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ABSTRACT Non-linear programming problems can be solved efficiently by geometric programming in
which non-linear expressions can be expressed by an exponential or power functions. In this paper, Double
Sampling Stratification (DSS) strategy is used in multivariate stratified population with unidentified strata
weights, for optimum sampling design (OSD) in the presence of non-response to estimate the unidentified
population means. The double sampling problem in the presence of non-response is formulated as Fuzzy
Multiobjective Convex Programming Problem (FMOCPP). Then, we convert FMOCPP into Fuzzy Single
Objective Convex Problem (FSOCP) by using membership function. Dual solution is obtained using LINGO
Software by solving FSOCP. The optimum allocations of sample sizes of respondents and non- respondents
for both the phases are obtained by applying dual solutions and primal-dual relationship theorem. The given
technique is illustrated by projecting a numerical problem.

INDEX TERMS Double sampling, dual solutions (DS), fuzzy programming (FP), geometric programming
(GP), non-linear programming (NLP), non-response, non- respondents (NR), orthogonality condition (OC),
respondents (R).

I. INTRODUCTION
The problem of non-response is frequently experiencing
in conveyance of the sample surveys. The meaning of the
non-response is that, we cannot get the requisite information
for all selected units in the sample for one cause or the
other. In case, the individual sampling unit is taken, then
the chosen person may be reluctant to give the requisite
information, or he/she may be out of station when the inter-
viewer called. The incomplete sample data are obtained when
non-response occurs, that affects the quality of estimates of
the unidentified population parameters. The comprehensive
details of the non-response problem in sample surveys have
been given by [1]. The first classical non-response theory
in mailed surveys was given by [2], in which mailing the
questionnaires was done in the first attempt and in a sec-
ond attempt, the individual interview to a sub-sample of the
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NR. The estimate for the population mean was constructed
with these two attempts by them and the expression for the
sampling variance of the estimate is obtained. They also
worked out the optimum sampling fraction among the NR.
In order to increase the response rate, [3] given the extensive
study of the Hansen and Hurwitz’s technique in which he
send the waves of questionnaires to the non-respondent units.
The comprehensive El-Badry’s method and the application of
Hansen and Hurwitz’s technique with diverse models were
discussed by [4]. The method proposed by [5] for the assort-
ment of sub-samples of NR where the rate of sub-sampling
was varying. The problem of optimum allocation in stratified
sampling in presence of non-response for fixed cost as well
as for fixed precision of the estimate was given by [6]. Many
authors have discussed the problems of non-response and
used different techniques and methods for the solution of
the problem. Some of them are: [7]–[10]. The unidentified
strata weights in stratified sampling are estimated by applying
double sampling design. A huge simple random sample from
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the population with unstratification is strained and sampled
units from each stratum are recorded to estimate the uniden-
tified strata weights at first stage. A stratified random sample
is then obtained comprising of simple random sub-samples
out of the earlier selected units of the strata as described
by [7]–[9], [12], [16]. In the case of non-response, the sub-
samples may be separated into the classes of R and NR.
A second sub-sample is then strained out of NR and an effort
is completed to obtain the information. This method is called
DSS. DSS estimators based on the sub-sampling of NR was
derived by [11]. Many researchers have worked in the field
of double sampling design, mathematical programming in
double sampling design, [12]–[21] and many others.

The executive real life problems of sampling design,
sociological, medical, hospital, household, economical, envi-
ronmental, engineering and technological, finance, manage-
rial problems, chemical problems and industrial areas are
of conflicting objectives. It is significant to comprehend
that multiple objectives are frequently non-commensurable
and in divergence with each other. The system can nei-
ther be formulated nor be solved efficiently by conven-
tional mathematics-based optimization techniques and also
probability-based stochastic optimization approaches with-
out distinguishable information. Nevertheless, for modeling
and optimizing these types of systems, fuzzy set theory and
fuzzy programming techniques afford a constructive and pro-
ficient method. Firstly the conception of fuzzy set theory was
projected by [22]. Afterward, [23] have used the fuzzy set
theory for decision-making problems. The research works in
the field of fuzzy set theory and fuzzy programming have
been done by many authors as: [24]–[28]. The researchers
have worked in the area of fuzzymultiobjective programming
such as: [29]–[36], [75]–[78], [79], [81]–[86] and many.

Geometric programming is an effective, efficient and pow-
erful method for solving highly convex non-linear program-
ming problems by converting it into linear forms with the
help of strong duality theorem. The application of geometric
programming in engineering design problems in early 1960s
was done by Duffin and Zener. Further, [37] have solved
extensive assortment of engineering design problems by cre-
ating basic theories of geometric programming. Geometric
programming method was applied by many authors, some of
them are: [38]–[45]. The researchers have worked in mul-
tiobjective geometric programming problem and applied in
different fields as: [46]–[60] and many. The research work in
fuzzy geometric programming and fuzzy goal programming
has been done by many authors in different fields for obtain-
ing the solution of the problems. Such as: [61]–[74] andmany
others. In this paper, we have used DSS strategy in multi-
variate stratified population with unidentified strata weights,
for OSD is in the presence of non-response to estimate the
unidentified population means. The double sampling prob-
lem in presence of non-response has been formulated of as
FMOCPP. The FMOCPP is converted into FSOCP by using
membership function of fuzzy programming. Dual solution is

obtained by using LINGO [87] Software for solving FSOCP.
The optimum allocations of SS of R and NR for both the
phases have been obtained by applying DS and primal-dual
relationship theorem as described by [44], [52], [66], [69],
[70] and [80]. The given technique is illustrated by projecting
a numerical problem.

II. FORMULATION OF THE DOUBLE SAMPLING FOR
STRATIFICATION IN PRESENCE OF NON-RESPONSE
Let amultivariate survey be planned to estimate the number of
people having different diseases like Thyroid, Hyper tension,
Cataract, Glaucoma, Diabetes, Cancer, High B.P., HIV etc.,
in a district of population size N, divided into three strata
on the basis of family income. The mailed questionnaires
are used to get information. Again we let N1,N2 and N3
be the unknown actual strata sizes. The non-response prob-
lem generally occurred in mailed questionnaire surveys. The
surveyor is advised to use the proposed technique of this
manuscript to solve the problems arising in the above situ-
ations. The population of size N is considered which consists
of L non-overlapping strata of sizes N1,N2, · · · ,NL , where∑L

h=1 Nh, =N . If N1,N2, · · · ,NL are previously unknown
then the strata weights Wh = Nh/N ; h = 1, 2, · · · ,L will
remain unknown.

The double sampling technique is applied in these con-
ditions to estimate the unidentified strata weights (Wh) by
taking a huge preliminary sample of size n′, where the popu-
lation is treated as un-stratified. The SS n′h; h = 1, 2, · · · ,L
are recorded coming in every stratum. The wh = n′h/n

′ will
be an unbiased estimate of Wh. Out of n′h units, the sub-SS
nh = vhn′h; h = 1, 2, · · · ,L; 0 < vh ≤ 1 is drawn from
every stratum for fixed vh using srswor. The DSS estimator
of the population mean Y j of the jth characteristics out of p
characteristics calculated on every chosen unit is as follows:

yjds =
L∑
h=1

whyjh (1)

where yjh =
1
n

∑nh
i=1 yjhi is the sample mean of jth character-

istic, j = 1, 2, · · · , p, based on nh units for stratum h and ds
stands for double sampling.

The sampling variance of yjds is as follows:

V
(
yjds
)
=

(
1
n′
−

1
N

)
S2j +

1
n′

L∑
h=1

wh

(
1
vh
− 1

)
S2jh (2)

where S2j =
1

N−1

∑N
i=1

(
yji − Y j

)2
is the population vari-

ance of jth the characteristics based on N units and S2jh =
1

Nh−1

∑Nh
i=1

(
yjhi − Y jh

)2
is the population variance of jth

characteristic based on Nh units for stratum h. The total
response will be considered by expressions 1 and 2.

Let the response to the first call will be nh1 units and
nh2 units be the NR out of nh units in the presence of non-
response. The technique of Hansen and Hurwitz [2] is used
to draw a sub-sample of NR of sizemh2 = k∗hnh2; 0 < k∗h < 1
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out of nh2 units and interviewed with the improved technique,
where known constant is k∗h . In the second attempt, the unbi-
ased estimator y∗jds for Y j based on sample means from the R
and the NR group for jth characteristic is as:

y∗jds =
L∑
h=1

why∗jh (3)

where y∗jh =
nh1yjh1+nh2yjmh2

nh
.

The sample mean for R based on nh1 units is yjh1.
The sample mean for the NR based on mh2 units in second

attempt is yjmh2.
The variance of y∗jds is given as:

y∗jds =
(
1
n′
−

1
N

)
S2j +

1
n′

L∑
h=1

wh

(
1
vh
− 1

)
S2jh

+
1
n′

L∑
h=1

wh2

(
1− k∗h
k∗h vh

)
S2jh2

= Vj; j = 1, 2, · · · , p (4)

where wh2 =
nh2
nh

is the proportion of the NR and S2jh2 is the
population variance of jth characteristic, j = 1, 2, · · · , p of
the NR in hth stratum. The total cost of the survey is assumed
to be linear that is given as:

C = c0n′ +
L∑
h=1

ch1nh +
L∑
h=1

ch11nh1 +
L∑
h=1

ch12mh2 (5)

where c0 is per unit cost of receiving information from the
preliminary sample, ch1 is per unit cost for the first attempt
(phase-I), ch11 =

∑p
j=1 cjh11 is per unit cost for processing

the result of all the p characteristics on the nh1 selected
units from R group in the hth stratum at phase-I, ch12 =∑p

j=1 cjh12 is the per unit cost for measuring and processing
the results of all the p characteristics on themh2 units selected
from the NR group in the hth stratum at the second attempt
(phase-II), the per unit costs of measuring the jth character-
istic of corresponding both the phases (phase-I and phase-II)
are cjh11 and cjh12. Because nh1 is unknown before the first
is made, then the amount wh1nh may be used as its estimated
value. Thus, the total expected cost Ĉ of the survey is given
as:

Ĉ = c0n′ +
L∑
h=1

(ch1 + wh1ch11) nh +
∑

ch12mh2 (6)

At phase-I, the optimum SS of R nh, h = 1, 2, · · · ,L are
obtained by minimizing the variance vj, j = 1, 2, · · · ,L
of (4) for the total expected cost given in (6) or by minimizing
the cost for fixed precision given by [6]. At phase-II, the opti-
mum SS of NR mh2, h = 1, 2, · · · ,L are obtained for a fixed
cost of the survey.

The multiobjective formulation of the problem at phase-I
may be given as:

Min Vj, j = 1, 2, · · · , p

Subject to
L∑
h=1

(ch1+wh1ch11) nh

+

∑
ch12mh2≤

(
Ĉ−c0n′

)
;

and nh ≥ 0, h = 1, 2, · · · ,L


(7)

The equivalent expression obtained by ignoring terms inde-
pendent of nh in minimizing Vj will be

Zj (n1, n2, · · · , nL)

=
1
n′

L∑
h=1

(
whn′hS

2
jh + wh2

((
i− k∗h

)
/k∗h

)
n′hS

2
jh2

nh

)

=

L∑
h=1

ajh
nh
= Zj; j = 1, 2, · · · , p (8)

where ajh =
(
whn′hS

2
jh+wh2((i−k

∗
h )/k

∗
h )n
′
hS

2
jh2

n′

)
The expression of the cost constraint may be given as:

L∑
h=1

(ch1+wh1ch11) nh ≤ Ĉ0;

where Ĉ0 = Ĉ − c0n′−
L∑
h=1

ch12mh2

By using the above transformations, the problem (7) can be
rewritten as:

Min Zj; j = 1, 2, · · · , p

Subject to
L∑
h=1

(ch1 + wh1ch11) nh

≤ Ĉ0 and nh ≥ 0, h = 1, 2, · · · ,L

 (9)

At phase-II, the optimum SS of NR mh2, h = 1, 2, · · · ,L
are obtained by minimizing the variance vj, j = 1, 2, · · · ,L
of (4) for the total expected cost given in (6). The inde-
pendent terms of mh2 ignored from RHS of (4), putting
k∗h = mh2/nh2andvh = nh/n′h, in the equation (9) we
get:

Min Zj; j = 1, 2, · · · , p

Subject to
L∑
h=1

ch12mh2≤ Ĉ ′0

and mh2≥0, h=1, 2, · · · ,L

 (10)

where Zj; j = 1, 2, · · · , p are the function of mh2; h =
1, 2, · · · ,L given by

Z ′j (m12,m22, · · · ,mL2)

=
1
n′

L∑
h=1

wh2nh2n′hS
2
jh2

mh2nh
=

L∑
h=1

bjh
mh2
; j = 1, 2, · · · , p.
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bjh

=
wh2nh2n′hS

2
jh2

n′nh
andĈ ′0

= Ĉ − c0n′ −
L∑
h=

(ch1 + wh1ch11) nh. (11)

III. GEOMETRIC PROGRAMMING APPROACH
The multiobjective nonlinear programming problem
(MONLPP) at phase-I is given as follows:

Min
L∑
h=1

ajh
nh
, j = 1, 2, · · · , p

Subject to
L∑
h=1

(ch1 + wh1ch11) nh ≤ Ĉ0

and nh ≥ 0, h = 1, 2, · · · ,L


(12)

The equation (12) can be written in the standard primal
geometric programming problem as follows:

Max f0j (n) , j = 1, 2, . . . , p (i)
Subject fq (n) ≤ 1, nh ≥ 0, h = 1, 2, · · · ,L (ii)

}
(13)

where

fq (n) =
∑
i∈j[q]

tin
pi1
1 npi22 · · · n

piL
L , q = o, 1, 2, · · · , k

or

fq (n) =
∑
i∈j[q]

ti

[
L∏
h=1

npihh

]
, ti > 0, nh > 0,

q = o, 1, 2, · · · , k,

pih: arbitrary real numbers,di :positive and fq (n): posinomi-
als.

Let for simplicity

ajh =

(
whn′hS

2
jh + wh2

((
i− k∗h

)
/k∗h

)
n′hS

2
jh2

n′

)
&ti = ajh =

(ch1 + wh1ch11)

Ĉ0

The multiobjective nonlinear programming problem
(MONLPP) at phase-II is given by [16] as follows:

Min
L∑
h=1

bjh
mh2

, j = 1, 2, · · · , p

Subject to
L∑
h=1

ch12mh2 ≤ Ĉ ′0

and mh2 ≥ 0, h = 1, 2, · · · ,L


(14)

In the same way, as described in (12), the equation (14) can
be written in the standard primal GPP as follows:

Max f0j (m) , j = 1, 2, . . . , p (i)
Subject fq (m) ≤ 1, mh2 ≥ 0, h = 1, 2, · · · ,L (ii)

}
(15)

where

fq (m) =
∑
i∈j[q]

tim
pi1
1 npi22 · · ·m

piL
L , q = o, 1, 2, · · · , k

or

fq (m) = =
∑
i∈j[q]

ti

[
L∏
h=1

mpihh

]
, ti > 0, mh > 0,

q = o, 1, 2, · · · , k,

pih: arbitrary real numbers, ti: positive and fq (m): posinomi-
als.

Let for simplicity let

bjh =
wh2nh2n′hS

2
jh2

n′nh
&ti = bjh =

ch12
Ĉ ′0

The R and non-respondent’s dual form of the primal GPP is
given in equation (16) as:

Maxv0j(w) =
k∏

q=0

∏
i∈j[q]

{(
ti
wi

)wi}
k∏

q=1

 ∑
i∈j[q]

wi


∑
i∈j[q]

wi

(i)

Subject
∑
i∈[0]

wi = 1 (ii)

k∑
q=0

∑
i∈j[q]

pih wi = 0 (iii)

wi ≥ 0, q = o, 1, · · · , k
and i = 1, 2, . . . ,mk (iv)



j = 1, . . . , p. (16)

The given two-steps can be used for solving dual GPP as
given in equation (16):

Step I: The objective function constantly be in the given
form, for obtaining the optimum value of the objective
function

C0(x∗) =
(
1st term′scoefficient

w01

)w01

×

(
2nd term′scoefficient

w02

)w02

×......×

(
Lastterm′scoefficient

wk

)wk
×

(
1stconstraints′s

∑
w′s
)1stconstraints′s∑w′s

×

(
Lastconstraints′s

∑
w′s
)Lastconstraints′s∑w′s

For our problem, themultiobjective function can be expressed
as

k∏
q=0

∏
i∈j[q]

{(
ti
wi

)wi} k∏
q=1

∑
i∈j[q]

wi


∑
i∈j[q]

wi

Step II: The weighted equations for the GPP are given
below.
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In the objective function, the
∑
i∈j[o]

wi = 1 - Normality

condition and for each primal variable nh and mh2 having m
terms.
mk∑
i=1

{(wiforeachterm)×(exponentonnh and mh2inthatterm)}

= 0

- Orthogonality condition
and wi ≥ 0 -Positivity condition.
The step1 and step 2 can be used to solve the dual

problem (16) and the unique solution w∗0i to the dual con-
straints is obtained, which maximizes the objective function
of the dual problem. Then, the primal-dual relationship theo-
rem is applied to find the values of the SS of R (n∗h) and NR(
m∗h2

)
of the original problem.

Primal-Dual Relationship Theorem: If the dual problem is
maximized by the maximization point w∗0i and the optimal
SS of R and NR

(
n∗h and m

∗

h2

)
respectively are the minimiza-

tion points for the Primal GPP that satisfies the system of
equations:

f0j (n,mh2) =


w∗0iv (w

∗) , i ∈ J [0] ,
wij

vL
(
w∗0i
) , i ∈ J [L] ,

 (17)

where vL
(
w∗0i
)
> 0 for positive integers L.

IV. METHODOLOGY: FUZZY GEOMETRIC
PROGRAMMING APPROACH
A. THE STEPS OF SOLUTION PROCEDURE FOR PHASE-I,
IS AS FOLLOWS
Step-I: Select one of the objective functions amongst
f0j (n) , j = 1, 2, .., p and it can be solved as a FSOCP subject
to the constraints 13(ii) with the application of geometric
programming algorithm.Here the ideal solutions of the objec-
tive functions f01(n(1)), f02(n(2)), · · · , f0j(n(j)), · · · , f0p(n(p))
are (n(1)), (n(2)), · · · , (n(j)), · · · , (n(p)).
It is supposed that at least two of these ideal solutions

amongst f0j (n) , j = 1, 2, .., p are different and having dif-
ferent bound values. If the resulting values of all the optimal
solutions (n(1)) = (n(2)) = · · · = (n(j)) = · · · = (n(p)) are
identical, then stop and n∗ is the optimal solution.
If they are not identical, then go to step-II.
Step-II: All the p objective functions f0j (n) , j =

1, 2, .., p are evaluated having all the p ideal solutions
(n(1)), (n(2)), · · · , (n(j)), · · · , (n(p)).
Step-III: The pay-off matrix can be constructed with

all the p values of objective functions at p ideal solu-
tions, in which the best solutions are diagonal solutions but
off-diagonal solutions are the worst. We have the best value
Lj = Min

{
f ∗
0j
(n(j)), j = 1, 2, . . . , p

}
and worst value Uj =

Max
{
f0j(m(j)), j = 1, 2, · · · , p

}
such that Lj ≤ f0j (n) ≤

Uj, j = 1, 2, .., p.

FIGURE 1. Membership function for minimization variances problem.

Step-IV: The membership function µj
(
f0j (n)

)
for the jth

objective function can be defined as:

µj
(
f0j (n)

)
=



0,

if f0j (n) ≥ Uj
Uj (n)− f0j (n)
Uj (n)− Lj (n)

,

if Lj ≤ f0j (n) ≥ Uj,

1,

if f0j (n) ≤ Lj

j=1, 2, . . . , p

(18)

The membership function µj
(
f0j (n)

)
for phase –I, is shown

in the following graph.
Where Lj 6= Uj, j = 1, 2, .., p. If Lj = Uj then

µj
(
f0j (n)

)
= 1 may be defined for any value of j.

The membership functions µj
(
f0j (n)

)
, j = 1, 2, · · · , p

can be maximized subject to the constraints 13(ii)
and maxi-min operator is used to obtain the crisp
model.

The universal aggregation function for R can be written
as

µ
D̃
(n) = µ

D̃

{
µ1 (f01 (n)) , µ2 (f02 (n)) , . . . , µp

(
f0p (n)

)}
At phase-I, the FMOP for Respondents can be written as

Maxµ
D̃
(n)

Subject to
L∑
h=1

(ch1 + wh1ch11) nh ≤ Ĉ0,

nh ≥ 0 and h = 1, 2, · · · ,L.

 (19)

The max-addition operator given by [75] is applied to the
problem (19) for calculating the optimal values of R (n∗) for
the given model as:

MaxµD (n∗)=
p∑
j=1

µj
(
f0j (n)

)
=

p∑
j=1

Uj −
(
f0j (n)

)
Uj − Lj

Subject to
L∑
h=1

(ch1 + wh1ch11) nh ≤ Ĉ0;

0 ≤ µj
(
f0j (n)

)
≤ 1, nh ≥ 0

and h = 1, 2, · · · ,L.


(20)
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FIGURE 2. Membership function for minimization variances problem.

The problem (20) reduces to

MaxµD (n∗)

=

p∑
j=1

{
Uj

Uj − Lj
−

(
f0j (n)

)
Uj − Lj

}
Subject to
fq (n) ≤ 1; nh ≥ 0
and h = 1, 2, · · · ,L.


, j=1, 2, . . . , p.

(21)

where fq (n) =
L∑
h=1

(ch1+wh1ch11)
Ĉ0

nh

The minimum values of Foj(n) =
{
(f0j(n))
Uj−Lj

}
will maximize

the problem (21).
The standard primal form for fuzzy multiobjective prob-

lem (FMOP) for phase-I, can be defined as:

Min
p∑
j=0

Foj(n′)

Subjectt ofq
(
n′
)
≤1; and n′h≥0, h = 1, 2, · · · ,L.

 (22)

B. THE STEPS OF SOLUTION PROCEDURE FOR PHASE-II,
IS AS FOLLOWS
Step-I: Select one of the objective functions amongst
f0j (m) , j = 1, 2, .., p and it can be solved as a FSOCPP sub-
ject to the constraints 15(ii) with the application of geometric
programming algorithm.Here the ideal solutions of the objec-
tive function f01(m(1)), f02(m(2)), · · · , f0j(m(j)), · · · , f0p(m(p))
are (m(1)), (m(2)), · · · , (m(j)), · · · , (m(p)).
It is supposed that at least two of these ideal solutions

amongst f0j (m) , j = 1, 2, .., p are different and having dif-
ferent bound values. If the resulting values of all the optimal
solutions (m(1)) = (m(2)) = · · · = (m(j)) = · · · = (m(p)) are
identical, then stop and m∗ is the optimal solution. If they are
not identical, then go to step-II.

Step-II: All the p objective functions f0j (m) , j =
1, 2, .., p are evaluated having all the p ideal solutions
(m(1)), (m(2)), · · · , (m(j)), · · · , (m(p)).
Step-III: The pay-off matrix can be constructed with

all the p values of objective functions at p ideal solu-
tions, in which the best solutions are diagonal solutions but
off-diagonal solutions are the worst. We have the best value
Lj = Min

{
f ∗
0j
(m(j)), j = 1, 2, . . . , p

}
and worst value Uj =

Max
{
f0j(m(j)), j = 1, 2, · · · , p

}
such that Lj ≤ f0j (m) ≤

Uj, j = 1, 2, .., p.

Step-IV: The membership function µj
(
f0j (m)

)
for the jth

objective function can be defined as

µj
(
f0j (m)

)
=



0,
if f0j (m) ≥ Uj

Uj (m)− f0j (m)
Uj (m)− Lj (m)

,

if Lj ≤ f0j (m) ≥ Uj,
1,
if f0j (m) ≤ Lj

j=1, 2, . . . , p

(23)

The membership function µj
(
f0j (m)

)
for phase –II, is shown

in the following graph.
Where Lj 6= Uj, j = 1, 2, .., p. If Lj = Uj then

µj
(
f0j (m)

)
= 1 may be defined for any value of j.

The membership functions µj
(
f0j (m)

)
, j = 1, 2, · · · , p

can be maximized subject to the constraints 15(ii) and then
the crisp model can be obtained by maxi-min operator.

The universal aggregation function for NR can be written
as

µ
D̃
(m) = µ

D̃

{
µ1 (f01 (m)) , µ2 (f02 (m)) , . . . , µp

(
f0p (m)

)}
At phase-II, the FMOP for non-respondents can be written as

Maxµ
D̃
(m)

Subject to
L∑
h=1

ch12mh2 ≤ Ĉ ′0

and mh2 ≥ 0, h = 1, 2, · · · ,L

 (24)

The max-addition operator, given by [75] is applied to the
problem (24) for calculating the optimal values of NR (m∗)
for the given model as:

MaxµD
(
m∗h2

)
=

p∑
j=1

µj
(
f0j (mh2)

)
=

p∑
j=1

Uj −
(
f0j (mh2)

)
Uj − Lj

Subject to
L∑
h=1

ch12mh2 ≤ Ĉ ′0;

0 ≤ µj
(
f0j (mh2)

)
≤ 1,mh2 ≥ 0 and h = 1, 2, · · · ,L.


(25)

The problem (25) reduces to

MaxµD (m∗)

=

p∑
j=1

{
Uj

Uj − Lj
−

(
f0j (m)

)
Uj − Lj

}
Subjectto
fq (m) ≤ 1;m∗h2 ≥ 0
andh = 1, 2, · · · ,L.


, j = 1, 2, . . . , p.

(26)

where fq (m) =
L∑
h=1

ch12
Ĉ ′0
mh2
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TABLE 1. Data for four strata and two characteristics.

Theminimumvalues ofFoj(m) =
{
(f0j(m))
Uj−Lj

}
will maximize

the problem (26).
The standard primal form for FMOP for phase-II, can be

defined as

Min
p∑
j=0

Foj(m′)

Subject to fq
(
m′
)
≤ 1;

and m∗h2 ≥ 0, h = 1, 2, · · · ,L.

 (27)

where fq
(
n′
)
=

L∑
h=1

ch12
Ĉ ′0
m′h2

The dual form of the standard primal GPP for R and NR
can be given as:

Maxv(w) =
k∏

q=0

∏
i∈j[q]

{(
di
wi

)wi}
k∏

q=1

∑
i∈j[q]

wi


∑
i∈j[q]

wi

(i)

Subject
∑
i∈[0]

wi = 1(ii)

k∑
q=0

∑
i∈j[q]

pih wi = 0(iii)

wi ≥ 0, q = o, 1, · · · , k
and i = 1, 2, . . . ,mk (iv)



(28)

The primal-dual relationship theorem (17) can be used for
computing the optimal values of the SS of NR m∗h

V. NUMERICAL EXAMPLE
We have considered the data for given numerical from [7]
and [8] for the illustration of our proposed procedure. A pop-
ulation of size N = 3850 is divided into four strata.
The existing information is shown by Table: 1. Table: 2
show the R and NR groups, in which k = 1 for the R
group and k = 2 for the NR group. Now assume C =
3,000 units be the total sum existing for the survey. The
values of n′h = whn′; h = 1, 2, . . . ,L are obtained
as:

First of all, we solved the two sub-problems, for solving
FMOCPP by using fuzzy programming

TABLE 2. Subdivided data as R and NR groups for four strata with two
characteristics.

VI. ANALYSIS FOR THE RESPONDENTS AND
NON-RESPONDENTS
A. FOR PHASE-I, THE OPTIMUM ALLOCATIONS OF
RESPONDENTS CAN BE CALCULATED AS FOLLOWS
Sub problem1: By putting the values from given tables into
the sub-problem 1, we get the required equation as:

Min f01 =
676.53805

n1
+

374.83501
n2

+
272.05508

n3
+
288.54504

n4
Subject to
0.001263n1 + 0.001789n2 + 0.002105n3
+0.002421n4 ≤ 1;
nh ≥ 0 and h = 1, 2, . . . , 4


(29)

For the dual problem (30) of (29) is given as:

Maxv(w∗0i)=
(
(676.53805/w01)

w01
)

× ((374.83501/w02)
w02)

× ((272.05508/w03)
w03)

× ((288.54504/w04)
w04)×

((
0.001263
w11

)w11
)

×

((
0.001789
w12

)w12
)
×

((
0.002105
w13

)w13
)
×((

0.002421
w14

)w14
)
× ((w11 + w12 + w13 + w14)

∧(w11 + w12 + w13 + w14)); (i)
Subjectto
w01 + w02 + w03 + w04 = 1(normality condition) (ii)
−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0

 (orthogonality condition) (iii)

w01,w02,w03,w04,w11,w12,w13,w14 ≥ 0}
(positivity condition) (iv)


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(30)

The OC given in expression 30(iii) are calculated by using the
following payoff matrix:


−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1





w01
w02
w03
w04
w11
w12
w13
w14



=


−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0


DS will be obtained from dual problem (30) as:

w01 = 0.2771055,w02 = 0.2454836,w03 = 0.2268568,
w04 = 0.2505541 and v(w∗) = 11.12770.

The SS of R for phase-I, calculated by using equation (17)
from sub-problem-1, are as follows:

f0j (n) = w∗0iv
(
w∗0i
)

The values of n for SS of R are evaluated by using above
expressions as:

f01 (n) = w∗01v
(
w∗01

)
676.53805

n1
= 0.277105× 11.12770⇒ n1 ∼= 219

f02 (n) = w∗02v
(
w∗02

)
374.83501

n2
= 0.245483× 11.12770⇒ n2 ∼= 137

f03 (n) = w∗03v
(
w∗03

)
272.05508

n3
= 0.226856× 11.12770⇒ n3 ∼= 108

f04 (n) = w∗04v
(
w∗04

)
288.54504

n4
= 0.250554× 11.12770⇒ n4 ∼= 103

The values of objective function and SS of R are given as:
11.12770 and n∗1 = 219, n∗2 = 137, n∗3 = 108, n∗4 = 103.

Sub-problem 2: By putting the values from given tables
into the sub-problem 2, we get the required equation as:

Min f02 =
1077.13728

n1
+

447.33203
n2

+
131.54568

n3
+
330.56571

n4
Subject to
0.001263n1 + 0.001789n2 + 0.002105n3
+0.02421n4 ≤ 1;
nh ≥0 and h = 1, 2, . . . , 4


(31)

For the dual problem (32) of (31) is given as:

Maxv(w∗0i) =
(
(1077.13728/w01)

w01
)

× ((447.33203/w02)
w02)× ((131.54568/w03)

w03)

× ((330.56571/w04)
w04)×

((
0.001263
w11

)w11
)

×

((
0.001789
w12

)w12
)
×

((
0.002105
w13

)w13
)
×((

0.002421
w14

)w14
)
× ((w11 + w12 + w13 + w14)

∧(w11 + w12 + w13 + w14)); (i)
Subjectto
w01 + w02 + w03 + w04 = 1(normality condition) (ii)
−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0

 (orthogonality condition) (iii)

w01,w02,w03,w04,w11,w12,w13,w14 ≥ 0}
(positivity condition) (iv)


(32)

The OC given in expression 32(iii) are calculated by using the
following payoff matrix:


−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1





w01
w02
w03
w04
w11
w12
w13
w14



=


−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0


DS will be obtained from dual problem (32) as:

w01 = 0.3349945, w02 = 0.2569335, w03 = 0.1511349,

w04 = 0.2569371 and v(w∗) = 12.12269.

The values of objective function and SS of R are given as:
12.12269 and n∗1 = 265, n∗2 = 144, n∗3 = 72, n∗4 = 106.
For phase –I, the pay-off matrix is obtained as:

f01(n) f02(n)(
n(1)

)(
n(2)

) [ 11.12770 12.61102

11.65666 12.12269

]

The limiting values f01 (n) and f02 (n) using pay-off
matrix can be obtained as: 11.1277 ≤ f01 (n) ≤

11.65666 and 12.12269 ≤ f02 (n) ≤ 12.61102.
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FIGURE 3. Membership function for minimization variances problem.

FIGURE 4. Membership function for minimization variances problem.

Let the fuzzy membership function µ1 (n) and µ2 (n) for
f01 (n) and f02 (n) are defined respectively as:

µ1 (n) =



1,
if f01 (n) ≤ 11.12770

11.65666− f01 (n)
0.52896

,

if 11.12770 ≤ f01 (n) ≤ 11.65666
0,
if f01 (n) ≥ 11.65666

µ2 (n) =



1,
if f02 (n) ≤ 12.12269

12.61102− f02 (n)
0.48833

,

qif 12.12269 ≤ f02 (n) ≤ .
0,
if f02 (n) ≥ 12.61102

12.61102

The MOGPP is reduced to the crisp problem, with the
application of max-addition operator as:

Max (µ1 (n)+ µ2 (n))

i.e Max
{
47.8633−

(
f01 (n)
0.52896

+
f02 (n)
0.48833

)}
Subject to
0.001263n1 + 0.001789n2 + 0.002105n3
+0.02421n4 ≤ 1
nh ≥0 and nhare integers; h = 1, 2, . . . , 4.


(33)

For maximizing the problem (33),
(

f01(n)
0.52896 +

f02(n)
0.48833

)
is

to be minimized as follows:

Min
(
f01 (n)
0.52896

+
f02 (n)
0.48833

)
Subject to
0.001263n1 + 0.001789n2 + 0.002105n3
+0.02421n4 ≤ 1;
and nh ≥ 0, h = 1, 2, . . . , 4


(34)

For minimizing above problem, the new problem is as:

Min
{(

3484.7569
n1

+
1624.6721

n2

+
783.6994

n3
+

1222.4269
n4

)}
Subject to
0.001263n1 + 0.001789n2
+0.002105n3 + 0.02421n4 ≤ 1;
nh ≥0 and h = 1, 2, . . . , 4


(35)

Degree of Difficulty of the problem (35) is = (8-(4+1) =3.

Min =
3484.7569

n1
+

1624.6721
n2

+
783.6994

n3
+
1222.4269

n4
Subject to
0.001263n1 + 0.001789n2
+0.002105n3 + 0.02421n4 ≤ 1;
nh ≥0 and h = 1, 2, . . . , 4


(36)

For the dual problem (37) of (36) is given as:

Maxv(w∗0i) =
(
(3484.7569/w01)

w01
)

× ((1624.6721/w02)
w02)× ((783.6994/w03)

w03)

× ((1222.4269/w04)
w04)×

((
0.001263
w11

)w11
)

×

((
0.001789
w12

)w12
)
×

((
0.002105
w13

)w13
)
×((

0.002421
w14

)w14
)
× ((w11 + w12 + w13 + w14)

∧(w11 + w12 + w13 + w14)); (i)
Subjectto
w01 + w02 + w03 + w04 = 1(normality condition) (ii)
−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0

 (orthogonality condition) (iii)

w01,w02,w03,w04,w11,w12,w13,w14 ≥ 0}
(positivity condition) (iv)


(37)

The OC given in expression 37(iii) are calculated by using the
following payoff matrix:


−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1





w01
w02
w03
w04
w11
w12
w13
w14



=


−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0


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DS will be obtained from dual problem (37) as:
w01 = 0.3081774,w02 = 0.2504384,w03 =

0.1886747,w04 = 0.2527096 and v(w∗) = 46.34195. The
optimal values of objective function and SS of R are given
as: 46.34195 and n∗1 = 244, n∗2 = 140, n∗3 = 90, n∗4 = 104.

B. FOR PHASE II, THE OPTIMUM ALLOCATIONS OF
NON-RESPONDENTS CAN BE CALCULATED AS FOLLOWS
Sub problem1: By putting the values from given tables into
the sub-problem 1, we get the required equation (38) as:

Minf01 =
54.81089
m12

+
29.74633
m22

+
28.93946
m32

+
33.67489
m42

Subject to
0.008571n1 + 0.0114n2 + 0.014295n3
+0.01714n4 ≤ 1;
mh ≥0 and h = 1, 2, . . . , 4


(38)

For the dual problem (39) of (38) is given as:
Maxv(w∗0i) =

(
(54.81089/w01)w01

)
× ((29.74633/w02)

w02)× ((28.93946/w03)
w03)

× ((33.67489/w04)
w04)×

((
0.008571
w11

)w11
)

×

((
0.0114
w12

)w12
)
×

((
0.01429
w13

)w13
)
×((

0.01714
w14

)w14
)
× ((w11 + w12 + w13 + w14)

∧(w11 + w12 + w13 + w14)); (i)
Subjectto
w01 + w02 + w03 + w04 = 1(normality condition) (ii)
−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0

 (orthogonality condition) (iii)

w01,w02,w03,w04,w11,w12,w13,w14 ≥ 0}
(positivity condition) (iv)


(39)

The OC given in expression 39(iii) are calculated by using the
following payoff matrix:


−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1





w01
w02
w03
w04
w11
w12
w13
w14


=


−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0


DS will be obtained from dual problem (39) as:

w01 = 0.2566551, w02 = 0.2180569, w03 = 0.2408031,

w04 = 0.2844849 and v(w∗) = 7.131790.

FIGURE 5. Membership function for minimization variances problem.

FIGURE 6. Membership function for minimization variances problem.

Similarly, the values of the objective function and SS of
NR for phase-II, calculated by using equation (17) from sub-
problem-1, are as follows: 7.131790 andm∗1.12 = 30,m∗1.22 =
19,m∗1.32 = 17,m∗1.42 = 17.

Sub problem 2: By putting the values from given tables into
the sub-problem 2, we get the required equation as:

Min f02 =
73.845820

m12
+

33.747274
m22

+
15.13049
m32

+
43.04568
m42

Subject to
0.001263m12 + 0.001789m22
+0.002105m32 + 0.02421m42 ≤ 1;
mh2 ≥0 and h = 1, 2, . . . , 4


(40)

For the dual problem (41) of (40) is given as:

Maxv(w∗0i) =
(
(73.845820/w01)w01

)
× ((33.747274/w02)

w02)× ((15.13049/w03)
w03)

× ((43.04568/w04)
w04)×

((
0.008571
w11

)w11
)

×

((
0.0114
w12

)w12
)
×

((
0.01429
w13

)w13
)
×((

0.01714
w14

)w14
)
× ((w11 + w12 + w13 + w14)

∧(w11 + w12 + w13 + w14)); (i)
Subjectto
w01 + w02 + w03 + w04 = 1(normality condition) (ii)
−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0

 (orthogonality condition) (iii)

w01,w02,w03,w04,w11,w12,w13,w14 ≥ 0}
(positivity condition) (iv)


(41)

The OC given in expression 41(iii) are calculated by using the
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following payoff matrix:


−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1





w01
w02
w03
w04
w11
w12
w13
w14



=


−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0


DS will be obtained from dual problem (41) as: w01 =

0.2901044,w02 = 0.2258481,w03 = 0.1700048,w04 =

0.3140427 and v(w∗) = 7.481059.
The values of the objective function and SS of NR are

given as: 7.481059 and m∗2.12 = 34,m∗2.22 = 20,m∗2.32 =
12,m∗2.42 = 18.

For phase –II, the pay-off matrix is obtained as:

f01(m) f02(m)(
m(1)

)(
m(2)

) [ 7.131790 7.632457

7.38185 7.481059

]

The limiting values f01 (m) and f02 (m) using pay-off
matrix can be obtained as: 7.131790 ≤ f01 (m) ≤
7.38185 and 7.481059 ≤ f02 (m) ≤ 7.632457.
Let the fuzzy membership function µ1 (m) and µ2 (m) for

f01 (m) and f02 (m) are defined respectively as:

µ1 (m) =



1,

if f01 (m) ≤ 7.131790

7.38185− f01 (m)
0.25006

,

if 7.131790 ≤ f01 (m) ≤ 7.38185

0,

if f01 (m) ≥ 7.38185

µ2 (m) =



1,

if f02 (m) ≤ 7.481059

7.632457− f02 (m)
0.15140

,

if 7.481059 ≤ f02 (m) ≤ .

0,

if f02 (m) ≥ 7.632457

7.632457

The final primal MOCPP for phase II can be obtained by
using max-addition operator as described in phase I is as:

Min =
704.5716
m12

+
340.0430
m22

+
215.6658
m32

+
418.9826
m42

Subject to
0.008571n1 + 0.0114n2 + 0.014295n3
+0.01714n4 ≤ 1;
mh ≥0 and h = 1, 2, . . . , 4


(42)

Dual of the final Primal problem for phase II:

Max v(w∗0i) =
(
(704.5716/w01)w01

)
× ((340.0430/w02)

w02)× ((215.6658/w03)
w03)

× ((418.9826/w04)
w04)×

((
0.008571
w11

)w11
)

×

((
0.0114
w12

)w12
)
×

((
0.01429
w13

)w13
)
×((

0.01714
w14

)w14
)
× ((w11 + w12 + w13 + w14)

∧(w11 + w12 + w13 + w14)); (i)
Subject to
w01 + w02 + w03 + w04 = 1(normality condition) (ii)
−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0

 (orthogonality condition) (iii)

w01,w02,w03,w04,w11,w12,w13,w14 ≥ 0}
(positivity condition) (iv)


(43)

The OC given in expression 43(iii) are calculated by using the
following payoff matrix:


−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1





w01
w02
w03
w04
w11
w12
w13
w14



=


−w01 + w11 = 0
−w02 + w12 = 0
−w03 + w13 = 0
−w04 + w14 = 0


DS will be obtained from dual problem (43) as: w01 =

0.2773898,w02 = 0.2222447,w03 = 0.1981613,w04 =

0.30220427 and v(w∗) = 78.48303.
The optimal values of objective function and SS of NR

are obtained as follows: 78.48303 and m∗2.12 = 32,m∗2.22 =
19,m∗2.32 = 14,m∗2.42 = 18

VII. CONCLUSION
In this paper we have considered double sampling problem in
the presence of non-response which is formulated as Fuzzy
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Multiobjective Convex Programming Problem (FMOCPP).
The formulated problem was very complicated and diffi-
cult to solve by general methods. The membership function
was applied for converting the FMOCPP into Fuzzy Single
Objective Convex Problem (FSOCP). We have used Fuzzy
Geometric Programming Approach to solve FSOCP. There
are many optimization softwares, now available for solving
optimization problems, but we have used LINGO Software
for solving FSOCP to get the dual solutions. We have used
dual solutions and primal-dual relationship theorem to get
optimum allocations of SS of R and NR. The given procedure
is illustrated by a numerical problem. We have used the same
problem as taken by [16], they have formulated their problem
as a multiobjective programming problem and used goal pro-
gramming to obtain the solution.We have also formulated the
same problem and Fuzzy Geometric Programming Approach
has been used to solve the same problem, the result is same
as calculated by [16]. Thus, the projected method can be used
for solving other complex problems.
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