortcomings of cloud computing in
terms of delay, mobility support and enhance user experience.
Cisco proposed fog computing in 2012 [7]. As an emerging
computing model, fog computing extends the cloud comput-
ing paradigm from the network core to the network edge,
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providing compute, storage and network services between
end-user and traditional clouds, and it can reduce latency
and network congestion [8]–[10]. As a supplement to cloud
computing, fog computing mainly deals with localized, real-
time, and short-cycle data processing and analysis, for exam-
ple: autopilot, telemedicine, mobile roaming, etc [11]–[13].
Therefore, combining fog computing with cloud computing
is a hot topic in current technology research. As we all know,
cloud computing, including hybrid cloud and public cloud is a
computer and server connected by the Internet, and generally
provide services to users in a large geographic area. Fog
computing migrates data to a server near the terminal by
managing certain applications or services at the edge of the
network, usually providing services to users in a small local
area network. When terminal data requires higher delay, fog
computing can process data faster because of its location
advantage. But the heterogeneity of the fog devices deter-
mines that different devices have different processing power,
it is not as good as the data center, resulting in different time
for the fog devices to handle tasks and the resource load will
change frequently [14]–[17].

In the task scheduling of cloud computing, although there
is a large-scale parallel processing architecture in cloud com-
puting, there are still some phenomena such as low resource
utilization and unbalanced load, which seriously affect the
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work efficiency. On the one hand, large-scale data transmis-
sion will consume a lot of network bandwidth and increase
the burden of cloud data center; On the other hand, due to
the different terminal needs, the requirements for resources
are also varied, and the long-distance data transmission will
produce a large delay, unable to meet the time-delay sensitive
user needs, at this time, the emergence of fog computing
is very important. In the task scheduling of fog comput-
ing, the most basic problem is to match the requirements
and resources. In iot scenarios, the user’s needs are diverse,
while fog computing service node performance is far inferior
to cloud computing platform service node. Therefore, how
to allocate the limited resources effectively in fog comput-
ing and allocate the resources according to users’ needs to
achieve the optimal scheduling goal is an urgent problem to
be solved.

Therefore, to meet the needs of future Internet applications
and avoid wasting resources, we need to ensure the low
processing time of the fog devices and the relatively balance
of the overall load level according to user needs, which is
becoming an important issue for users and operators. So,
based on this situation, the contributions of this paper are
summarized as follows:

1) An improved firework algorithm (I-FA) is proposed,
which introduce the explosion radius detection mechanism
of fireworks to avoid optimal solution disappears.

2) A task scheduling method(I-FASC) is presented, this
method take into account the characteristics of tasks and
resources, including an improved firework algorithm.

II. RELATED WORK
In recent years, fog computing has become a trend. As a
novel paradigm, the core idea of fog computing is that the
computation should be performed near to data source. Many
researchers from home and abroad have begun studying in
this field [18]–[22].

In the theoretical study of fog computing,
Sarkar and Misra [23] modeled the fog computing structure
in theory, comparing traditional cloud computing architec-
ture and fog computing architecture from the service delay
and energy consumption. Research shows that the service
delay and energy consumption have more advantages in fog
computing than cloud computing, but this article is limited
to theoretical analysis. Stojmenovic [24] gave the fog com-
puting structure in the smart grids, and they are connected to
the software-defined network scenario, but they only consid-
ered the application of fog computing. Fan and Ansari [21]
proposed the cost aware cloudlet placement in mobile edge
computing strategy where both the cloudlet cost and aver-
age E2E delay are considered in the cloudlet placement.
Yi et al. [25] analyzed the objectives and challenges of
the fog computing platform, and designed a low-latency,
high-efficiency and versatile fog computing platform, which
did not involve the computational service problem of fog
computing. Yang et al. [26] devised CUE, an intelligent
EC framework based on ‘‘cloud-user-edge’’ cooperation by

takingUGC features and resource heterogeneity into account.
Yigitoglu et al. [27] proposed a framework, called Foggy,
that facilitates dynamic resource provisioning and automated
application deployment in Fog Computing architectures.

In terms of optimization strategy, Zeng et al. [28]
researched a software-defined embedded system that sup-
ports fog computing to solve the problem of resource man-
agement in traditional embedded systems. They designed
an efficient task scheduling and resource management strat-
egy. For some nonlinear programming problems, they pro-
posed an algorithm to minimize the task completion time.
Pham and Euh [29] formulated the task scheduling problem
in cloud-fog environment and then proposed a heuristic-based
algorithm, whose major objective is achieving the balance
between the makespan and the monetary cost of cloud
resources. Bitam et al. [30] proposed a new bio-inspired
optimization approach called Bees Life Algorithm (BLA)
aimed at addressing the job scheduling problem in the fog
computing environment, and this approach is based on the
optimized distribution of a set of tasks among all the fog
computing nodes. Sun et al. [31] proposed a two-level
resource scheduling model and designed a resource schedul-
ing scheme among fog nodes in the same fog cluster based
on the theory of the improved non-dominated sorting genetic
algorithm II (NSGA-II), which considers the diversity of
different devices. Zhang and Zhou [32] proposed a method
based on a two-stage strategy to maximize task scheduling
performance and minimize nonreasonable task allocation in
clouds, experimental results show that they can effectively
improve the cloud’s scheduling performance and achieve the
load balancing of cloud resources. Li et al. [33] proposed
a cloud task scheduling strategy based on clustering and
improved SOS(Symbiotic Organisms Search) algorithm to
solve the problems of some Quality of Service(QoS)-based
scheduling algorithms in cloud computing environment.

Through careful study of the above studies, we find
that they have advantages and limitations in many aspects:
1) many studies, e.g., [23]–[25], gave a sufficient introduction
to the theoretical and platform of fog computing, and they
were contributed to the research of optimization strategy.
2) various existing studies, e.g., [28], [30], [31], considered
the optimization of time and energy consumption brought by
fog computing, but they did not consider the problem between
delay and device load according to tasks and resource types.
It is easy to waste resources.

III. CLOUD-FOG COMPUTING WORKFLOW
A. CLOUD-FOG COMPUTING ARCHITECTURE
The architecture of Cloud-fog computing is divided into the
terminal layer, fog computing layer, and core layer, as shown
in Fig. 1.

The terminal layer is mainly composed of terminal
resource requestors, including fixed devices and mobile
devices, such as sensors on the road, mobile phones, smart
watches, computers and others. There are three types of task
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FIGURE 1. Cloud-Fog computing architecture.

requests in the Cloud-fog computing architecture in present,
one for time-sensitive requests, for example: games, autopilot
and others, and one for storage requests, for example: data
comparison and medical storage and others, and one for
bandwidth requests, for example: drone, AR and others. All
tasks are generated at this layer, and the processed results will
return to this layer eventually.

The fog computing layer is mainly composed of fog
resource providers, including fog devices and fog processor.
The fog devices are located at the edge of the network and
composed of devices with computing, storage and transmit
ability, such as base station and micro servers. The fog pro-
cessor is a hub connecting the core devices, fog devices and
terminal devices, and it can send different requests to different
locations. This layer can sense terminal requests in real time
and provide various services such as device access and data
processing. And this can solve the processing delay problem
and alleviate pressure for the core layer.

The core layer is mainly composed of cloud resource
providers, including server clusters with large storage capac-
ity and strong computing ability. Servers are interconnected
in the core layer, and the virtual machines can be moved
back and forth between servers to handle complex computing
tasks. The emergence of the fog computing layer facilitates
the efficient use of cloud resources by the core layer and
makes this layer to focus on large-scale storage and big data
processing.

B. CLOUD-FOG COMPUTING WORKFLOW
The workflow of this architecture is shown in Fig. 2. And the
following is the specific working process.

1) The terminal device sends the data request to the pro-
cessing module of the fog computing layer.

2) In the fog computing layer, we establish a task clustering
model and a resource integration model and determine
the execution location of the task according to resource
integration.

FIGURE 2. The workflow of the architecture.

3) The controller sends tasks to different servers for
processing.

4) The fog computing layer and core layer send the
processed results to the terminal.

IV. PRETREATMENT
A. TASK CLUSTERING
With the continuous development of artificial intelligence
and big data, service experience has become more and
more important. In the resource service of fog computing,
the requirements of various tasks have different requirements
for various resources in fog computing.

We can research tasks at the task level and use reasonable
strategies to process the tasks. This way can facilitate the
selection of different fog computing servers and reduce the
size of candidate tasks during scheduling.

Assuming that Ki represents the size of task Ti (i = 1,
2, . . . , n), Si represents the expected storage space of
task, Di represents the expected completion time of task,
Yi represents the expected bandwidth of task.
We cluster the tasks according to expected storage space,

expected time and expected bandwidth. In order to facilitate
data processing, normalization processing is performed sep-
arately as follows:

S∗i =
Si
n∑
i=1

Si

(1)

D∗i =
Di
n∑
i=1

Di

(2)

Y ∗i =
Yi
n∑
i=1

Yi

(3)

All tasks are classified into a cluster C , then we calculate
distance between the different tasks:

dij =
√
(S∗i − S

∗
j )

2 + (D∗i − D
∗
j )

2 + (Y ∗i − Y
∗
j )

2 (4)
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The two task Ti, Tj with the largest dij values are classified
into different clusters C1 and C2. Then we calculate the
Euclidean distance between other resources and these two
center points, and select the task with the largest distance
value as the center point of the cluster C3. And we deter-
mine the type of task by comparing the value of Si, Di and
Yi, including time-sensitive requests, storage requests and
bandwidth requests. Then we calculate the distance between
the remaining tasks and this two tasks, they will be labeled
as distx , disty and distz. And we classify them according to
distance, for example: if distx > disty > distz, the task is
assigned to cluster C1, otherwise it is assigned to others until
these tasks divided into three different clusters. We can target
resource scheduling based on task classification.

B. RESOURCE INTEGRATION
At present, the fog computing platform can be regarded as
a virtualized resource pool, which is a cluster composed
of many computers with different processing capabilities.
Therefore, we integrate the different resources according to
different index. In this article, we divide resources into three
types: computing, storage, and bandwidth.

We assume that Cj represents the processing power of fog
deviceNj(i = 1, 2, . . . ,m),Mj represents the storage space of
fog device, Bj represents the bandwidth of fog device. Then
we allocate resources based on processing power, bandwidth
capacity and storage capacity, as shown in the following
formula:

C∗j =
Cj − Cmin

Cmax − Cmin + 0.1
(5)

M∗j =
Mj −Mmin

Mmax −Mmin + 0.1
(6)

B∗j =
Bj −Mmin

Bmax − Bmin + 0.1
(7)

Cmin and Cmax represent the maximum and minimum
processing power of fog device, respectively,Mmin andMmax
represent the maximum and minimum bandwidth capacity of
fog device respectively, Bmin and Bmax represent the maxi-
mum and minimum storage capacity of fog device respec-
tively. And we determine the type of resource by comparing
the value of this index, for example: if C∗j > M∗j > B∗j ,
the resource belong to the type of computing resource. Then,
we can perform task scheduling according to three task types.

C. CONSTRAINT
As we all know, the task data needs to be transmitted by the
user to the edge server or cloud server for processing through
the base station. When multiple tasks need to be offloaded
to the fog server, the total transmission demand may exceed
the transmission capacity of the base station. At this time,
the edge controller is required to obtain the current resource
occupation of the server and determine the offload location
of the task.

We assume thatMaxconnecti represents the maximum num-
ber of connections per device Nj, and connecti represents the

connections of the current fog server Nj, at this time, we must
ensure that the number of server connections cannot exceed
the maximum number of current server connections, that is:

connecti ≤ Maxconnecti (8)

At the same time, the following four constraints need to be
met:

1) There is no priority constraint between tasks.
2) Tasks are not allowed to be preempted during execution.

Each task can only be processed in one device, and one device
can handle multiple tasks.

3) The completion time of a single task shall not exceed
the expected completion time.

4) The number of tasks is greater than the number of
devices.

V. OBJECTIVE MODEL
After clustering tasks and integrating resources, we begin tar-
geted resource allocation. In fog computing, the fog devices
are composed of heterogeneous network devices, so the
latency of the service must be fully considered when schedul-
ing tasks and the resource load often change. Therefore,
we propose an objective model for time and load.

A. TIME MODEL
The fog computing is proposed to solve the problem of delay
in cloud computing [30]. The processing speed of fog devices
is different for different tasks, and the execution time will
affect the service quantity for users. Therefore, the main goal
is to efficiently reduce the completion time of task.

Assuming that Ki represents the size of task Ti, the time of
fog device Nj to execute task Ti can be defined as follows:

Timeij =
Ki
Cj

(9)

Since the resource requestors request n tasks, the time
required for the last fog device to complete the task can be
calculated as follows:

Totaltime =
m

max
j=1

n∑
i=1

Timeij (10)

When Totaltime is smaller, the entire devices have the least
amount of completion time.

B. LOAD MODEL
In fog computing, there are many load factors to affect fog
devices [34].We assume that C l

j represents the CPU utiliza-
tion of fog device Nj, M l

j represents the memory utilization
of fog device Nj, Blj represents the bandwidth utilization of
fog device Nj. In order to achieve the rationality of resource
allocation, it is assumed that each fog device can normally
receive the request of resource requestors and the load of each
fog device is defined as follows:

Loadj = α1 ∗ C l
j + α2 ∗M

l
j + α3 ∗ B

l
j (11)
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α1 =
C∗j

C∗j +M
∗
j + B

∗
j

(12)

α2 =
M∗j

C∗j +M
∗
j + B

∗
j

(13)

α3 =
B∗j

C∗j +M
∗
j + B

∗
j

(14)

α represents the weight of the corresponding resource and
α1 + α2 + α3 = 1.

The average load of all fog devices is defined as L, and the
formula can be expressed as follows:

L =

m∑
j=1

Loadj

m
(15)

The load of each fog devices is expressed by the stan-
dard deviation by Eq.(6), and the calculation formula can be
expressed as follows:

Load =

√√√√ 1
m

m∑
j=1

(Loadj − L) (16)

When Load is smaller, the load of the entire device is more
balanced.

VI. IMPROVED FIREWORK ALGORITHMS
A. FIREWORK ALGORITHMS
The firework algorithm (FWA) is a new swarm intelligence
optimization algorithm proposed by Tan and Zhu [35] and
others in 2010. The algorithm is inspired by the phenomenon
of fireworks exploding in the night sky and generating sparks.
The fireworks and the sparks generated by the explosion
together form the whole body.

The basic principle of the firework algorithm: the
explosion radius and the number of explosion sparks of each
firework are not similar, the poor fitness value of the firework
has a large explosion radius and few sparks. So, it has global
search capability; while the good fitness value of the firework
has a small explosion radius and a large number of sparks.
So, it has local search capability. Fireworks performs resource
allocation and information interaction in accordance with the
values of each adaptive degree, so that the entire population
can achieve a balance between global search capabilities and
local search capabilities [36], [37].

The typical firework algorithm is as follows:
1) Generate fireworks of the specified population size, and

calculating the fitness value of each firework according to the
fitness function.

2) Fireworks start to explode and calculate the explosion
radius and number of sparks of each firework.

3) Generate explosion spark and gaussian mutation spark
according to the explosion radius and the number of sparks.

4) Fireworks, explosive sparks and gaussian mutant sparks
will constitute a new candidate population, and the current
optimal value can be found out from this population.

5) Determine whether the termination condition is met.
If the output optimal value is met, stop iteration, otherwise
enter step (6).

6) Find new fireworks according to the selection rules, and
enter step (2).

For the research of firework algorithm, we analyze the
explosion radius formula of the firework algorithm, and pro-
poses an explosion radius detection mechanism in view of the
possibility that the optimal spark radius may approach zero.

B. IMPROVED FIREWORK ALGORITHMS
1) ENCODING
In the swarm intelligence algorithm, the individual coding
scheme is set according to the actual problem and the best
solution is obtained by iterating to the optimal solution [38].

In this article, chromosome Xj consisting of m genes rep-
resents the fog devices, each of gene represents a fog device,
and each gene corresponds to the corresponding task code,
as shown in Table 1:

TABLE 1. Chromosome Xj .

The chromosome is encoded as
{
′3′,′ 0′,′ 1, 5′,′ 2′, ..,′ 4′

}
,

indicating that task 3 is assigned to device 1, tasks 1 are
assigned to device 3, task 2 is assigned to device 4, task 4 is
assigned to device m, and device 2 is not assigned to task.
Each task can and can only be executed by one device, and

each device can execute multiple tasks.

2) FITNESS FUNCTION
The fitness value is an important indicator for evaluating the
individual’s pros and cons. In the firework algorithm, the fit-
ness value determines the number of sparks that are produced
by each firework. Fireworks with good fitness values generate
more sparks, otherwise generate fewer sparks.

We assume that the spark of the lth iteration of fireworks j
is the solution. Since the magnitudes of time and load are
quite different, it will produce large errors in directly pro-
cessing. So, it is necessary for two goals to be numerically
normalized separately.

F1(X lj ) = e−Totaltimej (17)

F2(X lj ) = e−Loadj (18)

Based on the normalization of the above goals, the fitness
function is finally obtained by the summation method. The
formula can be calculated by Eq.(19):

f (x lj ) = α ∗ F1(X
l
j )+ β ∗ F2(X

l
j ) (19)

α and β represent the weights of time and load respectively,
its value reflects the emphasis of the optimization goal, and
the center of gravity can be changed by adjusting the value,
where 0 ≤ α,β ≤ 1, and α + β = 1.
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3) EXPLOSION DETECTION MECHANISM
The formula for calculating the number of explosion sparks
and the radius of a firework explosion is:

Si = S
Ymax − f (x li )+ C

N∑
i=1

(Ymax − f (x li ))+ C

(20)

Ai = Amax
f (x li )− Ymin + C

N∑
i=1

(f (x li )− Ymin)+ C

(21)

Si indicates the number of subgeneration sparks in the ith
fireworks. Ai represents the explosion radius of the ith fire-
works. Amax represents constant, which indicates the largest
explosion radius. S represents the maximum number of
sparks in the fireworks subgeneration. Ymax indicates the
worst fitness value of this generation. Ymin indicates the fit-
ness value of the fireworks with the best fitness value of the
current population. f (x li ) represents the fitness value of the ith
firework. C represents the minimum number of machines.
The fitness value of the best fireworks is better, but it may

cause f (x li )−Ymin = 0, and
N∑
i=1

(f (x li )−Ymin)�C , therefore,

formula (21) approximates to zero. Since the best fireworks
can generate more sparks, if the radius of the sparks is zero,
it is easy to be abandoned when the fireworks are finally
selected, which waste computing time.

In response to the above problem, this article introduces
a radius detection mechanism for fireworks. If the explosion
radius of a firework is less than a certain threshold, we set its
radius to this threshold:

Ai =

{
Amin Ai < Amin
Ai Ai ≥ Amin

(22)

The threshold Amin changes continuously with the number
of iterations, the calculation formula is as follows:

Amin = Amax − Amax
l
L
+ C (23)

l represents the number of explosive searches, L represents
the number of total searches.

4) GAUSSIAN MUTATION
In the fireworks algorithm, the diversity of the population is
further improved due to mutation operation. The calculation
method is shown in Eq. (23).

xik = xik ∗ g (24)

g obeys the Gauss distribution of the mean value of 1 and
the variance of 1, xik represents the value of the ith individual
in the kth dimension.

5) SELECTION RULE
The individuals with the best fitness values are retained to
the next generation from fireworks, explosive sparks and

gaussian variation Sparks. And the rest N − 1 individuals are
selected according to the following formula:

p(xi) =
D(xi)
k∑
i=1

D(xi)

(25)

D(xi) =
k∑
j=1

d(xi, xj) (26)

k represents a set of fireworks, explosive sparks and gaus-
sian variation Sparks.D(xi) represents the Euclidean distance
between fireworks i and fireworks j, if the firework is farther
away from xi, the probability of being retained to the next
generation is greater.

6) TIME COMPLEXITY
According to the steps of firework algorithm, the time com-
plexity of population initialization is O(N ), the time of gen-
erating explosion radius is O(N ), the time complexity of
generating sparks is O(N ), the time complexity of explosion
detection mechanism is O(1), the time complexity of bound-
ary processing is O(N ), the time complexity of the Euclidean
distance is O(N ∗ M ), and the time complexity of selecting
the next generation of roulette is O(N +N ∗M ), where, N is
the number of fireworks population and M is the number of
sparks generated by fireworks, and all steps go through T th
iterations. So the total time complexity is as follows:

Tn = O(T (N + N + N + 1+ N + N ∗M + N + N ∗M ))

= O(5N ∗ T + T + 2T ∗ N ∗M )

= O(5n2 + 2n3 + n) (27)

C. TASK SCHEDULING METHOD
The task scheduling process of this article(I-FASC) is as
follows:

1): Initialize parameters, including metrics for tasks,
virtual machines, and algorithms.

2): Task clustering and resource integration, divided into
three different types.

3): Initialize the number of fireworks N , and select
specific resources to optimize, each firework represents a
solution.

4): Calculate fitness function value for fireworks according
to Eq.(19) and the number of sparks and explosion radius of
fireworks.

5): Introducing explosion radius detection mechanism and
determining the radius of the current spark.

6): Selecte a firework to gaussian mutation randomly
according to Eq.(23).

7): Selecte N fireworks as the next generation firework
population.

8): If the maximum number of iterations is not reached,
turn step 4, otherwise ends.
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FIGURE 3. Simulation architecture.

VII. SIMULATION
A. EXPERIMENTAL ENVIRONMENT
This experiment uses Alibaba Cloud Server as the cloud
server, a Core i5, 4G memory device is used as the fog
controller, an 8-core smartphone with 4G memory is used as
the edge device, and ten devices with different configurations
are used as the fog server.

Task parameter settings: The range of the number of
tasks is [10 − 1000], the range of the size of task Ki is
[10000− 50000], the expected storage space range of task Si
is [500 − 4000], the expected completion time range of task
Di is [0.1− 50], and the expected bandwidth range of task Yi
is [1000− 5000]. Fog server parameter settings: the range of
processing speed Cj is [500− 1000], the range of bandwidth
range Bj is [500 − 6000], the range of storage space Mj is
[521 − 4096], the range of CPU utilization C l

j is [20 − 85],
the range of memory utilization M l

j is [10 − 90], the range
of bandwidth utilization Blj is [10− 90], the maximum server
connectionsMaxconnecti is [100− 1000]. Firework algorithm
parameter settings: one Gaussian spark, the total number of
fireworks N is 200, the maximum number of sparks S is 80,
the maximum explosion radiance Amax is 200, the maximum
number of iterations L is 1000, the minimum number of
machines C is 0.0001.
In this experiment, we deploymicroservice architectures in

different fog devices and containerize them in order to facili-
tate migration, and we use Dubbo and Thrift that is a transfer
protocol to communication between services. Fog controller
includes task cluster model, resource integration model and
many algorithm model, it communicates with other servers
through Dubbo, fog devices includes many services that deal
with many task processing, fog device connects with the fog
controller through Rest, the specific simulation architecture
is shown in the following figure.

B. EXPERIMENTAL RESULTS
After all the parameters are configured, this paper has con-
ducted two sets of experiments respectively for scheduling
method and improved firework algorithm.

1) EXPERIMENT OF SCHEDULING METHOD
The experiments of task scheduling method include three sets
of experiments: task clustering, task completion time, and
edge server load.

When task scheduling started, we performed cluster exper-
iments on 500 tasks. The experimental result is shown in
the following figure 4, it can be seen from the figure that
given tasks are divided into three different categories by our
clustering strategy, which is convenient for scheduling in the
next step.

FIGURE 4. Cluster with 500 tasks.

X, Y, and Z coordinates represent the expected storage
of the task, the expected completion time of the task and
the expected bandwidth of the task, respectively, the value
is calculated as a percentage. The yellow task point is the
bandwidth requests task, the blue task point is the storage
requests task and the purple task point is the time-sensitive
requests task.

For the task completion time, we compare the schedul-
ing method in this paper(I-FASC) with first come first ser-
vice(FSFC), an aco-based algorithm(Rank-ACO) [39] and a
double-fitness genetic algorithm(DFGA) [40] under different
optimization weights.

We set two different weights separately, one of which is
0.8 and 0.2 for α and β, and the other is 0.2 and 0.8 for
α and β. Figure 5, 6 show the algorithm execution time line

FIGURE 5. Comparison of execution time under different number of
request tasks (α = 0.8, β = 0.2).
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FIGURE 6. Comparison of execution time under different number of
request tasks (α = 0.2, β = 0.8).

chart in different task numbers, and figure 7, 8 show the load
ratio line chart in different task numbers.

FIGURE 7. Comparison of load ratio under different number of request
tasks (α=0.8, β=0.2).

FIGURE 8. Comparison of load ratio under different number of request
tasks (α=0.2, β=0.8).

Figure 5, 6 shows that with the increased number of tasks,
I-FASC maintains lower task execution time compared with
other algorithms in different weights. This is because we
take into account the characteristics of tasks and resources,
select different devices with improved firework algorithm
according to the characteristics of the task, this can greatly
speed up processing efficiency. DFGA only considers the

average completion time of the task, and does not prepro-
cess the task scheduling, resulting in the overall efficiency
reduction. Rank-ACO although utilizes an upward rank value
along with an insertion-based policy to further guide the
ants toward quality solutions, but, with the increase of data,
the performance of the algorithm is still limited.

It can be seen from the figure 7, 8 that with the different
number of tasks, when using different scheduling method
to schedule tasks in different weights, the load of each
method varies greatly. It can make the device’s resource
allocation more balanced by using I-FASC to schedule.
It is beneficial to give full play to the performance of each
device, thereby improving the performance of the entire
system.

In addition, we will send all tasks to the cloud device to
process and use the same algorithm to compare with I-FASC.
Figure 9 show that I-FASC has lower task execution time in
different fog devices compared with cloud device. The effect
of data transmission time on the fog computing model can be
ignored in total time, therefore, fog computing is much better
in real-time than cloud computing models. On the contrary,
when the data processing time is much longer than the data
transmission time, cloud computing can make better use of
its computing advantages.

FIGURE 9. Comparison under different devices.

2) EXPERIMENT OF ALGORITHM
In order to verify the optimization abilities of the improved
firework algorithm in Cloud-fog computing architecture,
the experiments of the improved firework algorithm include
two sets of experiments: explosion radius, algorithm perfor-
mance.

Figure 10 shows the average of explosion radius of FW
and I-FW after 200 tasks are executed, by comparison, as the
number of iterations increases, the average explosion radius
of fireworks of I-FA is smaller than FA, which means that
each iteration of algorithm leaves more individuals with bet-
ter fitness.

We compare different algorithm models under the same
scheduling method and algorithm parameters, including
DFGA, Rank-ACO and firework algorithm(FA), as shown
in Fig.11
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FIGURE 10. Comparison of average explosion radius.

FIGURE 11. Performance comparison results of the four algorithms.

Fig. 11. shows the average performance curve of all task
completion time-iteration times after 200 tasks are exe-
cuted on ten fog devices. Among the three algorithms, I-FA
has the least number of iterations and the fastest conver-
gence speed. As the number of iterations increases, the task
completion time of I-FA is consistently shorter than that
of other algorithms. This can be seen that I-FA is more
accurate than DFGA, Rank-ACO and FA. This is because
of the complexity of the Double-Fitness genetic algorithm,
such as crossovers and mutations. Due to the lack of initial
pheromone, Rank-ACO needs a long time to search, resulting
in its slow convergence speed.While I-FA has accelerated the
emergence of optimal solutions by introducing an explosion
detection mechanism.

VIII. CONCLUSION
Fog computing is a kind of lightweight computing, a new
task scheduling method(I-FASC) is proposed for the char-
acteristics of tasks and resources in this article, and then
an improved genetic algorithm(I-FA) is proposed by intro-
duce the explosion radius detection mechanism of fire-works.
Then, we simulate a cloud-fog computing system, and this
method can achieve better execution time and ensure better
load in a short time by two sets of experiments in this system.

With the widespread application of fog computing, more
people will be attracted to study this field. In this article,
the task scheduling is studied in the fog computing, and some

research results have been achieved. However, in the actual
application development, there are still many shortcomings.
For example, in the modeling of the task processing time
and load optimization, the energy consumption of the fog
devices processing task is not considered and there are many
service indicators in fog computing. So modeling the energy
consumption and selecting other service indicators as opti-
mization goals can be considered in the next step.
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