
Received February 1, 2020, accepted February 9, 2020, date of publication February 13, 2020, date of current version February 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2973613

Stochastic Numerical P Systems With Application
in Data Clustering Problems
JINYU YANG1, HONG PENG 1, (Member, IEEE), XIAOHUI LUO1, AND JUN WANG 2
1School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
2School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China

Corresponding author: Hong Peng (ph.xhu@hotmail.com)

This work was supported in part by the Research Fund of Sichuan Science and Technology Project under Grant 2018JY0083, and in part
by the Research Foundation of the Education Department of Sichuan Province, China, under Grant 17TD0034.

ABSTRACT This paper proposes an extension of numerical P (NP) systems, called stochastic numerical P
(StNP) systems. In StNP systems, a novel stochastic production function-repartition protocol is developed
to evolve the variables. Compared with usual production function-repartition protocol in NP systems, there
are two differences in stochastic production function-repartition protocol: (i) some stochastic/randomized
factors are introduced in production function and/or repartition protocol; (ii) data updating way is relaxed
and can be flexibly used. An StNP system has a nested structure and contains some variables and a
group of programs. The programs consist of stochastic production function-repartition protocols and/or
usual production function-repartition protocols. Therefore, StNP systems are a class of distributed parallel
computing models with stochastic and dynamic characteristics. Data clustering problems are used as an
application to demonstrate the availability and effectiveness of StNP systems. Based on StNP systems,
a novel partition clustering algorithm is presented. Experimental results demonstrate advantage of StNP
systems for data clustering problems.

INDEX TERMS Membrane computing, numerical P systems, stochastic numerical P systems, stochastic
production function-repartition protocol, data clustering.

I. INTRODUCTION
Membrane computing initiated by Gh. Păun [1], is a class
of distributed parallel computing models, abstracted by the
structure and functioning of living cells and the cooperation
of cells in tissues, organs, and biological nervous systems [2].
Because of Păun’s contribution, the class of models are called
P systems in membrane computing domain. Motivated by
different biological mechanisms, a variety of P systems have
been investigated in the past two decades [3]–[16]. There are
three main types in P systems: cell-like P systems, tissue-like
P systems and neural-like P systems, which adopt a nested,
a network-like and a directed graph structures, respectively. In
addition to membrane structure, a P system contains several
important components: data (objects), rules and methods to
control the rules. The data is used to express the states of
cells (or neurons), while rules describe the dynamic behavior
of the system. It has been proven that most of P systems were
Turing-universal and able to solve some NP hard problems
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in a feasible time. Moreover, these models have been
used to tackle real application problems [17], for example,
knowledge representation [18], [19], numerical optimization
[20], [21], image and signal processing [22]–[26], fault diag-
nosis [27]–[29], ecology and system biology [30]–[32].

Numerical P (NP) systems [33] are a variant of cell-
like P systems, motivated by the nested structure of cells
and the idea of distribution profits in economics. Usually,
NP systems use a nested topology, however, numeric-type
variables instead of multiset of string in cell-like P systems
are used and the behavior of the system is controlled by a
group of programs, which are called production function-
repartition protocols. A production function-repartition pro-
tocol consists of two parts: (i) production function; (ii) repar-
tition protocol. The first part uses local variables to compute
a function value. The computed value is allocated to the
variables from the region where the program resides, and to
the variables in its upper and lower neighboring regions based
on the repartition protocol. The values of these variables are
evolved by means of programs. Therefore, NP systems are a
kind of distributed parallel computing models with dynamic

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 31507

https://orcid.org/0000-0002-4736-0164
https://orcid.org/0000-0003-3422-104X


J. Yang et al.: Stochastic Numerical P Systems With Application in Data Clustering Problems

characteristic. However, NP systems are the deterministic
systems.

In a lot of real applications, the methods to solve themmay
involve some stochastic/randomized mechanisms. However,
usual production function-repartition protocol in NP systems
lacks the stochastic/randomized mechanisms. Hence, NP
systems may fail to deal with these applications. To
overcome the limitation, a novel extension of production
function-repartition protocol that contains some stochastic/
randomized factors is developed, called stochastic production
function-repartition protocol. Based on the extension, a novel
variant of NP systems, stochastic numerical P (StNP) sys-
tems, is proposed in this work. Different from NP systems,
StNP systems have two features:
(1) Since production function and/or repartition protocol

contain some stochastic/randomized factors, StNP sys-
tems can exhibit stochastic characteristic.

(2) the data updating way is relaxed and can be flexibly
used in StNP systems.

Therefore, StNP systems are a class of distributed parallel
computing models with stochastic and dynamic characteris-
tics. To evaluate the availability and effectiveness of StNP
systems, data clustering problems are used as an application.
For this purpose, an StNP system is considered, where a
specific stochastic production function-repartition protocol
is designed. Based on the StNP system, we develop a novel
partition clustering algorithm that can search for the optimal
cluster centers by using the stochastic production function-
repartition protocol.

The remainder of this paper is organized as follows.
Section II briefly reviews the related work of NP systems and
data clustering problems. Section III describes the proposed
StNP systems in detail. Section IV discusses the application
of StNP systems, and an StNP systems-based partition clus-
tering algorithm is developed. Conclusions and future work
is given in Section V.

II. RELATED WORK
A. NUMERICAL P SYSTEMS
Numerical P (NP) systems proposed by Păun and Păun [33]
is a variant of cell-like P systems. NP systems has a nested
topology and numerical variables instead ofmultiset of string,
while the behavior of the systems is characterized by a group
of programs.
Definition 1: An NP system [33] is defined by a construct

5 = (m,H , µ, (V1,P1,V1(0)), . . . , (Vm,Pm,Vm(0)),

Vin,Vout ) (1)

where
(1) m ≥ 1 is the number of membranes;
(2) H is an alphabet of labels for membranes in 5;
(3) µ is a rooted tree with m nodes labeled by the symbols

of H ;
(4) Vi is the set of variables in region i, 1 ≤ i ≤ m;
(5) Vi(0) is the set of initial values of the variables in

region i, 1 ≤ i ≤ m;

(6) Pi is the set of programs in region i, 1 ≤ i ≤ m; every
program has of the form:

Fl,i(x1,i, . . . , xki,i)→ cl,i,1|vl,i,1 + · · · + cl,i,li |vl,i,li
(2)

where Fl,i(x1,i, . . . , xki,i) is the production function of
the program, and RPl,i = cl,i,1|vl,i,1+ · · ·+ cl,i,li |vl,i,li
is the corresponding repartition protocol;

(7) Vin and Vout , respectively, denote the sets of input
variables and output variables.

The variables in the system will be evolved by pro-
grams during the computation. Each program is a produc-
tion function-repartition protocol. Therefore, the variables
describe the state of the system, while the programs consist-
ing of production function-repartition protocols characterize
its dynamic behavior.
The variables are updated by production function-

repartition protocols. Denote by Cl,i =
∑li

s=1 cl,i,s the sum
of all coefficients of the repartition protocol, and the ‘‘unitary
portion’’ is computed by ql,i(t) = Fl,i(x1,i, . . . , xki,i)/Cl,i.
Thus, the value that is added to variable vl,i,r is 4l,i,r (t) =
ql,i(t) × cl,i,r . If variable vl,i,r exists in some applied pro-
grams, for instance, RPl1,i1 , . . . ,RPlk ,ik , then all these values
4l1,i1,r , . . . ,4lk ,ik ,r are added to variable vl,i,r .

In NP systems, there are two data updating ways:
(1) Substitution updating way:

If at time t , variable vl,i,r appears in at least a produc-
tion function of the applied programs and exists in some
repartition protocols RPl1,i1 , . . . ,RPlk ,ik of the applied
programs, then at time t + 1, its value is computed by
vl,i,r (t + 1) =

∑k
s=14ls,is,r (t).

(2) Increment updating way:
If at time t , variable vl,i,r appears only in some repar-
tition protocols RPl1,i1 , . . . ,RPlk ,ik of the applied pro-
grams but not in any production function of the applied
programs, then at time t + 1, its value is computed by
vl,i,r (t + 1) = vl,i,r (t)+

∑k
s=14ls,is,r (t).

Remark 1: In NP systems and variants, substitution updat-
ing way is used in the case that variable vl,i,r exists in produc-
tion functions, and in other cases, increment updating way is
used. In the proposed StNP systems, however, the require-
ment is relaxed, and the two data updating ways can be used
flexibly.
In recent years, several variants of NP systems have

been proposed. By introducing enzymatic variables,
Pavel et al. [34] proposed enzymatic numerical P systems,
where whether a program is executed depends on the value
of the corresponding enzymatic variable. Zhang and Pan [35]
investigated numerical P systems with thresholds. Similar
to the enzymatic variable, the threshold was regarded as
a control mechanism: when each variable in a production
function is higher (resp., lower) than a threshold, the program
can be executed. The two cases correspond to lower-threshold
and upper-threshold, respectively. Pan et al. [36] investi-
gated numerical P systems with production thresholds, where
threshold control mechanism is reflected on the function
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value of production function. Liu et al. [37] presented a
more general control mechanism, i.e., Boolean condition.
Usually, the variables are located at different regions, and
their positions are given initially and remain unchanged
during the computation. The communicating objects through
membranes is one of important features of P systems. Accord-
ing to the mechanism, Zhang et al. [38] discussed numerical
P systems with migrating variables. Moreover, simulation
softwares of NP systems and their applications have been
investigated, for example, robot [39]–[44]. In addition, com-
puting power of NP systems and variants has been discussed
in the recent years [45]–[49].

B. DATA CLUSTERING PROBLEMS
Data clustering can be viewed as such a task that partitions
q data samples into several groups based on some similarity
measure given in advance. It is essentially a NP-hard problem
to minimize some similarity metric for finding the partition-
ing on a nonuniform dataset [50], [51].

Suppose that D = {X1,X2, . . . ,Xq} ⊆ Rq×d is a data
set consisting of q unlabeled data samples in Rd , where
Xi = (xi1, xi2, . . . , xid ), and xij denotes the jth real value
feature of the ith sample. The objective of data clustering
method is to search for an optimal partitioning of the data
set, which partitions D to K clusters, D1,D2, . . . ,DK , where
the similarity of data samples in the same cluster is very
high, and simultaneously the similarity of data samples in
different clusters is very low. Usually, the partitioning holds
the following properties:
(1) Each cluster contains at least a data sample, i.e.,

Di 6= φ.
(2) Two different clusters contain no data sample in com-

mon, i.e., Di ∩ Dj = φ, ∀i 6= j and i, j = 1, 2, . . . ,K .
(3) Each data sample is definitely assigned to a cluster,

i.e., ∪Ki=1Di = D.
K-means is a popular clustering algorithm, which deter-

mines the optimal cluster centers for a data set. Usually,
to find the optimal cluster centers, data clustering is regarded
as an optimization problem, whose objective function can be
expressed by

Jm(z1, z2, . . . , zK ) =
K∑
k=1

∑
Xj∈Dk

||Xj − zk ||2 (3)

where z1, z2, . . . , zK are cluster centers of D1,D2, . . . ,DK .
Consequently, the data clustering problem is formalized as
follows:

min
z1,z2,...,zK

[
Jm(z1, z2, . . . , zK ) =

K∑
k=1

∑
Xj∈Dk

||Xj − zk ||2
]
, (4)

where z1, z2, . . . , zK denote K parameters that correspond to
a feasible set of cluster centers.

To find the optimal cluster centers, k-means applies the
average of samples in each cluster to update the its cluster
center constantly. However, there are several shortcomings in

k-means algorithm: (i) it is easy to fall into localminima, (ii) it
is heavily dependent on the initial cluster centers, and (iii) it is
time consuming for finding the global optimal centers when
the size of data is large. To address these shortcomings, seveal
evolutionary clustering methods were investigated according
to genetic algorithms (GA) [52], particle swarm optimization
(PSO) [53], differential evolution (DE) [54] and artificial bee
colony (ABC) [55].
In the last years, application of P systems in data

clustering problems has received a lot of attention.
Xue and Liu [56] proposed a clustering algorithm where
lattice-based communication P systems were applied to
handle data clustering. In Peng et al. [57], an evolution-
communication P system was applied to develop a fuzzy
clustering method. A P systems-based hybrid clustering algo-
rithm was investigated [58], which used hybrid evolution
mechanism to evolve the set of cluster centers. Two auto-
maticmembrane clustering algorithms have been investigated
[59], [60], where a representation with control bits
and a membrane system with active membranes were
applied to implement two automatic clustering mechanisms.
Peng et al. [61] discussed a multi-objective fuzzy cluster-
ing method using tissue-like P systems. A cluster splitting
method by P systems and Hopfield networks was investigated
in Liu et al. [62]. In addition, Yan et al. [63] discussed a
hybrid chain-hypergraph P system for multiobjective ensem-
ble clustering.

III. STOCHASTIC NUMERICAL P SYSTEMS
In this section, we first introduce stochastic production
function-repartition protocol, and then present stochastic
numerical P (StNP) systems.

A. STOCHASTIC PRODUCTION FUNCTION-REPARTITION
PROTOCOL
By introducing some stochastic/randomized factors, an exten-
sion of production function-repartition protocol is developed,
called stochastic production function-repartition protocol.
The stochastic production function-repartition protocol can
be described by

F̃l,i(vl,i,1, . . . , vl,i,li )→ c̃1,l,i|x1,i + · · · + c̃ki,l,i|xki,i (5)

where F̃l,i(vl,i,1, . . . , vl,i,li ) is stochastic production function,
and c̃1,l,i|x1,i + · · · + c̃ki,l,i|xki,i is stochastic repartition pro-
tocol. Note that vl,i,1, . . . , vl,i,li are the variables in region i
and/or the variables in the corresponding upper (parent) and
lower (children) regions, while x1,i, . . . , xki,i are only the
variables in region i.
Since F̃l,i(vl,i,1, . . . , vl,i,li ) generally contains some

stochastic/randomized factors, it is called stochastic produc-
tion function. Of course, F̃l,i can also be degenerated as usual
production function Fl,i in NP systems when it contains no
random factors. The c̃1,l,i|x1,i + · · · + c̃ki,l,i|xki,i is stochastic
repartition protocol, where c̃1,l,i, . . . , c̃ki,l,i are ki random real
numbers in [0, 1]. Similarly, denote by C̃l,i =

∑ki
s=1 c̃s,l,i the

sum of all coefficients of the stochastic repartition protocol
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at time t , and the ‘‘unitary portion’’ is computed by q̃l,i(t) =
F̃l,i(vl,i,1, . . . , vl,i,li )/C̃l,i. Thus, the value that is added to
variable xr,i is 4̃r,l,i(t) = q̃l,i(t)× c̃r,l,i. If variable xr,i exists
in several applied programs, for instance,RPl1,i1 , . . . ,RPlk ,ik ,
then all these values 4̃r,l1,i1 , . . . , 4̃r,lk ,ik are added to
variable xr,i.

As mentioned above, two data updating ways can be flex-
ibly used in stochastic production function-repartition proto-
col, especially when dealing with real applicatons. That is,
one of the two data updating ways can be used whether a
variable is involved the stochastic production function or in
the stochastic repartition protocol. Therefore, we have
(1) If substitution updating way is used, then at time t + 1,

new state of variable xr,i is computed by

xr,i(t + 1) =
k∑
s=1

4̃r,ls,is (t);

(2) If increment updating way is used, then at time t + 1,
new state of variable xr,i is computed by

xr,i(t + 1) = xr,i(t)+
k∑
s=1

4̃r,ls,is (t).

In summary, different from usual production function-
repartition protocol, the production function and/or repar-
tition protocol in stochastic production function-repartition
protocol involve in some stochastic/randomized factors, and
two data updating ways can be flexibly used.

B. STOCHASTIC NUMERICAL P SYSTEMS
Definition 2: An StNP system is defined by a construct

5 = (m,H , µ, (V1,P1,V1(0)), . . . , (Vm,Pm,Vm(0)),

Vin,Vout ) (6)

where
(1) m ≥ 1 is the number of membranes;
(2) H is an alphabet of labels for membranes in 5;
(3) µ is a rooted treewithm nodes labeledwith the symbols

of H ;
(4) Vi is the set of variables in region i, 1 ≤ i ≤ m;
(5) Vi(0) is the set of initial values of the variables in region

i, 1 ≤ i ≤ m;
(6) Pi is the set of programs in region i, 1 ≤ i ≤ m; each

program has the following form:

F̃l,i(vl,i,1, . . . , vl,i,li )→ c̃1,l,i|x1,i + · · · + c̃ki,l,i|xki,i
(7)

where F̃l,i(vl,i,1, . . . , vl,i,li ) is stochastic production
function, and c̃1,l,i|x1,i + · · · + c̃ki,l,i|xki,i is stochastic
repartition protocol of the program;

(9) Vin and Vout , respectively, denote the sets of input
variables and output variables.

The variables in the system will be evolved by programs
during the computation. Each program consists of two parts:

stochastic production function and stochastic repartition pro-
tocol. Therefore, the execution of each program includes two
phases: production phase and repartition phase.
(1) Production phase. According to the values of its vari-

ables, production function F̃l,i(vl,i,1, . . . , vl,i,li ) is com-
puted. Note that vl,i,1, . . . , vl,i,li are the variables in
region i and/or the variables in the corresponding upper
(parent) and lower (children) regions.

(2) Distribution phase: the computed value of production
function is allocated to the variables from the region
where the program resides, i.e., x1,i, . . . , xki,i.

Notice that the two phases take place in one time unit. As
mentioned above, two data updating ways can be flexibly
used in StNP systems. If substitution updatingway is used in a
stochastic production function-repartition protocol, then once
the production phase is completed, the variables contained in
the stochastic production function are reset to zero; otherwise,
increment updating way is applied, that is, the variables can-
not be reset to zero.

In general, StNP systems can work in one of the following
modes:
(1) all-parallel mode: at each time unit, in each membrane,

all enabled programs are applied, allowing that more
than one program share the same variable;

(2) one-parallel mode: apply programs in the all-parallel
mode with the restriction that a variable can only exist
in one of the applied programs; in the case of multiple
choices, the programs to be applied are chosen in the
non-deterministic way;

(3) sequential mode: at each time unit, only a program is
applied in each membrane; if more than one program in
a membrane can be applied, then one of them is chosen
non-deterministically.

A configuration is defined by a real vector consisting of the
values of all variables of an StNP system at a computing step.
Initially, the variables are specified by the values in Vi(0),
1 ≤ i ≤ m. Applying the programs in the working way above,
a transition of the system from a configuration to the next one
can be defined. A computation is defined as a sequence of
such transitions. If no program in each region can be applied,
then a halting configuration attains.

IV. APPLICATION IN DATA CLUSTERING PROBLEMS
A. A CLUSTERING ALGORITHM BASED ON STNP SYSTEMS
Based on StNP systems, a novel clustering algorithm is pre-
sented to handle data clustering problems. The core of the
algorithm is an StNP system of degree (2m + 1), 51, which
is described as follows.

51 = (2m+ 1,H , µ, (V1,P1,V1(0)), . . . , (Vm,Pm,Vm(0)),

(V ′1,P
′

1,V
′

1(0)), . . . , (V
′
m,P

′
m,V

′
m(0)),

(V ′′0 ,P
′′

0,V
′′

0 (0)),Vout ) (8)

where
(1) 2m+ 1 is the number of membranes;
(2) H = {0, 1, 2, . . . ,m, 1′, 2′, . . . ,m′} is an alphabet of

labels for membranes in 51;
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(3) µ denotes a rooted tree with 2m+1 nodes labeled with
the elements of H ;

(4) Vi denotes the set of variables in region i, 1 ≤ i ≤ m;
V ′i denotes the set of variables in region i

′, 1′ ≤ i′ ≤ m′;
V ′′0 denotes the set of variables in region 0;

(5) Vi(0) is the set of initial values of the variables in
region i, 1 ≤ i ≤ m; V ′i (0) is the set of initial values
of the variables in region i′, 1′ ≤ i′ ≤ m′; V ′′0 (0) is the
set of initial values of the variables in region 0;

(6) Pi is the set of programs in region i, 1 ≤ i ≤ m; P′i is
the set of programs in region i′, 1′ ≤ i′ ≤ m′; P′′0 is the
set of programs in region 0;

(7) Vout is the set of output variables.
In the following, several important components of sys-

tem 51 are explained/illustrated in detail.

1) THE NESTED MEMBRANE STRUCTURE
The designed StNP system51 has 2m+1 membranes, which
form a nested membrane structure, shown in Figure 1. The
2m + 1 membranes are labeled by 0, 1, . . . ,m, 1′, . . . ,m′,
respectively. The regions that correspond to the 2m+1 mem-
branes are denoted by R′′0 , R1, . . . ,Rm, R

′

1, . . . ,R
′
m, respec-

tively. From the perspective of the functioning, region Ri is
used to evolve the set of cluster centers, called evolution
region, 1 ≤ i ≤ m. Regions R′1, . . . ,R

′
m,R

′′

0 are called storage
regions, where R′i stores the best value of variables found in
region Ri so far, 1 ≤ i ≤ m, while R′′0 is used to remember the
best value of variables found in the system so far.

FIGURE 1. The nested structure used in StNP system 51.

2) VARIABLES
Due to different roles of the regions, the variables in the
system 51 can be divided as three categories and they are
located at different regions. The three kinds of variables are
illustrated as follows.
(1) Variables in Vi, 1 ≤ i ≤ m.

The goal of designing the StNP system 51 is to deter-
mine the optimal set of cluster centers for dataset D.
Therefore, each variable inVi denotes a candidate set of
cluster centers. For example, z1, z2, . . . , zK are a group
of cluster centers, where zk = (zk1, zk2, . . . , zkd ) is
kth cluster center. A variable Z in Vi denotes a set of
cluster centers, so formally Z = (z1, z2, . . . , zK ) =
(z11, z12, . . . , z1d , . . . , zK1, zK2, . . . , zKd ) ∈ RK×d .
For simply, assume that each Vi has the same num-
ber of variables, n, i.e., |Vi| = n, 1 ≤ i ≤ m.
Denote by Z ij ∈ RK×d the jth variable in Vi, thus,
Vi = {Z i1,Z

i
2, . . . ,Z

i
n}, indicating n groups of candidate

cluster centers in region i.

(2) Variables in V ′i , 1 ≤ i ≤ m.
There is only one variable in V ′i , denoted by Z ilbest ,
which is used to store the best value with best fitness
found in Vi so far.

(3) Variables in V ′′0 .
There is only one variable in V ′′0 , expressed by Zgbest ,
which is used to store the best value with best fitness
found in the system so far.

3) INITIAL VALUES OF VARIABLES
Initially, the initial variable values in StNP system 51 are
assigned by an initialization program, including variable val-
ues in Vi(0), V ′i (0) and V

′′

0 (0).
(1) Initial variable values in Vi(0), 1 ≤ i ≤ m.

The initialization program assigns a value for each vari-
able in Vi by generating a group of clustering centers
randomly. Assume that Al and Bl are the lower and
upper bounds of samples in data set D in lth dimension
respectively, 1 ≤ l ≤ d . For each variable Z ij in Vi,
its initial value in Vi(0) can be generated by an initial-
ization algorithm (see Algorithm 1). At the same time,
the initialization algorithm computes the fitness value
of each variable Z ij in Vi according to the following
initial value.

(2) Initial variable values in V ′i (0), 1 ≤ i ≤ m.
Z ilbest is the only variable in V

′
i . Suppose Z

i
s is the vari-

able with minimum fitness value in Vi, i.e., f (Z is(0)) =
min
1≤j≤n

f (Z ij (0)). Therefore, initially Z ilbest = Z is and

Z ilbest (0) = Z is(0).
(3) Initial variable values in V ′′0 .

Zgbest is only one variable in V ′′0 . Suppose Z
t
s is the

variable with minimum fitness value in all V ′i (1 ≤ i ≤
m), i.e., f (Z ts (0)) = min

1≤i≤m
1≤j≤n

f (Z ij (0)). Therefore, initially

Zgbest = Z ts and Zgbest (0) = Z ts (0).
Note that in Algorithm 1, random(Al,Bl) is a random

function that generates a random real number in [Al,Bl].

Algorithm 1 The Initialization Algorithm
1. for i = 1 to m
2. for j = 1 to n
3. for k = 1 to K
4. for l = 1 to d
5. zi,j,k,l(0) = random(Al,Bl);
6. end for
7. zi,j,k (0) = (zi,j,k,1(0), . . . , zi,j,k,d (0));
8. end for
9. Z ij (0) = (zi,j,1(0), . . . , zi,j,K (0));
10. end for
11.end for

4) FITNESS FUNCTION
In the presented clustering algorithm, a fitness function is
introduced to evaluate the variables in the system 51. The
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fitness function is defined by

f (Z ij ) = f (zi,j,1, . . . , zi,j,K ) =
K∑
k=1

∑
Xl∈Dk

||Xl − zl,i,k ||2 (9)

where Z ij = (zi,j,1, . . . , zi,j,K ) is the jth variable in Vi.
Generally, the smaller the function value f (Z ij ), the better the
clustering solution Z ij .

5) PROGRAMS
(1) Programs in Pi, 1 ≤ i ≤ m.

Pi denotes the programs in region i, and the variables
in Vi are evolved by programs in Pi. The programs in
Pi are described as follows.

F̃ ij = r̃1(Z ilbest − Z
i
j )+ r̃2(Zgbest − Z

i
j )

→ c̃1|Z i1 + · · · + c̃n|Z
i
n (10)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n; Z ij is the jth
variable inVi, Z ilbest is the variable inV

′
i , and Zlbest is the

variable in V ′′0 ; r̃1, r̃2 ∈ [0, 1] is two random number;
c̃i(1 ≤ i ≤ n) are random numbers in [0, 1], and
c̃1+. . .+ c̃n = 1. Note that the programs in Eq.(10) use
increment updating way to evolve the variables in Vi.

(2) Programs in P′i, 1 ≤ i ≤ m.
The programs inP′i are used to update the variable Z

i
lbest

in V ′i . The programs are expressed as follows.

F̃ ′i = Z ij0 with f (Z
i
j0 ) = min

1≤j≤n
{f (Z ij )} → 1|Z ilbest

(11)

where Z ij0 is the variable with the smallest fitness value
in Vi. The variable with the smallest fitness value is

used to update the Z igbest , and substitution updating way
is used.

(3) Programs in P′′0 .
The programs in P′′0 are used to update the variable
Zgbest in V ′′0 . The programs are expressed as follows.

F̃ ′′0 = Z i0j0 with f (Z i0j0 ) = min
1≤i≤m
1≤j≤n

{f (Z ij )} → 1|Zgbest

(12)

where Z i0j0 is the variable with the smallest fitness value
in all Vi(1 ≤ i ≤ m). The variable with the smallest
fitness value is used to update the Zgbest according to
substitution updating way.

6) HALTING AND OUTPUT
In the proposed clustering algorithm, a simple halting con-
dition is used: maximum number of iterations. Starting with
initial values in Vi(0)(1 ≤ i ≤ m), V ′i (0)(1 ≤ i ≤ m)
and V ′′0 (0), StNP system continues to execute the programs
in Pi(1 ≤ i ≤ m), P′i(1 ≤ i ≤ m) and P′′0 in parallel
until it reaches the halting condition. At this time, the system
halts and the value of variable Zgbest is the output of the
system. Suppose that Zgbest = (z1, z2, . . . , zK ). Therefore,
z1, z2, . . . , zK are the optimal cluster centers for dataset D.

7) IMPLEMENTATION OF ALGORITHM
The core of the proposed clustering algorithm is an StNP
system consisting of 2m+ 1 regions (membranes). The StNP
system is applied to find the optimal set of cluster centers for a
dataset. Figure 2 shows flow chart of the proposed clustering
algorithm. According to the description of components of
StNP system above, the proposed clustering algorithm can be
briefly illustrated as follows.

FIGURE 2. The flow chart of the proposed clustering algorithm.
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The StNP system has 2m + 1 regions: (i) m evolution
regions (from region 1 to region m), used to evolve the
variables in the system; (ii) m storage regions (from region 1′

to region m′); (iii) a global storage region 0. Each evolution
region contains n variables (Z ij ), each of which is applied to
denote a set of candidate cluster centers; each storage region
has only a variable (Z ilbest ), which is used to store the best
value of variable found in the following evolution region; the
global storage region contains a variable (Zgbest ), which is
used to remember the best value of variables found in the
system.

The proposed clustering algorithm takes the data setD to be
clustered as its input. Moreover, it has four priori parameters:
(i) K (the number of clusters); (ii)m (the number of evolution
regions); (iii) n (the number of variables in each evolution
region); (iv) maximum number of iterations.

Initially, StNP system uses the initialization program
(Algorithm 1) to randomly generate the initial values in Vi(0),
V ′i (0) and V ′′0 (0). The StNP system starts with the initial
values. During the computation, all regions work in parallel,
and the programs in each region are executed in all-parallel
mode. StNP system runs continuously until halting condition
attains. When it halts, the output is the value of variable
(Zgbest ) in region 0, i.e., a group of optimal cluster centers.

B. SIMULATION EXPERIMENTS
This paper discusses a new variant of NP systems, called
StNP systems, and proposes a novel clustering algorithm
based on StNP systems. In this work, data clustering is used as
an application of StNP systems. Therefore, the experiments
are designed for evaluating the proposed clustering algorithm
based on StNP systems.

1) DATA SETS
In experiments, ten benchmark datasets were used to
evaluate the proposed clustering algorithm, including
four two-dimensional artificial data sets (i.e., ‘‘AD_5_2’’,
‘‘Square_4’’, ‘‘Sym_3_22’’ and ‘‘Data_9_2’’, shown in
Figure 4(a) and six real data sets from UCI [64] (i.e., ‘‘Iris’’,
‘‘Wine’’, ‘‘Livedisorder’’, ‘‘LungCancer’’, ‘‘Newthyroid’’
and ‘‘BreastCancer’’). The data sets are described in Table 1.
A clustering performance metric, Jm in Eq. (3), was adopted
to evaluate the clustering performance of the proposed and
the compared clustering algorithms. Generally, for each
dataset, the smaller the Jm value, the better the corresponding
algorithm.

2) THE COMPARED METHODS AND PARAMETER SET
To evaluate the clustering performance of the proposed clus-
tering algorithm, it was compared with five state-of-the-art
clustering algorithms that used the different optimization
techniques. In experiments, the proposed clustering algorithm
is denoted by NMCA, indicating amembrane clustering algo-
rithm based on NP systems. The five compared algorithms as
well as their parameters are illustrated as follows.

(1) MCA: a clustering algorithm inspired from membrane
computing [65], where a tissue-like P system is used
and three genetic operations (selection, crossover and
mutation) are considered as evolution rules. The param-
eters are given: the system has 16 cells, every cell con-
tains 100 objects and the number of iterations is 200.

(2) VSSO: an accelerated simplified swarm optimiza-
tion [66]. In VSSO, parameters are set to cw = 0.2,
cg = 0.65, v = 0.2, d = 10, β = 0.1, population
size = 100 and the number of iterations = 200.

(3) BH: a black hole-based clustering algorithm [67]. The
parameters are set as follows: the number of particles
is 100, and the number of iterations is 200.

(4) KSRPSO: particle swarm optimization with selec-
tive particle regeneration for data clustering [68]. In
KSRPSO, parameters are set to c1 = 0.5, c2 = 2.5,
f = 0.2, d = 0.2, a = 0.8, population size = 100 and
the number of iterations = 200.

(5) classical k-means algorithm [69]. Only the number of
clusters is set for each data set according to Table 1.

TABLE 1. The description of data sets.

3) EFFECTS OF DIFFERENT PARAMETERS ON EXPERIMENTAL
RESULTS
Usually, different parameters have different effects on the
experimental results. Three priori parameters are analyzed as
follows, including number of variables in cells, number of
iterations and number of cells.
(1) number of variables and number of iterations.

Suppose that each region in StNP system has the
same number of variables. Generally, the more the
number of variables, the stronger the local exploitation
capability, however, too many numbers of variables
will increase the runtime of the algorithm. On the
other hand, the number of iterations also has a certain
influence on both clustering performance and runtime.
Usually, a greater number of iterations enable it to have
more opportunities to exploit the optimal solution, but
it needs more running time.
Figure 3 gives average convergence curves of the pro-
posed clustering algorithmwith different parameters on
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FIGURE 3. The clustering results of the proposed clustering algorithm
using different parameters on six data sets.

TABLE 2. Effects of different number of cells for the proposed clustering
algorithm on experimental results.

six data sets, including Square_4, Data_9_2, Livedisor-
der, LungCancer, Newthyroid and BreastCancer, where
the number of iterations is set to 200, and the number

FIGURE 4. Artificial data sets and clustering results of the proposed
clustering algorithm: (a) artificial data sets, and (b)clustering results.

of variables is considered as 10, 20, 30, 40, 50 or 60
respectively. The results indicate that the proposed
clustering algorithm achieves the best convergence per-
formance in case of 50 variables in each region. Simul-
taneously, the proposed clustering algorithm is enough
to complete the convergence within the 100 iterations.

(2) number of regions.
To find the effect of different number of regions on
clustering performance, we implement four StNP sys-
tems, which have 4, 8, 16 and 20 regions, respec-
tively. Table 2 lists the comparison results of different
number of regions on ten data sets. It is observed
from Table 2 that the presented clustering algorithm
achieves best clustering performance (i.e., the lowest
mean value and the smallest standard deviation) in the
case of 20 regions.
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FIGURE 5. Average convergence curves of five clustering algorithms on AD_5_2 and Iris data
sets, respectively.

TABLE 3. The comparison results of different algorithms on ten data sets.

4) EXPERIMENTAL RESULTS AND ANALYSIS
After analyzing effects of different parameters on experimen-
tal results, we chose an optimal group of priori parameters
to realize an StNP system, where it had 20 cells (m = 20),
each cell had 50 variables (|Vi| = n = 50, 1 ≤ i ≤ 20)
and maximum number of iterations was 100. Based on the
StNP system, experiments of the presented clustering algo-
rithm on ten data sets have been accomplished and compared
with other five clustering algorithms. The comparison results
provide mean value and standard deviation of each algorithm
in term of Jm.
Figure 4(b) gives the clustering results of the proposed

clustering algorithm on four 2-dimensional artificial datasets,
while Figure 4(a) shows the corresponding original datasets.
The experimental results indicate that the clustering results
are more consistent with human vision cognition, and they
are also better to meet the clustering criteria: data in the same
cluster are closer, while data in different clusters are farther
away.

Figure 5 shows average convergence curves of five clus-
tering algorithms for 30 execution on AD_5_2 and Iris
data sets, respectively, including NMCA, MCA, VSSO,
BH and KSRPSO algorithms. It can be observed from
Figure 5 that compared with other four algorithms, NMCA
has faster convergence speed on the two data sets. Moreover,
NMCA achieves the lowest Jm value (i.e., the best clustering
performance) for the two data sets in all the five algorithms.
At the same time, we can see that NMCA exceeds MCA
(an existing clustering method based on P systems) in terms
of both convergence speed and convergence performance.
The comparison results indicate that the developed stochastic
production function-repartition protocol can enhance the
capability of searching for the optimal cluster centers.

To further evaluate the clustering performance of the
proposed clustering algorithm, it was compared with five
state-of -the-art clustering algorithms based on optimization
techniques for ten datasets. Table 3 gives the comparison
results of six methods on ten datasets which are mean and
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standard deviation of 30 executions for each algorithm. For
mean value, NMCA achieves the lowest value on each of
nine data sets except for BreastCancer. For BreastCancer data
set, VSSO and BH achieve the lowest value, 2964.39, but,
the value of NMCA is very close to it, i.e., 2964.41. The
comparison results demonstrate that the proposed clustering
algorithm can achieve the best clustering performance on the
ten data sets.

It is found from Table 3 that NMCA achieves smallest
standard deviation on each of six datasets, includingAD_5_2,
Data_9_2, Square_4, Wine, Livedisorder and Newthyroid.
We can also observe that: (i) NMCA has second small stan-
dard deviation for Sym_3_22; (ii) NMCA has third small
standard deviation for Iris; (iii) NMCA has second small
standard deviation for LungCancer; (iv) NMCA has second
small standard deviation for BreastCancer. The comparison
results demonstrate that the proposed clustering algorithm
has higher robustness.

V. CONCLUSION AND FUTURE WORK
This paper introduced a novel stochastic production function-
repartition protocol and presented an extension of numerical
P systems, called stochastic numerical P (StNP) systems.
Compared with usual production function-repartition pro-
tocol, there are three different characteristics in stochastic
production function-repartition protocol:
(1) some stochastic/randomized factors are contained in

production function and/or repartition protocol;
(2) stochastic production function can use the variables in

the region where it resides and/or the variables in the
following upper (parent) and lower (children) regions,
while stochastic repartition protocol can only use local
variables in the region where it resides.

(3) in stochastic production function-repartition protocol,
two data updating ways can be used flexibly.

Therefore, StNP systems possess stochastic and dynamic
characteristics.

Data clustering problems were used to evaluate the ability
of StNP systems. Based on StNP systems, a novel partition
clustering algorithm was developed to deal with the data
clustering problems, where a specific stochastic production
function-repartition protocol was designed. The clustering
algorithm has been evaluated on ten benchmark data sets.
The comparison results to other clustering algorithms demon-
strate the availability and effectiveness of StNP systems in
solving data clustering problems.

StNP systems are a kind of distributed parallel comput-
ing models with stochastic and dynamic characteristics. Can
StNP systems with stochastic and dynamic characteristics be
used for other real applications? Our future work will attempt
to use StNP systems in other applications, for example,
home energy management problems and control problems in
robots.
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