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ABSTRACT Small sample dataset and two-dimensional (2D) approach are challenges to vision-based
abnormal gait behaviour recognition (AGBR). The lack of three-dimensional (3D) structure of the human
body causes 2D based methods to be limited in abnormal gait virtual sample generation (VSG). In this paper,
3D AGBR based on VSG and multi-set canonical correlation analysis (3D-AGRBMCCA) is proposed. First,
the unstructured point cloud data of gait are obtained by using a structured light sensor. A 3D parametric
body model is then deformed to fit the point cloud data, both in shape and posture. The features of point cloud
data are then converted to a high-level structured representation of the body. The parametric body model is
used for VSG based on the estimated body pose and shape data. Symmetry virtual samples, pose-perturbation
virtual samples and various body-shape virtual samples with multi-views are generated to extend the training
samples. The spatial-temporal features of the abnormal gait behaviour from different views, body pose and
shape parameters are then extracted by convolutional neural network based Long Short-Term Memory model
network. These are projected onto a uniform pattern space using deep learning based multi-set canonical
correlation analysis. Experiments on four publicly available datasets show the proposed system performs
well under various conditions.

INDEX TERMS 3D body modelling, abnormal gait behaviour recognition, long short-term memory model,

multi-set canonical correlation analysis.

I. INTRODUCTION

Gait refers to the periodic movements of the human feet
and legs, with different body shapes when walking. It can
be used to identify the human subject, analyze pedestrian
behaviour, and diagnose gait-related health problems [1]-[3].
Abnormal gait behaviour recognition (AGBR) has important
research values, e.g., for real time prevention of accidental
fall among elderly subjects, predicting signs of gait-related
illness for unhealthy subjects, medical diagnosis, and reha-
bilitative evaluation. Approaches to AGBR can either be
based on vision data (i.e., videos or static images) or signal
from a wearable physiological sensor. The latter requires
the subjects’ cooperation and is not suitable for continuous
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long-term monitoring of subjects with gait-related illnesses
or in an elderly home. Furthermore, accurate 3-dimensional
(3D) wearable motion analysis systems are usually expensive
and more commonly installed in a laboratory environment
equipped with numerous motion sensors and plantar pres-
sure sensors. The paper [4] compared a passive vision-based
system and a wearable inertial-based system for estimating
temporal gait parameters and concludes that low-cost vision-
based gait analysis is possible for real-world applications.
The use of 2-dimensional (2D) images for AGBR is intu-
itive and easy to implement. However, since gait is performed
in 3D space, the robustness of a 2D detection model is lim-
ited when the camera view changes significantly due to the
lack of depth information in 2D gait images. Furthermore,
regardless of 2D or 3D system, another important problem
with real-world applications is the lack of large abnormal
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gait dataset. In particular, when compared with the data of
thousands of subjects used in biometrics analysis (i.e., face
datasets, normal gait datasets, and fingerprint databases) 3D
abnormal gait datasets are small and rare. This is partly
because 3D abnormal gait behaviour data are difficult to
create and rely on professional actors to act out. There are
numerous approaches to AGBR, i.e., machine learning, statis-
tical and pattern recognition. Most approaches perform well
with sufficient training samples, i.e., it is important to address
the small sample set (SSS) issues. In this paper, a different
approach based on virtual sample generation (VSG) is pro-
posed to achieve 3D AGBR against the SSS problem. The
system could be used in continuous monitoring and classifi-
cation of different abnormal gaits. In order to deal with SSS
issues, virtual samples are generated using 3D parametric
model to extend the training dataset.

AGBR can be influenced by various conditions, i.e. varia-
tions in viewing angle and body shape, and individual dif-
ferences. The same abnormal gait features under different
conditions are very different in low-level feature space, e.g.,
the appearances of the same subject at views 0° and 90°.
However, they are related in the high-level pattern space. Like
canonical correlation analysis (CCA), a pair of projection
vectors can be determined to transform the two sets of abnor-
mal gait features to a new subspace by correlation analysis.
Unlike CCA, it is necessary for our recognition method to
analyze the relationships for more than two sets, i.e., multi-set
canonical correlation analysis (MCCA). However, MCCA
determines the linear relationships among different vector
sets and cannot flexibly focus on temporal feature represen-
tation. The feature representation process and the correlation
analysis are independent from each other. To address these
shortcomings, an end to end uniform spatial-temporal deep
network based on MCCA is proposed to gain better perfor-
mances under different variations.

The novel contributions of this paper are as follows. First,
we propose a 3D human similarity measuring function based
on body contour and key body joints, with penalty items
based on a priori knowledge on human body shape and
pose. The function helps morph the standard parametric 3D
body model to fit the unstructured point cloud body data
as reasonably and efficiently. Second, an asymmetric pose-
perturbation virtual body sample generation method is pro-
posed which is based on generative adversarial nets and the
information-expanded function via triangular membership
(TMIE). Third, anovel MCCA based Long Short-Term Mem-
ory model (LSTM) Deep Network (MCCA-DNet) is inves-
tigated for better performance of AGBR. We transform the
traditional numerical solving method of MCCA to the deep
learning problem by minimizing the corresponding loss func-
tion, using GPUs to accelerate the learning. MCCA-DNet
projects the multi-set abnormal gait features into a uniform
pattern space against various abnormal behaviour conditions,
i.e., viewing angles and body shape of individuals.

The rest of this paper is organized as follows. Section II
presents the related work. Section III presents the method
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for estimating 3D abnormal gait model from point cloud
data. Section IV presents the virtual abnormal gait sample
generation. Section V presents the spatial-temporal deep net-
work based on MCCA. Section VI presents and discusses the
experimental results. Finally, Section X concludes the paper.

Il. RELATED WORK

2D colour surveillance cameras are commonly used to ana-
lyze abnormal gait behaviour. Gridded binary 2D gait con-
tour and support vector machine (SVM) are used in [5] to
classify abnormal gait, i.e., swaying and falling gait, of seven
normal subjects. In [6] abnormal gait features are represented
and classified by using optical flow graphs of gait contour.
Six gait behaviours of one subject, and five styles of patholog-
ical gait performed by a professional actor are collected. A 2D
video-based gait assessment system for clinical use is inves-
tigated in [7]. The system comprises a walkway grid mat,
flat paper bull’s eye markers, four photo switches, a light-
indicator, a video camera, and a computer. Twelve young and
healthy subjects are used as subjects. A 2D vision-based nor-
mal and abnormal gait behaviour classification system that
analyses foot movements is proposed in [8], where 2D body
silhouette segmentation locates the position of toe and heel
points of both feet. The abnormal gait classification exper-
iment was performed on a dataset comprising 30 subjects
with half normal gait and half abnormal gait. Only lateral 90°
abnormal gait data are captured. A low-cost 2D gait analysis
using a webcam is evaluated in [9], using intraclass correla-
tion coefficients and minimal detectable change values. The
dataset used consists of twenty-one healthy subjects walking
on a treadmill. A vision-based gait impairment analysis sys-
tem for aided diagnosis in [10] uses the INIT gait database
which includes sequences of binary silhouettes of ten healthy
subjects performing seven abnormal gait styles. A markerless
2D video system based on segmented gait silhouettes to
estimate the temporal gait feature is proposed in [11].

Most 2D abnormal gait analysis systems analyze 2D binary
silhouettes. Thus, bad segmented silhouettes significantly
hamper the system performance. Also, most of the exper-
iments were conducted at lateral view only, i.e., not under
real-world conditions. Therefore, a system which uses depth
camera for human behaviour recognition and a method of
extracting human motion energy features via supernormal
vectors is proposed in [12]. The use of a filter to obtain
local spatial-temporal features in video, and a measure of
similarity features of deep cuboids, are applied to behaviour
detection in [13]. The Kinect sensor is used in [14] to provide
the joints angle of human body, and the location of ankles
and centre of feet, thus giving more accurate gait parameters
whilst walking on a treadmill. However, the sensor cannot
provide the locations of heels and toes that are required in
gait analysis. Furthermore, the output data is noisy.

Most abnormal gait analysis methods can perform well
if sufficient training samples are given, especially those
involving data-driven deep learning methods, i.e., convo-
lutional neural network (CNN). More data usually mean
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more information and intrinsic characteristics, which aid
the classifier to achieve higher learning rate [15]. However,
large-size datasets are sometimes not available due to some
reasons. Thus, some research has been undertaken to address
the SSS problem, especially in manufacturing, i.e., building
forecast model from scarce samples [16], [17]. In face
recognition, the works in [18]-[20] tackle the SSS issues
by using face expression recognition theory, regularization
approach or virtual faces generation method. Methods to
address the SSS problem can be grouped into three categories:
gray forecasting model, VSG and feature extraction. Gray
forecasting model focuses on population estimation [17],
energy consumption [21], and quality control of manufac-
turing system [16]. The dimension of the data is usually
limited and not suitable for high dimensional estimation, e.g.,
image estimation. VSG is most popular in face recognition.
By extending the dataset using virtual samples, the problem
of insufficient training samples is overcome to a certain
degree. VSG can be achieved using a priori knowledge of
the task to extend the samples and adding noise to the current
data. In biometrics research, the structure of human body or
face is usually used as a priori knowledge, i.e., use mirror face
and face symmetry to enlarge the normal face data. Feature
extraction uses dimension deduction theory or subset feature
selection to choose the intrinsic features of the subjects (i.e.,
view-invariant face features), and face expression recognition
theory [18]. Different methods have their advantages and
disadvantages, and in this paper, we combine the advantages
of existing methods for abnormal gait behaviour recognition,
i.e., VSG and feature-level MCCA.

CCA is a well-known algorithm for determining the cor-
relation between two sets of variables, and it is usually used
in feature extraction and fusion [22]. The traditional CCA
is usually introduced to extract the related features from
only two sets of variables for biometric recognition. In [23],
a sparse tensor canonical correlation analysis (ST-CCA) is
proposed for colour face recognition. In the multi-view gait
recognition in [24], two sets of high-dimensional vectors
under different views are analyzed by complete CCA (C3A).
However, it is still a challenge to find the intrinsic correlation
of multiple biometric features, i.e., more than two sets, due
to the computational complexity of high-dimensional corre-
lation matrix. Thus, MCCA was introduced for more than
two sets of multitemporal remote sensing data [25]. A linear
discriminant multi-set canonical correlations analysis
(LDMCCA) is used for fusion of finger biometrics: finger
vein, fingerprint and finger shape.

The traditional biometric features are usually static repre-
sentations, and are thus not appropriate for spatial-temporal
feature representation. The feature extraction from original
data and the canonical correlation analysis are separated, i.e.,
not in a uniform model. As a result, they and the classification
cannot combine well to address the MCCA problem. In order
to do so, an end to end MCCA based spatial-temporal deep
network (MCCA-DNet) is proposed in this paper to achieve
better recognition against different variations. Compared with
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traditional MCCA, the multiple high-dimensional correla-
tion projected matrix is not directly computed using general
singular generalized eigensystem. Instead, a fully connected
network is used for its implicit representation and is trained
with our MCCA-DNet which exploits both deep learning
network and MCCA theory.

Ill. ESTIMATING 3D PARAMETRIC ABNORMAL GAIT
MODEL FROM POINT CLOUD DATA
Most of the publicly available databases used for gait research
are captured by 2D cameras. However, the accuracy in using
2D data to construct 3D model is usually low. Thus, more and
more researches use point cloud data with depth information
to realize 3D object modelling [27]. The depth information
enables the original motion data to be obtained, which aids
the extraction of features that can distinguish similar actions
and behaviours, and addresses the problem of view change.
In order to overcome the limitation of 2D-vision based
abnormal gait recognition in VSG and to exploit a priori
knowledge (i.e., structure of human body), the parametric
3D body model with embedded skeleton is introduced in this
paper for pose and shape morphing. The body point cloud
data are used as deformed observations that guide the stan-
dard parametric 3D to morph correctly to the real data by min-
imizing a similarity matching function. Point cloud data can
be easily obtained by 3D depth sensors, e.g., Microsoft Kinect
camera. Let Iygpin = {(x, ¥, d(x,y)) . x € [1.M],y € [1.N]}
denote the M x N depth image from the camera.d(, y) is
the depth value of pixel (x, y). The world coordinates of 3D
point cloud data are calculated using the Kinect geometrical
model [28]

xyz]’ = K '[x+ugy+vo l]T,k), )

1
c1d + ¢p

where d is depth value, ¢; and ¢y are parameters of the
model, up and vg are respectively the shifted parameters of IR
structural image and depth images, dis is distortion function,
k is distortion parameter of the Kinect camera, and K is the
IR camera calibration matrix.

The point cloud data of the body are its 3D voxel repre-
sentation. The data is unstructured and greatly influences the
representation of the 3D shape and posture. In order to exploit
the body structure as a priori knowledge, we introduce a 3D
parametric body learned from the 3D body dataset using a sta-
tistical method. The parameterized body model refers to the
description and construction of the corresponding body mesh
via abstract high-order semantic features (e.g., height, weight,
age, gender, skeleton joints, etc.). The parameters involved
are based on statistical learning methods. The skeleton of the
body is embedded in the model and the 3D parametric model
can be deformed both in shape and pose.

As shown in Fig. 1, a standard parametric body model
with CMU mocap motion skeleton embedded is introduced
for shape and pose morphing, and all the semantic related
deformation are conducted directly on this template. The ini-
tial template model can be learned from the 3D body dataset
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FIGURE 1. Standard parametric body model with I pose: (a) & (b) 3D gait
model at front and lateral view (c) display of embedded implicit skeleton;
(d) corresponding structured point cloud data; and (e) CMU mocap
motion skeleton.

and constructed by principal component analysis, data-driven
method or other statistical algorithms. In this paper, no more
attention is paid to the construction and training of 3D para-
metric gait model as numerous works have been done and
published in our papers [29], [30].

For simplification we define the deformation function as
Fe (+), and the 3D model ¥ with pose parameter r and shape
parameter 8 represented by

Y =Fae (r, ) =P(r)-S (B) - Xsuas )

where X4 is the standard 3D body model. P (r) denotes
the pose deformation with joint input parameters r € RV,
where N, defines the number of joints parameters, and
S (B) defines the shape deformation with shape parameters
B € RYs, where Ny denotes the number of shape parameters.
These two relatively independent deformation parame-
ters, i.e., pose and shape deformation, are trained separately.
After the training with 3D standard parametric model via
3D body dataset, the corresponding deformable function is
obtained by setting the semantic values of body shape and
pose. The body shape semantic parameters used in this paper
is shown in Table 1 based on our previous work in [29].
The joints parameters with three degrees of freedom for pose
representation are based on the CMU mocap motion skeleton
as shown in Fig. 1(g).

TABLE 1. Semantic parameters of the human body shape.

Category Parameters Category Parameters

Global Gender Legs Leg length
Height Leg thickness
Weight Torso Torso deep

Head Head size Breast size

Arms Arm length Stomach size
Arm thickness Hip size

Unlike the traditional methods that directly model the 3D
body from point cloud data using point cloud reduction algo-
rithm and triangular mesh grid method, the 3D parameterized
body model is morphed to fit the point cloud data both in
shape and posture. An observation function that measures
the similarity of the deformed 3D model and the point cloud
data of the human body is proposed. It helps to correctly
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deform the 3D body using an iterative process that minimizes
the observation function. Based on the 3D model estimation,
the features of point cloud data of the body are finally con-
verted to high-level structured representation. This process
not only abstracts the unstructured data to high-order seman-
tic description, but also effectively completes the dimension-
ality reduction of the original data.

Let? 1‘,’ be the point cloud data captured by the depth sensor
at view «. After background subtraction and normalization,
they are projected from world coordinate onto the x-y plane
with depth information and denoted by P,. As illustrated
in Fig. 2, different grey shades indicate the various depth
values. The standard 3D body model X, with pose r, and
body shape By is denoted by f/,] = P (r,,) - S (Bswa) -
Xga. Its corresponding projected depth image at view « is
To (}’n, ,Bstd)-

© @ @ © ® ©

FIGURE 2. (a) & (b) respectively show the 0° and 90° projected depth
images of point cloud data captured by Kinect; (c), (d) & (e) respectively
show the standard | pose parametric body model, its skeleton structure
and point cloud projected depth image; (f) morphed parametric 3D model
according to point cloud data (b); and (g) point cloud projected depth
image of (f).

To morph the standard parametric 3D body model to fit
the body in the point cloud data, the similarity measuring
function based on contour and joints matching,

o= I (T . ) = Di (Po) 3

D DA VSR TR SRC)

is used, where D; () is the depth value extraction function
from the ith pixel in the given depth image. The M and N are
respectively the height and width of the normalized image.
P, denotes projected depth images of point cloud data at
view «, and Y, is the 3D model projected depth image at the
same view after 3D rotation transformation. J fim (+) denotes
the kth key joints data of the human body estimated from
the corresponding point cloud depth image. We use the joints
estimated algorithm based on single depth image [31], and
several key joints are chosen in Eqn. (3), i.e., head, neck,
shoulder, elbow, wrist, chest, hip, knee and ankle. Therefore,
guided by the extracted body contour of point cloud data
and the locations of key joints, the optimization problem is
solved by minimizing the contour and key joints similarities
as shown in Fig. 3, i.e., arg minL, for optimal (r, 8). The
optimal pose and shape semantics parameters are respectively
represented by 7, and B, and the corresponding morphed
3D model is Yp; = P (rop,) - S (ﬁop,) - Xstd -
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FIGURE 3. lllustration of 3D parametric abnormal gait model estimation.

Morphing a standard 3D parametric body model to fit a 2D
body image or unstructured 3D point cloud data is a difficult
and time-consuming task. Especially if the initial standard I
pose is dissimilar from the target real posture, the result
may not be the global optimum or not even resembling the
structure of the body. To tackle this problem, a group of 3D
gait and common action models with different postures are
constructed based on our knowledge, i.e., normal walk, jog,
bend, sitting down, wave, clap, kick, throw, etc. Some of the
postures are illustrated in Fig. 4, and the base posture dataset
of 3D gait or action related models are extensible according
to the real application tasks.

2 £ 8
by

(@) ®) © ()

FIGURE 4. Some body postures: (a) walk (b) kick forward (c) kick sideway
(d) sit down (e) bend and (f) clap.

Before morphing the 3D parametric model according to
Eq. 3, the most similar 3D model is chosen based on the
silhouettes from the base posture dataset using the method
in our previous work [29]. It is set as an initial pose with
standard shape parameters, which greatly helps speed up the
morphing process. To make the pose estimation results more
reasonable, an extra penalty item is added, i.e.,

Ly =Ly + Zje[l]] rulej(r) + ZZE[IL] ?Mlel(ﬁ) “

where Rppse = {rulej[j el[lJ ]} denotes a set of rules about
joints with J items, and Rape = {Fuie;|! € [1 L]} denotes
a set of rules about body shape with L items. The rule item
function ry.(-) inputs the current joints data r or shape data
to check for any violation of the current rule. It returns a large
positive value when the joints data violate the rule, and zero
otherwise.

Since the physical variables of body shape and pose are
related to each other, i.e., length of head is about 1/8 of
height [32], and weight is highly related to height and can
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be estimated using Body Mass Index (BMI) [33]. These are
useful knowledge for controlling the body deformation and
reducing the required computation. As for pose data, the con-
straints for the maximum or delta ranges of joints are added
with an appropriate initial pose. The conditions for normal
walking movement also aid to speed up the deformation.

IV. VIRTUAL ABNORMAL GAIT SAMPLE GENERATION
normal gait data can easily be obtained using monitoring
cameras that are fixed in viewing angles. However, abnormal
gait data are usually acted out by healthy subjects. Therefore,
the size and the ground truth of the abnormal database are
limited. If there are insufficient samples for training, then
both the recognition accuracy and generalization ability of
an agbr system are greatly curtailed, especially in unknown
environments. In order to address this problem, we generated
three types of samples, i.e., symmetrical virtual samples,
various body-shape virtual samples and pose-perturbation
virtual samples. The virtual samples aid in providing missing
information among the available samples in order to improve
the recognition performance.

A. GENERATING SYMMETRICAL VIRTUAL SAMPLES

The symmetry of the human body structure is widely used in
synthesizing 2D or 3D mirror objects, i.e., 2D mirror faces,
and 3D face reconstruction with mirror features. The symme-
try is used as a priori knowledge to perform 3D reconstruction
with missing data. However, there is little research that uses
this property for VSG of 3D gait. This is partly because most
of the 3D body data captured by 3D cameras or body scanning
system are not normalized or unstructured. Noise, missing
data and redundant information also make it difficult to use
symmetry to synthesize gait-related body parts. In this paper,
we introduce parametric 3D body model to alleviate these
problems due to the structured body data being controlled by
semantic parameters.

Most methods assume the face or body structures are sym-
metric. Some methods add noise in the symmetrical VSG in
order to address the asymmetry of the human body. It is useful
to introduce some noise to simulate the difference (caused by
body asymmetry) between the left and the right regions of
a body. However, it is not reasonable because the difference
may be large for subjects with leg problems. In order to alle-
viate the problems due to asymmetry, the Extremely Learning
Machine (ELM) model [34] is used to predict the symmetric
data of abnormal gait based on semantic parameters derived
from real samples, i.e., body shape and pose parameters.

ELM is capable of randomly assigning its input weights
and biases, with its output weights determined by the
least-squares method. These characteristics enable ELM to
learn faster and better at generalization than single-hidden
layer feedforward neural networks and SVM that are based
on gradient descent. The ELM model must be trained using
some real abnormal gait data. First, the training semantic
data, i.e., body shape and pose parameters, and its ground-
truth-predicted-symmetric data should be set. In this paper,
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the similar abnormal gaits derived from different left or right
part of the body are divided into two groups according to their
region parts, i.e., the left leg limping and the right leg limping.
By estimating their 3D parametric body model from point
cloud data, they are denoted by the semantic parameters, i.e.,
shape and pose parameters. Let X! = {x,f|k e [1...K]}
denote the left-body-part-related abnormal gait data where
xf = [rf, ﬁ,{‘]T = [xf. x5, .. .x,fn]T € R rf are the
pose parameters of the kth 3D model sample in left-related
dataset and ,3,5 are its body shape parameters. Let X% =
{x,f [k € [1...K]} denote the corresponding right-body-

part-related abnormal gait data where xf = [rf, ,Bf]T =

EATE A .x,’;]T € R". Let the input of the ELM model

be x,f and the output with M hidden nodes is

M
=" umg (Wm xp+ bm) : )
m=1
where g (x) denotes the activating function and - is the inner
product operator. Rewriting Eq. (5) in matrix form gives

g(wl-le+b1)-~-g(wM-x1L+bM)
XR=Hu =
g(w1-xllg+b1)~-~g(wM-x,Ig—|—bM)
1
x| ... |, (6)
“m

where H is the hidden layer matrix, wy, = [wp1, ..., wunl®,
and wy,, respectively denote the coefficients that connect
and weight the input neurons and the mrh hidden neuron.
Um = [mls .-, wan]? denotes the vector that connects
the mth hidden neuron and the output neurons. tanhx =
(" —e™) /(" + e) is chosen as the activating function
for g (x). For ELM, the input weights w,, and the biases b,, are
fixed before training. The model parameters u that need to be
learned are determined using the least squares optimization

; )

L = argmin HHM — xR
m

where ||-|| is the L, norm. The optimal solution for the sin-
gle hidden layer neural network is transformed to solve the
problem of the linear system [34]

fi=HXE, 8)

where HT is the Moore-Penrose generalized inverse of H, and
the parameters {1 are uniquely determined by the given train-
ing samples. In real-world applications, the left-part abnormal
gait data are used to predict its symmetric right-part data.
Also, if the right-part-related data are given, the correspond-
ing left symmetric data can be predicted. This only needs
to train the ELM model with two different datasets whose
inputs and outputs are symmetrically opposite, i.e., (X%, X%)
and (XL, X®). The ELM model learns both symmetric and
asymmetric information of abnormal gait, and performs bet-
ter in VSG than noise-added methods. Fig. 5 illustrates the
generation of the virtual symmetric pose from real samples.
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FIGURE 5. (a), (c) and (e) are original pose; and (b), (d) and (f) are
respectively he generated symmetrical poses of (a), (c) and (e).

B. GENERATING ASYMMETRIC POSE-PERTURBATION
VIRTUAL BODY SAMPLES

To recap, the ELM model is used to predict the symmetric
virtual model, and the multi-dimension Gaussian distribution
function is fitted for generating various body-shape virtual
samples. Unlike the body shape parameters that are more
likely to obey the Gaussian distribution in parametric 3D
body models, the estimated parameters of 3D pose corre-
sponding to different abnormal gaits may be bias distributed.
The pose data derived from a small sample size may differ
from the Gaussian probability distribution. Thus, variations
in real-world abnormal gait conditions present a challenge to
ABGR. To learn the data tendency in SSS tasks is important
for VSG. The Gaussian based method can be used to generate
the virtual pose data, but how to determine the mean and the
standard error of Gaussian distribution is difficult in small
dataset.

In this paper, TMIE [17] is introduced to determine
the acceptable range of asymmetric perturbation for abnor-
mal pose data. The conditional generative adversarial
nets (CGAN) is used to train the conditional generative model
for generating the data according to both the classification
label and given perturbation. TMIE is derived from mega-
trend diffusion (MTD) [35] and aims at estimating data ten-
dency. Unlike single virtual surface data generation, ABGR is
based on sequence data. The generated virtual gait data must
also be sequence data that can determine a classification label.

Let X = {x{lk € [1...K],c € [1...C]} denote the
K sequential observation samples of 3D abnormal gait, c is
the classification label and x{ = [r}, ..., ., r,f]T €
RL*No  where r,i = [r,i oo r,i’n, . r,i’N ]T € RM is the
joints parameter vector with N, data of the [th frame belong-
ing to kth sequential observation sample. L is the maximum
number of frames in a gait cycle for feature extraction and
classification. In pose VSG, the body shape parameters are
kept fixed and denoted by By € RM:. Let Dé’n = {rl,
k € R.} be the pose perturbation dataset related to the nth
joint parameter data belonging to the /th frames of samples
with class label c. R, defines a set of sample index of the
same class c.The centre point of Di’n is calculated as Ucp =
]% > keR. r,i’ , Where N, denotes the total number of samples
in class c. The lower bound (Lp) and the upper bound (Up)
for the asymmetric domain range of ch,n are given by [17]

1
Lg =Ucp — — X (Ucp — Upnin)
fU
Up =Ucp + 5, X (Upax — Ucp) , 9
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where Sy = Ny /(Np +Ny +5p), Sp. = N/(Np +Ny +sp),
and U,,in(Ujpay) 1s the minimum (maximum) of the observa-
tion value in ch’n. Ny denotes the number of observations
larger than Ucp, Ny, is the smaller number and s, denotes
the adjusting coefficient. The fuzzy triangular probability
function is illustrated in Fig. 6 and mathematically expressed
as

(x —Lp)/(Ucp — L), Lg <x =< Ucp

F(x) = {(WUp —x)/(Up—Ucp), Ucp <x=<Up (10)
0, otherwise.
A
P(xy)
o Data

/ > s
LB Dmin UCP Umax UB "~

Expanded range

Expanded range

FIGURE 6. Possibility distribution of X by a probability function.

By using TMIE method to all pose perturbation data Di, o
the acceptable domain ranges of asymmetric perturbation for
the detailed joints parameters of abnormal gaits are expanded
based on their associated class and frame position. The next
step is to train CGAN and obtain the generative model.
CGAN is based on generative adversarial nets (GAN) [36],
which is composed of two adversarial models: a generative
model G and a discriminative model D. The model G concen-
trates on learning the data distribution, and the model D tries
to distinguish a sample from the training data rather than G.
CGAN tries to add the a priori knowledge feeding y,, to both
models G and D as an additional information. The CGAN
model is

minmax V (D, G) = Ex~p,,.(x) [logD (x|ypr)]
+E~p.»llog(1 — D(G(zlypr))],  (11)

where x is training data, z is noise data that obeys the distribu-
tion p;, (z) , and y is auxiliary information. The abnormal gait
class labels and the perturbations between the observation
data and their mean are chosen as the additional information
for training the CGAN model.

A multi-layer perceptron is used to construct the gener-
ative model G and the discriminative model D as shown
in Fig. 7. The dimension of input x is determined by the
maximum frame number L used for classification and the
pose parameter vector r. L is fixed to 20 and the pose
joints data are based on CMU mocap motion skeleton, i.e.,
15 joints with 45 parameters are chosen for VSG. The
input x dimension is 900 and the noise data z (derived
from a uniform distribution) is set as 100 dimensions. The
abnormal gait class labels are encoded as one-hot vectors,
i.e., 10 dimensions, and denoted by O°. Let AX = {Ax;|k €
[1...K]} define a set of corresponding perturbation vector
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FIGURE 7. The a priori knowledge-based generative adversarial nets.

based on the sequential observation sample set X, Ax; =

T
[lf(x;), L ISGO), Ig(x;)] € RENDX1 and [€(x$) =

e, (r,i’l) G gr,il) co iy ()1 € RPN ()
is the indication function which divides the perturbations of
the nth joint parameter in the /th frame with label c into the
following levels:

=3, Lg <x< U,

=2, Unin <x < (Upin +Ucp)/2

=1, (Unin+Ucp)/2 <x < Ucp

1, Ucp <x < (Unax + Ucp)/2
2, Umax +Ucp)/2 < x < Upax
3, Ucp <x < Up

I(x) = (12)

The conditional input is denoted by y,, = [Ax; O°]. After
training the CGAN model, the virtual sequential samples data
Xor = G(2ly) = {x},,x2, ..., xL} are generated by setting
the noise data z and the a priori knowledge data y,,. The new
virtual abnormal gait are then generated using the parametric
model Y = Fy, (xér, ﬂk) = P(rér) - S (,Bﬁx) - Xga, Where
I e [1 L] and Bi denotes the body shape parameters of
kth sequential observation sample.

Fig. 8 illustrates some virtual abnormal gait samples of
pose perturbation. Each pose-perturbation level according
to Eq. 12 has its corresponding meaning, i.e., =3-medium
perturbation, =2-small perturbation, and £1-very small per-
turbation. The pose pose-perturbations level is specially for
VSG samples.

M

FIGURE 8. Synthetized pose-perturbation virtual samples: (a) original
3D body model; and (b)-(f) pose-perturbation virtual samples generated
from (a).

C. GENERATING VARIOUS BODY-SHAPE VIRTUAL
SAMPLES WITH MULTI-VIEWS

The human body shape varies, i.e., fat or slim, tall or short.
However, in real-world applications, it is impractical to col-
lect all the 3D abnormal gait models with various shapes,
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especially when facing the SSS problem. 3D voxel body
model with unstructured point cloud data is limited in body
shape deformation. But the parametric 3D body model can
be morphed to synthesize different shapes, e.g., from adult
body to infant body. This advantage is exploited in 3D VSG
with a priori knowledge. To synthesize various body shape
samples, the observation pose parameter vector r,y,, of 3D
models that are estimated from point cloud data must be
given. By varying the shape parameters, different body shape
samples are generated. Let the pose vector be 7., and the
model with standard shape parameters be given by Y =
P(r,,p,) - S (Bsta) - Xstg- The multi-dimensional Gaussian
normal distribution function is introduced to generate various
body shape parameters, i.e.,

_ 1 1
N (B|Bsid, o) = Wm—lﬂexp

1, - _
x [—5 (B~ Bsa) o~ (B~ ﬂm)] . (13)

where o denotes covariance, and B4 is a D-dimensional
standard shape parameter vector® = {1, B2,..., 07}
defines the generated virtual data with different shape
parameter vectors that obey the Gaussian normal distri-
bution. The generated 3D gait samples are represented
by Q5 = {?(ropt’ B)}
as ® = {ag,oq1,...,0ny}, the pose set as § =
{Foptos Toptys - -+ Toprm } and their corresponding projected
depth image from point cloud data denoted as

U={Ty(r.B)lac®, re® Becd}l. (14)

. Define the multi-views set

Fig. 9 illustrates virtual abnormal samples of a body shape
from a point cloud frame with multi-views.

(b) © (d) (© ® (®

FIGURE 9. Synthetized virtual gait data: (a) point cloud data;

(b) estimated parameterized body model; (c)-(e) are respectively the
virtual shape transformation of weight, height and age; (f) front view
projection of (b); and (g) back view projection of (b).

(a)

V. SPATIAL-TEMPORAL DEEP NETWORK BASED ON
MULTI-SET CANONICAL CORRELATION ANALYSIS

The structured point cloud depth images (SPCDIs)
Yo (Fopts Bopr) from morphed 3D parametric gait models at
view o are used to extract the spatial-temporal features of
abnormal gait. Unlike face and fingerprint, gait has periodic
and dynamic properties that are spatial-temporal features.
Thus, the combination of CNN based Resnet-50 network and
RNN based LSTM [37] is introduced to extract abnormal gait
features from gait sequence data.
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Every gait sequence data is segmented into fixed L frames
with abnormal gait class labels and additional flags includ-
ing viewing angles v; € [0360], and two typical normal-
ized shape parameters s; including body height and weight.
Fig. 10 illustrates the exploited uniform MCCA-DNet, which
comprises two phases, i.e., spatial-temporal abnormal gait
feature extraction and invariant pattern feature projection
based on MCCA. Let X = {x;,i=1,...,1} where x; =
[xil , xlz] be the input of MCCA-DNet, which consists of two
sub inputs. One is xil = [Tf‘, 3, ..., Tl‘j‘] which defines
the L consecutive frames of SPCDIs. T} € R"*" is the Lth
m x n resolution SPCDI of the corresponding parametric gait
model derived from a 3D video at view «. The other is the
conditional parameter by concatenating viewing angle, body

: T
shape data, i.e., x? = [VI'sT]" € RM+M,

---------------------------------

FQ:0)[0 0000000000 ---\

X{wyth, | Reshape

Inputs
. [oo-0

.- Py set gg::g D; -
2 D. £
- 2 |xii =
ojres °
14 % ' 7

ar

SPCDIs

FIGURE 10. Uniform LSTM Deep Network based on MCCA.

The spatial-temporal abnormal gait feature extraction
scheme consists of CNN layers, a temporal LSTM layer
and a fully connected layer (FC;). The ResNet-50 network
without output layer is introduced for feature extraction in
CNN layers. Its L frames output ¢; = Freger (x}) =
[cic)...c}1 € RP*L are fed into the LSTM network for
temporal feature extraction where D, is the ResNet-50 out-
put dimension. The FC; maps the LSTM output to a given
dimension D, using the projecting matrix w, € RPL*Dz
where Dy, is the output dimension of LSTM network, i.e.,
Vi = [Lstm(c%, cé e, cl{)T-wz]T € RP:. Ly () denotes the
spatial-temporal information encoding using LSTM network.
After the spatial-temporal feature extraction process to all
samples in X based on CNN and RNN, the output feature
set Y = [yr...yi...y1] € RP=! is further projected by a
multi-set canonical matrix P! ., based on different condi-
tions. The new feature of the ith sample in X after projecting
to the new pattern space is

T _ . Tpi
i = yi Pmse[

— y.T - Reshape (Relu [(xi)ZTw2+b2]>, (15)

where wy € RMHENXD: pi o — pl  pi . pP] e
RP=xDz and b, is the bias. Reshape(-) transforms the vector
with Dg dimension to a matrix with D, x D, dimension.
The new pattern space is constructed and described by a new
feature set Z = {z,-e RDZ} where i € [1 I]. The idea of
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MCCA-DNet as given by Eq. (15) is similar to the attention
model (AM) which is widely used in machine translation
and speech recognition. However, AM uses the context infor-
mation by mapping a query and a set of key-value pairs
to an output. Our MCCA-DNet uses the pattern projecting
matrix P, ,, to achieve feature transformation based the
final LSTM output rather than based on each frame. After
feature transformation based on their correlations, the sub-
jects have different conditions of gait behaviour, i.e., view
changes and typical body shape variation, in the new unified
space. These enable to determine the optimal parameters in
MCCA-DNet that maximize the correlations of the similar
abnormal gait behaviours but under different conditions. The
mechanism pays more attentions to the information of inter-
est, and ignores the disturbed data, i.e., views and body shape,
in the high dimensional space.

In order to describe the correlations among gait behaviours
under different conditions, we classify the samples according
to variations, i.e., different viewing angles, body height and
weight. Let X;, € X, n = [1 N] be the subset of X in which
all samples belong to the same conditions of gait behaviour,
i.e., the same view or similar body shape, and N is the total
number of conditions. ¥,, € Y are the corresponding sets
after feature extraction. Let p;, py € RP:, and the correlation
coefficient of two sets X; and Xj is determined by their
spatial-temporal features ¥; and Yy, i.e.,

P} VY pi
k= :
eIy ppel vy po)

The criterion used by our MCCA-DNet is described by the
following optimization problem:

pi (16)

N
maxy Y o ik
P =1 kel’, Pik

Mset

st. p VY pi=p{ni¥lp =1 (17)

Ui defines the indexes of all positive sets of X; which means
they have the similar abnormal gait or action samples but
under different walking conditions, i.e., different views or
body shape features. It can be reformulated as the following
minimization problem:

. N
arg min E i E i
Prger j=1 keU

st pl Y pi=pivi¥{pk =1, (18)

T pj T pk
Yj P/mset - Yk Pmset ’

2

where Py,_ser is a tensor with size of D; x D; x N. According
to Eq. (15), P’m_set is indirectly controlled by the conditional
vector xl.z through FC; network. The calculation of Py, . is
transformed to learning the parameters of FCy network. The
loss function of our MCCA-DNet is set as

N M . , 2
k
[fosxz E =1 E keUﬂ_ E i=1 Hyll'P]m_set - y;chfset 2

where M is the sample number of sets ¥; and Y. Compared
with the traditional numerical method of solving the problem,

. (19)
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the deep learning is achieved by minimizing the loss function
and using GPU to accelerate the training of MCCA-DNet.
The MCCA-DNet transforms the multi-sets data under differ-
ent conditions into a uniform pattern space. Thus, it is trained
prior to the SoftMax classifier. Its training data can be the
same gallery set for the SoftMax classifier. The uniformed
pattern features z; are then used to train the SoftMax classifier
with class labels in the gallery set, and test the probe data after
training.

VI. EXPERIMENT

In order to evaluate our proposed 3D-AGRBMCCA, 3D
abnormal gait datasets or 3D gait related action databases
are required. Since the whole silhouettes are required for 3D
abnormal gait modelling, 3D CSU abnormal gait dataset [38]
and the 3D walking gait dataset [39] are appropriate for
evaluations. The MSR-Action 3D Dataset [40] and UTD mul-
timodal human action dataset (UTD-MHAD) [41] are also
chosen due to the lack of related 3D abnormal gait datasets.
In these datasets normal walk is defined as normal gait and the
others, e.g., swaying, limping, kicking, bending, punching,
hammering and falling, are defined as abnormal gait that are
distinguished from the normal ones.

A. EXPERIMENTS ON CSU ABNORMAL DATASET

The CSU abnormal dataset (see Fig. 11) is in the form of 3D
point cloud data, created using Microsoft Kinect and consists
of 10 subjects. The actions include six states: normal walk,
sitting down, falling forward, falling backward, limping of
left foot and limping of right foot. It also includes three
viewing angles: 0, 45" and 90°. The original video is RGB
and depth image with a resolution of 640 x 480. The abnormal
3D point cloud data of body are generated from depth images,
and normalized after denoising and background subtraction.

e e
2304 08

00]32:3040) %Z 04

FIGURE 11. Samples of 3D abnormal gait point cloud data at different
views from CSU abnormal dataset [38].

Our proposed method first extracts the abnormal gait
features of real samples and generated virtual samples,
and assigns them with different abnormal gait labels. The
MCCA-DNet and SoftMax classifier are then trained based
on the enlarged sample set as follows. First, the real abnor-
mal gait samples are divided into two groups according to
different subjects for cross subject test. The first group is
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FIGURE 12. Abnormal gait recognition results at different views: (a) 0° view; (b) 45° view (c) 90° view; and (d) training at 0° and testing 90° view.

composed of samples from the first two subjects for con-
structing the training/gallery set. Six styles of each subject’s
gait at three different views are collected. The remaining
probe samples belonging to the other eight subjects are
assigned to the second group. The number of training samples
is much smaller than the test samples used to evaluate the
efficiency of our proposed 3D-AGRBMCCA. Second, all gait
point cloud sequences are subsampled and segmented into
subsets with L = 20 frames, which can have overlapping
frames.

The 3D gait models corresponding to each frame of point
cloud are then estimated by using the parameterized 3D gait
estimation method based on point cloud contour. The training
dataset is enlarged using the estimated 3D abnormal gait
models to generate virtual samples. Using the VSG methods
in Section IV, virtual samples with 60 styles of small and
medium level pose-perturbation virtual data, 60 styles of
virtual shape parameters, and left-to-right (right-to-left) sym-
metrical virtual samples are generated. These virtual samples
are then projected onto different views ® = {0°, 45°,90°}
with real samples. Before VSG, the basic number of real
sequence samples for training is 36. The training sequence
samples are then enlarged to about 21672 by three types
of VSG.

The data in the first group and their virtual samples are
used to train the MCCA-DNet and SoftMax classifier with
their own loss functions. MCCA-DNet aims to extract the
correlation among different sets, i.e., different views and
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shape features. The projected depth images at different views
o € O are used as input to MCCA-DNet. The view-
ing angles, normalized body height and weight values are
fed to MCCA-DNet as a priori knowledge to generate the
correlation projecting matrix under different conditions for
multi-sets data.

Fig. 12 compares the results of different methods,
i.e., 3D-AGR, 3D-AGRBMCCA-SH, 3D-AGRBMCCA-
PP, 3D-AGRBMCCA-LRPP, 3D-AGRBMCCA, at different
views. 3D-AGR is our abnormal gait recognition method
without VSG, 3D-AGRBMCCA-SH denotes the method
which uses only various body-shape virtual samples, 3D-
AGRBMCCA-PP denotes the method which uses only
pose-perturbation virtual data, and 3D-AGRBMCCA-LRPP
denotes the method which uses both left-to-right (right-to-
left) symmetrical virtual samples and pose-perturbation vir-
tual data. 3D-AGRBMCCA uses all the virtual samples. The
figure shows that the robustness and generalization ability
of the abnormal gait recognition model have been improved
after training with virtual samples. The abnormal gait recog-
nition results of left limping and right limping are slightly
impaired at viewing angles 45° and 90° due to self-occlusion.
The mean recognition rate at 0° is slightly lower than the other
two views. This is mainly because the gait contour features
are not so obvious at 0° and only slightly affect the 3D gait
model estimation accuracy. As a result, the recognition results
are only affected to a certain extent. Fig. 12(d) shows the
recognition result for a classifier trained using 0° samples
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and their related virtual samples. In testing, 90° samples are
used to evaluate the robustness of our 3D gait recognition
method when faced with large view changes. Both shape
and pose-perturbation virtual samples greatly improve the
recognition rate and the symmetrical virtual samples work
well when the symmetrical abnormal gait data existed, i.e.,
limp left and limp right. To summarize, the recognition with
VSG are less degraded than those without.

Table 2 compares the performance using different action
features, i.e., GEI [42], D-DMHI [43], HP-DMM-CNN [44],
and MVSM-CGCI [45], with our 3D-AGRBMCCA. GEI
is gait energy image, D-DMHI is depth difference motion
history image, HP-DMM-CNN is a descriptor based on
hierarchical pyramid DMM deep convolutional neural net-
work, and MVSM-CGCI is colour gait curvature image
(CGCI) based on multi-view point cloud registration and
synthesis. GEI, D-DMHI and HP-DMM-CNN are silhouette-
based methods, and MVSM-CGCI is a 3D-based approach.
3D-AGRB-CNNLSTM is based on our 3D features, and is
also introduced to evaluate the power of our MCCA-DNet
with the same virtual sample setting as 3D-AGRBMCCA.
3D-AGRB-CNNLSTM takes the same CNN (ResNet-50)
and LSTM structure as illustrated in Fig. 10 but directly
uses the LSTM output y; for classification without feature
transformation by the MCCA mechanism. Due to recognition
in varied views as in Table 2, only the training samples at
0° and testing 90° views were used. The results show that
3D-AGRBMCCA outperforms the other methods, and there
are two reasons for this.

TABLE 2. Performance comparison using different depth descriptors.

Cross-subject View-varied
Method Accuracy (%) Accuracy (%) Avg.
GEI[42] 85.2 38.9 62.1
D-DMHI [43] 90.3 55.6 73.0
HP-DMM-CNN[44] 93.1 61.1 77.1
MVSM-CGCI [45] 91.7 68.9 80.3
3D-AGRB-CNNLSTM 93.6 78.0 85.8
3D-AGRBMCCA 97.2 90.6 93.9

First, 3D-AGRBMCCA is based on 3D parametric body
model which overcomes view-invariant gait recognition prob-
lems easily with limited training samples. The 3D body
structure is useful in gait feature extraction, enabling the
feature extraction to be robust to noise and view changes.
3D-AGRBMCCA also exploits varied-view virtual samples
by the proposed VSG method. MVSM-CGCI performs better
than GEI and D-DMHI due to its multi-view synthesized
virtual samples based on point cloud data. HP-DMM-CNN
also performs better than GEI and D-DMHI due to its three
feature representations DMM;, DMM;, and DMM,, i.e.,
respectively projected front, side and top views. Since it
is not a 3D-based method, i.e., using only depth maps for
feature extraction, it performs worse than MVSM-CGCI and
3D-AGRB-CNNLSTM when faced with large view changes.
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The second reason is due to our proposed VSG method.
By using the 3D human body as a priori knowledge, virtual
samples are generated to improve the robustness of 3D-
AGRBMCCA. Unlike the statistical features, i.e., GEI and
D-DMHLI, that use compressed energy image for feature rep-
resentation, our abnormal gait features are extracted by CNN
based LSTM, which exploits both CNN and RNN. For exam-
ples, take the limping left and limping right that are more like
normal gait due to self-occlusion. If the 3D depth information
and the temporal features before and after cannot be effec-
tively used, it will inevitably affect the classification of small
distinct parts. By using MCCA our method achieved better
performance against various walking conditions, including
gait views, by transforming the features into a uniform pattern
space.

B. EXPERIMENTS ON 3D WALKING GAIT DATASET

The 3D walking gait dataset [39] created using Microsoft
Kinect 2 enables abnormal gait detection. Nine subjects per-
formed nine walking styles on a treadmill, i.e., one normal
walk and eight simulated abnormal walks. Eight abnormal
walks are symmetrical, including padding the sole of shoes
with a thickness of 5 cm, 10cm and 15cm under left or right
foot. The rest of the abnormal gait data involved attaching a
weight (4 kilograms) to the subject’s left or right ankle. The
dataset contains 3D point cloud data of the human body with
the background subtracted. Each walking gait contains 1200
consecutive image frames with several gait cycles. We sepa-
rated sequences of ten gait cycles from each video to give a
total of 810 gait sequences. Fig. 13 illustrates some data from
the dataset.

FIGURE 13. Point cloud gait data of 3D walking gait dataset at 45° from
the 3D walking gait dataset [39].

In order to demonstrate the robustness of our method under
SSS condition, the gait samples are split into two groups
according to different subjects, i.e., three training/gallery sub-
jects and six testing subjects. The basic number of training
sequence samples before VSG is smaller than the testing
sequence samples, i.e., 270 vs. 540, which is contrary to
most cases in traditional methods of gait recognition. All the
samples from 3D walking gait dataset are at the same view,
i.e., 0°. As the gait features from front 0° are less obvious than
in lateral view, all samples are rotated to the lateral 45° for
training and testing in our experiments, as shown in Fig. 13.
All gait point cloud sequences are segmented into subsets
with L = 20 frames. The processes are the same as with
the experiments on CSU abnormal gait dataset. After VSG,
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the training sequences are extended from 270 to 7740 using
the same settings in CSU dataset experiment, but with only
one viewing angle.

TABLE 3. Rank-1 recognition rates (%) of nine gait styles.

Category  Style  3D-AGR  3D-AGRBMCCA  ABR.rate

Nomal ~ NW. 9.7 100 ;
Lisem 850 950 983
Lloem 867 933 100
Llsem 933 983 100
Lidkg 917 9.7 100

Abnommal  pisen, 833 933 9.7
Rl0cm 817 917 100
Rilsem 917 9.7 100
Ridkg 900 950 983

Table 3 shows the rank-1 recognition rate of nine gait
styles. L|n cm means padding a sole with a thickness of n
cm under left foot and R|4kg denotes attaching a weight
(4 kilograms) to right ankle. The Abnormal recognition rate
(ABR. rate) of 3D-AGRBMCCA is the accuracy that the
classifier can distinguish between the abnormal gait from
the normal. The classification is binary with the class being
either normal or abnormal. The multi-styles 3D-AGR and
3D-AGRBMCCA recognition rates mean that the classi-
fier must recognize the nine gait styles, i.e., normal walk,
L|5cm, L|10cm, etc. Table 3 shows that the L|15cm and
R|15cm styles can be easily distinguished from the other
gait styles. This is mainly because the lower leg is signifi-
cantly influenced by the highest sole (due to more padding).

The difference among normal walk, L|Scm and L|4kg are
sometimes confused which led to lower recognition rates.
3D-AGRBMCCA achieves much higher performance rate
due to VSG. The average binary abnormal recognition rate is
much higher than the multi-styles recognition rate. The binary
abnormal recognition could be very useful in certain scenar-
ios, i.e., high accurate detection of fall for elderly healthcare.

In order to compare our 3D-AGRBMCCA with other
gait recognition methods when faced with the SSS problem,
additional experiments were conducted. In the 3D walking
gait dataset, eight abnormal walking styles are symmetrical
and such property is very useful in evaluating the effects
of our symmetrical VSG. Thus, all the abnormal gait sam-
ples are divided into two parts, i.e., left-leg-related and
right-leg-related abnormal gait. The left ones are used for
training and the right ones for testing. Before the symmetrical
sample generation, the ELM symmetric body data prediction
model is first trained by only one subject with all the symmet-
rical nine styles data. Following that, only symmetrical virtual
samples are included and labelled for training the classifiers
in 3D-AGRBMCCA. However, other methods without VSG
will obviously have difficulties in classifying the right leg
abnormal gait samples. For a fair comparison, the former
subject with all the nine symmetrical styles data that are used
for ELM model learning is included in training the classifiers.

Fig. 14 shows the recognition rates for different meth-
ods, i.e., GEI [42], D-DMHI [43], HP-DMM-CNN [44], and
MVSM-CGCI [45]. It is observed that with only one right-
leg-related abnormal gait training subject, i.e., all other train-
ing subjects are left-leg-related, the silhouette-based method
performs unsatisfactorily. This is because the 2D binary or
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depth silhouettes between the left and right symmetrical
abnormal gait look much the same. The left and right legs
(or hands) are difficult to distinguish in 2D binary images if
they are in symmetrical gait style as illustrated in Fig. 15.

(@) (b) © () © ®

FIGURE 15. (a) and (d): symmetrical gait image; (b) and (e): thei skeleton
images; and (b) and (d): their binary images.

C. EXPERIMENTS ON 3D WALKING GAIT DATASET

Fig. 16 shows the MSR-Action 3D dataset in the form of 3D
point cloud data. The original data are sequences of depth
maps. They are translated to 3D world coordinate accord-
ing to Eq. (1). The dataset was created using Microsoft
Kinect sensor and consists of twenty actions performed by ten
subjects.

FIGURE 16. Examples of the sequences of point cloud action data.

The actions are high arm wave, horizontal arm wave,
hammer, hand catch, forward punch, high throw, draw x, draw
tick, draw circle, hand clap, two-hand wave, side-boxing,
bend, forward kick, side kick, jogging, tennis swing, tennis
serve, golf swing, and pickup & throw [40]. Each subject is
captured two or three times, and the total action samples is
about 4020. The dataset is collected at the front view (0°) and
all samples in Fig. 16 are rotated to the lateral 15° to illustrate
more information of the actions.

Experiments were conducted following the protocol
of [40], and the dataset was grouped into three subsets,
i.e., AS1, AS2 and AS3. Each subset includes eight actions.
Actions in AS1 and AS2 comprise similar movements, while
actions in AS3 are more complex that involve more joints.
The recognition experiments were conducted on each subset
separately, and the cross-subject test was conducted. In cross-
subject test, half of the subjects were chosen for training, i.e.,
1,3,5,7 and 9 subjects (if exist), and the other half were used
for testing. But before training, the basic training samples are
enlarged with our VSG process using the same setting in CSU
dataset experiment, i.e., 60 styles of pose-perturbation virtual
data, 60 styles of virtual shape parameters, and left-to-right
(right-to-left) symmetrical virtual samples. Table 4 reports
the comparations of our 3D-AGRBMCCA with other meth-
ods that used 3D joints features or depth map features for

VOLUME 8, 2020

TABLE 4. Comparison: Rank-1 recognition rate (%) with the
state-of-the-art methods on MSR-Action3D dataset.

Method AS1 AS2 AS3 Average
Bag of 3D Points [40] 72.9 71.9 79.2 74.7
Eigenjoints [46] 74.5 76.1 96.4 83.3
LARP [47] 95.29 83.87 9822  92.46
3RB-tLDS [48] 96.81 89.14  98.83 94.85
Sparse Pose-based [49] 91.23 90.09 99.5 93.61
MM Information [50] 92.0 85.0 93.0 90.0

ST Patterns [51] 91.70 72.2 98.6 87.5

Depth Motion Maps [52] 96.2 83.2 92.0 90.47
Key Poses Model [53] 91.53 90.23 97.06  92.94
Our 3D-AGRBMCCA 98.11 97.34  99.1 98.18

recognition. Table 4 clearly shows that AS2 gives the lowest
recognition results compared with AS1 and AS3. This is
mainly because the actions are much more similar than the
other two groups. Also, our AGRBVSG method performs the
best.

There are several reasons for this. First, most of the
skeleton-based methods, i.e., [47]-[49], [53], perform much
better than the silhouette based or contour-feature-points
based methods on AS1 and AS2. One reason is due to the
unstructured point cloud data corrupted with much noise.
This makes the body contour incomplete and influences the
efficiency of the feature extraction. Although the body sil-
houettes usually contain rich shape information, it has redun-
dancy due to the unstructured and noise point cloud data.
The silhouettes are also very varied due to the body shape,
i.e., shape differences of adults and kids. This makes the
silhouettes-based method less robust, especially when there
are insufficient training samples. Skeleton-based methods can
also be influenced by these problems. Tracking and esti-
mating body joints from depth images are also an unsolved
problem. They can be easily influenced by occlusions and
noise that commonly exist in depth maps [45]. They are more
likely to be influenced if the key joints are not extracted
especially in some simple actions, i.e., hand wave, throw, side
and forward kick.

In summary, it is inefficient to extract abnormal gait fea-
tures directly from the data, especially from insufficient train-
ing samples. The recognition model is easily influenced by
noise and missing data. Small parts of the body data captured
by the Kinect camera that absorb the projecting light, and
thus reduces the corresponding reflection, can sometimes be
lost, e.g., black hair and black shoes. Our AGRBVSG uses
the parametric 3D body model to fit point cloud data of body
and estimates its 3D model. By transforming the unstructured
point cloud data to structured, our method overcomes the
self-occlusion problem to a certain extent.

In the cross-subject test there are large intra-class vari-
ations due to variations of the same action performed by
different subjects. Taking the pickup and throw action as an
example, some subjects use two hands while others use only
one hand. The body shapes of subjects are also different.
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FIGURE 17. (a), (f) and (h) are three key depth maps from draw X
sequence; (b), (g) and (i) are their estimated 3D parametric model; and
(), (d), (e) are respectively the shape varied, pose perturbed and
symmetrical VSG models of (b).

These issues cannot be addressed if there are insufficient
samples for training. However, our body shape and pose-
perturbation VSG methods greatly help eliminate the varia-
tions under cross-subject testing conditions. In addition, only
the right arm or leg is involved if the action is performed by
a single arm or leg. However, our VSG methods synthesize
symmetrical poses to cope with SSS problem which most of
the other methods cannot achieve. Fig. 17 illustrates some
3D parametric models morphed to fit the noisy depth maps
in MSR-Action 3D dataset with three types of VSG samples.
The three key depth maps in Fig. 17 are derived from draw X
action of the 6th subject.

Fig. 18 shows the confusion matrix of our 3D-
AGRBMCCA for cross-subject test with different subsets.
For most actions, the rank-1 recognition rate is 100%. Due to
the 3D parametric model and VSG, our recognition method is
robust in distinguishing similar actions in cross-subject test.

D. EXPERIMENTS ON UTD MULTIMODAL HUMAN ACTION
DATASET

The UTD-MHAD [41] is created with a Kinect camera.
The depth map is 16-bit 320x240 in size and every RGB
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(a)

TSv  P&T

image has a resolution of 640x480 pixels. The dataset is
composed of 27 actions performed by 8 people, i.e., 4 males
and 4 females. Each action is repeated 4 times with RGB
images, depth maps and inertial data.

The actions are walk, wave, slap, jog, sit, swing, catch,
push, throw, wipe, squat and some sports activities, i.e., box-
ing, bowling, tennis serve and basketball shoot. The dataset
has 861 data sequences in total. In our experiments,
cross-subject test was conducted, i.e., depth sequences of odd
subjects were used for training after VSG using the same
setting in the CSU dataset experiment, and the rest were for
testing. The VSG are similar with the experiments on CSU
abnormal gait dataset, but just the front view data is essential.

Table 5 shows the comparison of state-of-art on
UTD-MHAD using depth maps. It shows that our proposed
method performs well due to the 3D VSG process and MMC-
DNet. The papers [41], [54] also discuss the fusion of RGB
images to assess their performance. In our experiments and
comparisons, despite only using depth maps for modelling
and feature extraction, the performances of our method are
better than most of the fusion schemes.

TABLE 5. Rank-1 recognition rates of seventeen action styles using depth
map.

Method Accuracy (%)
DMMs/ CRC [41] 66.1
DMMs& Inertial/ CRC [41] 79.1
HP-DMM-CNN/SVM [44] 82.8
3DHOT/MBC [54] 84.4
BoA/SVM [44] 85.4
JDMs/CSF [55] 88.1
SAC/SVM [56] 91.7
OUR 3D-AGRBMCCA 93.2

UTD-MHAD is challenging due to the similarity of many
actions based only on arm motion. The confusion matrix
of our 3D-AGRBMCCA method on UTD-MHAD is shown
in Fig. 19 with above 90% accuracy on 19/27 actions with
robust performance for most actions. In [56], it is shown that
drawing circle clockwise and counterclockwise, which act
in opposite direction, are usually confused. This is mainly

High Throw Vel

Forward Kick
Side Kick
Jogging
Tennis Swing

Tennis Serve

Golf Swing

Pickup & Throw|

FIGURE 18. Confusion matrix of 3D-AGRBMCCA for cross-subject test: (a) AS1; (b) AS2; and (c) AS3.
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FIGURE 19. Confusion matrix of 3D-AGRBMCCA on UTD-MHAD dataset.

because the motion energy-based methods, i.e. Depth Motion
Maps (DMMs), are poor in spatial-temporal action feature
extraction. By compressing the sequence depth maps into
a motion energy map in the video, the temporal feature
is obliterated. Some skeleton-base methods also perform
poorly when the joints extraction results are poor. Our
3D-AGRBMCCA is robust to noise by fully utilising a priori
knowledge of body structure. The use of CNN based LSTM
network which combines CNN and Recurrent Neural Net-
work (RNN) also enables our method to perform well in
spatial-temporal feature extraction.

VII. DISCUSSION AND CONCLUSION

A. DISCUSSION

The comparative results on the CSU 3D abnormal gait
dataset, 3D walking gait dataset, MSR-Action 3D dataset and
UTD-MHAD clearly show that our method with VSG best
addresses the SSS issues. They also clearly show that 2D
methods have difficulties in dealing with 3D VSG due to the
lack of 3D body structure information.

Our 3D parametric body model is greatly aided with
learned a priori knowledge for generating symmetrical, vari-
ous body-shape, and pose-perturbation virtual samples. This
makes our method robust and effective for classification
tasks with small sample sets. Compared with the traditional
VSG forecast tasks, the VSG for classification has its own
characteristics that the synthesized samples may not influ-
ence the current subject recognition result, i.e., bad virtual
samples with negative impact are excluded. In this paper
CGAN is used to achieve better a priori knowledge-based
generative model which generates data according to both
classification label and the given perturbation. The CGAN
model greatly helps in generating the good virtual samples
based on the two-player min-max game with value function.
To combine the feature extraction, multi-sets correlations
analysis and classification in a uniform model for better

VOLUME 8, 2020

recognition performance, a novel MCCA based deep learning
network is proposed in our paper.

The results on the CSU dataset show that the rank-1 mean
detection and recognition rate of abnormal gait is about 22%
higher than GEI, D-DMHI and HP-DMM-CNN when faced
with big view changes. The efficiency of symmetrical VSG
has been clearly shown in the experiment on the 3D walking
gait dataset. The a priori knowledge of the human body is
fully used for a better performance which is demonstrated
on the MSR-Action 3D Dataset and UTD-MHAD. One of
the key processes of our proposed 3D-AGRBMCCA is the
3D body estimation by point cloud gait data which aids the
extraction of the 3D parametric gait semantic data. A fast and
more accurate 3D body estimated approach should be further
studied by fully exploiting the spatial-temporal information
of the human gait.

B. CONCLUSION

Based on the 3D parametric gait model, a VSG approach is
proposed to address the problem of SSS in abnormal gait
recognition. The abnormal gait point cloud data are abstracted
to high-order semantic description, i.e., shape and pose, using
the proposed 3D gait model estimation method. The pose and
shape parameters are then fully used as a priori knowledge to
generate virtual samples using three different VSG methods.
Using MCCA-DNet, the spatial-temporal features of abnor-
mal gait behaviours are extracted effectively. By exploiting
VSG and MCCA, good classification and recognition of
abnormal gait data at different views are achieved. Compared
with the traditional 2D abnormal gait recognition methods,
3D based methods can deal with view-invariant problem and
object occlusion more easily. The proposed method not only
improves the recognition accuracy of abnormal gait recogni-
tion, but also provides a new idea for recognizing abnormal
actions.
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