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ABSTRACT A stochastic automaton is a non-deterministic automata with input and output behavior which
works serially and synchronously. Stochastic automata is being used in different application areas. For large
state space and sequence lengths, performance of stochastic automata is a major concern. For this purpose,
graphics processing units can be employed to improve the performance. In this study, a parallel version of
inference algorithm for stochastic automata is designed. The parallel version is mapped to graphics pro-
cessing unit using the dynamic parallelism. The performance of parallel version is compared with different
realizations and parameters. Parallel implementation of inference algorithm achieved approximately speedup
factor of 50 for 256 states.

INDEX TERMS Stochastic automata, CUDA, GPU, forward algorithm, parallelization.

I. INTRODUCTION
Stochastic automata are probabilistic automata with
input/output behavior. Stochastic automata emits an output
symbol and moves into another state after reading input.
Stochastic automata have been applied in language under-
standing [1], [2], modeling of soft real-time systems [3], [4],
and machine learning. Typically, a stochastic automaton can
have all transitions between states [5]. This can lead to high
computational complexity for real world problems. There
is need to improve the performance of stochastic automata
algorithms.

Performance of stochastic automata algorithms can be
enhanced with the help of modern high performance comput-
ing. Graphics Processing Units (GPUs) can efficiently solve
complex problems. GPUs are many core and massively par-
allel architectures which can perform computation intensive
tasks [6].

The Compute Unified Device Architecture (CUDA) pro-
gramming model introduced by NVIDIA provides extension
to the C language and supports the CPU/GPU execution.
CUDA provides a hierarchy of thread groups, shared mem-
ories, and barrier synchronization [6]. The execution of a
thread in CUDA is sequential. Many threads can be exe-
cuted in parallel to process different parts of data [6], [7].
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The threads are grouped into a two-level hierarchy, i.e., grid
and block. A grid is composed of one or more blocks and each
block can have one or more threads. The efficiency of GPU
programs depends on hardware configuration, the utilization
of the allocated hardware, and the amount of parallelism
exhibited by the problem [6]–[10].

In stochastic automata, the inference algorithm called For-
ward algorithm is a variant of Viterbi algorithm [11]. Forward
algorithm is a dynamic programming algorithm to find the
optimal sequence of states. For m states, the Forward algo-
rithm finds the path with time complexityO(m2)n. This work
presents the formulation and experimental setup of parallel
version of the Forward algorithm. The Forward algorithm is
partitioned into data independent and dependent parts. The
data independent part is implemented on the GPU to enhance
the efficiency.

The remainder of the paper is structured in different sec-
tions. Section II provides a brief overview of the stochastic
automata. Sections III and IV discuss the Forward algorithm
for stochastic automata and different approaches to paral-
lel this algorithm. Section V presents the results. Finally,
section VI concludes the outcomes.

II. STOCHASTIC AUTOMATA
An automaton (Automata in plural) is a control mech-
anism or an abstract computing device which performs
a pre-determined sequence of operations automatically.
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FIGURE 1. Stochastic automata diagram.

Finite automata is an automaton with a finite number of
states. An automaton which change their state and give out-
put according to probability is called stochastic automata.
Stochastic automata has been introduced as systems which
change their state and give some output according to
some probability depending on the input and the actual
state [11].

Shannon [12] and Von Neumann [13] introduced the the-
ory of discrete stochastic systems by working on memory
less communication channels and synthesis of reliable sys-
tems from unreliable components, respectively. The hidden
Markov model (HMM) is a probabilistic network related to
stochastic automata [5], [14], [15]. HMM addresses evalua-
tion, decoding, and learning problems [1], [16].
The formal definition of stochastic automata is [17], [18]:
• Nonempty finite set of states Q,
• an alphabet of input symbols 0,
• an alphabet of output symbols 9, and
• conditional probability distribution p on 9 × Q.
A stochastic automaton can be considered an abstract

machine that takes on a well-defined state at each time step of
computation. Conditional probability distribution p(·, ·|u, q)
on 9 × Q consists of non-negative numbers p(v, q′|u, q) for
all q′ ∈ Q and v ∈ 9 so that∑

v∈9

∑
q′∈Q

p(v, q′|u, q) = 1, u ∈ 0, q ∈ Q (1)

For |u| = |v|,

p(vv′, q′|uu′, q) =
∑
s′∈Q

p(v, s′|u, q) · p(v′, q′|u′, s) (2)

where all u, u′ ∈ 0∗, v, v′ ∈ 9∗, and q, q′ ∈ Q.
The implementation of stochastic automata can be con-

strained due to local maxima problem. This problem can be
avoided by determining the allowed transitions for the given
problem [5].
Example 1: Consider the stochastic automata SA =

({q1, q2}, {0}, {1}, p) with conditional probability

p(1, q1|0, q1) =
1
3
, p(1, q2|0, q1) =

2
3
, p(1, q2|0, q2) = 1.

Figure 1 shows the stochastic automata graph. The
sub-stochastic matrix is

P(u) = P(v|u) =

(
1
3

2
3

0 1

)

III. FORWARD ALGORITHM
Stochastic automata are abstract machines with input/output
behavior. Consider the stochastic automata SA =

(Q, 0,9,P, π, f ) withm-element set of statesQ,m1-element
input alphabet 0, and m2-element output alphabet 9. The
marginal distribution gives the probability of input sequence
U = u1, u2, · · · , un ∈ 0n and output sequence V =

v1, v2, · · · , vn ∈ 9n.

p U ,V (u, v) =
∑

q∈Qn+1

p U ,Q,V (u, s, v) (3)

The sum-product decomposition is

p U ,V (u, v) =
1

m.m1

∑
qn+1∈Q

(
∑
qn∈Q

θvn,qn+1;un,qn

(· · · (
∑
q2∈Q

θv2,q3;u2,q2 (
∑
q1∈Q

θv1,q2;u1,q1 )) · · · ))

(4)

A n × m matrix F can be used to calculate the probability
p(u,v).

F[0, q] =
1

m.m1
, q ∈ Q, (5)

F[i, q] =
∑
q′∈Q

(θvi,q;ui,q′ · F[i− 1, q′]), q ∈ Q, 1 ≤ i ≤ n,

(6)

p(u, v) =
∑
q∈Q

F[n, q]. (7)

The aim is to determine the optimal state sequence
q̄ ∈ Qn+1.

q̄ = argmaxq∈Qn+1{p U ,Q,Vu, q, v} (8)

Algorithm 1 Forward(u, v, θvi,q′;ui,q)

Require: sequence u ∈ 0n, v ∈ 9n, scores (θvi,q;ui,q′ )
Ensure: term p(u, v)
1: F ← matrix[0 . . . n, 1 . . .m]
2: for q← 1 to m do
3: F[0, q]← 1

m.m1
4: end for
5: for i← 1 to n do
6: for q← 1 to m do
7: F[i, q]← 0
8: for q′← 1 to m do
9: F[i, q]← sum(F[i, q], θvi,q;ui,q′ · F[i− 1, q′])
10: end for
11: end for
12: end for
13: p← 0
14: for q← 1 to m do
15: p← sum(p,F[n, q])
16: end for
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Given the input sequence U = u1, u2, · · · , un and output
sequence V = v1, v2, · · · , vn, the Forward algorithm finds
the sequence of states that correspond to this input and output
behavior [11]. This algorithm initializes the forward matrix
F with fraction 1

m.m1
. Matrix entries are calculated using the

values of previous row. This algorithm finds the matrix entry
F[i, q] by adding the marginal probability of current state to
the preceding value F[i− 1, q′].

The computational time complexity of Forward algorithm
is O(m2n). The optimal state sequence q̄ can be computed
efficiently using tropicalization of sum-product decomposi-
tion [11]. For this, put d(u, v) = − log p U ,V (u, v) and
d(u, q, v) = − log p U ,Q,V (u, q, v). The tropicalized term
d(u, v) can be computed by putting sy,q′;x,q = − log θv,q′;u,q.
The sums and products are replaced by tropical addition and
tropical multiplication in sum-product decomposition [11].

d(u, v) =
⊕

qn+1∈Q

(
⊕
qn∈Q

svn,qn+1;un,qn � (· · · �

(
⊕
q2∈Q

sv2,q3;u2,q2 � (
⊕
q1∈Q

sv1,q2;u1,q1 )) · · · )) (9)

By using the tropicalized sum-product decomposition,
the term d(u,v) can be calculated.

F[0, q] = 0, q ∈ Q, (10)

F[i, q] =
⊕
q′∈Q

(svi,q;ui,q′ � F[i− 1, q′]), q ∈ Q, 1 ≤ i ≤ n,

(11)

d(u, v) =
⊕
q∈Q

F[n, q]. (12)

Algorithm 2 Tropical_Forward(u, v, svi,q′;ui,q)

Require: sequence u ∈ 0n, v ∈ 9n, scores (svi,q;ui,q′ )
Ensure: term d(u, v)
1: F ← matrix[0 . . . n, 1 . . .m]
2: for q← 1 to m do
3: F[0, q]← 0
4: end for
5: for i← 1 to n do
6: for q← 1 to m do
7: F[i, q]←∞
8: for q′← 1 to m do
9: F[i, q]← min{F[i, q], svi,q;ui,q′ + F[i− 1, q′]}

10: end for
11: end for
12: end for
13: d ←∞
14: for q← 1 to m do
15: d ← min{d,F[n, q]}
16: end for

Equation 10 to 12 gives the Tropical_Forward algorithm.
Its input is given by the input sequence u, the output
sequence v, and transition probability svi,q′;ui,q. The first row

of F is initialized with 0. The entry F[i, q] has minimum
value for the current state. Then, the tropicalized term d(u, v)
is computed. The high computational complexity limits the
usage of stochastic automata. Optimal state sequence(s) can
be obtained by backward algorithm [11].
Example 2: Consider the stochastic automaton SA =

(q1, q2, a, b, 0, 1, p) with conditional probabilities
p′ a, q1 a, q2 b, q1 b, q2
0 0.30 0.50 0.60 0.40
1 0.70 0.50 0.40 0.60

p′′ q1 q2
q1 0.60 0.30
q2 0.40 0.70
Then probabilities are

p(0, q1|a, q1) = 0.18, p(0, q2|a, q1) = 0.12,

p(1, q1|a, q1) = 0.42, p(1, q2|a, q1) = 0.28,

p(0, q1|a, q2) = 0.15, p(0, q2|a, q2) = 0.35,

p(1, q1|a, q2) = 0.15, p(1, q2|a, q2) = 0.35,

p(0, q1|b, q1) = 0.36, p(0, q2|b, q1) = 0.24,

p(1, q1|b, q1) = 0.24, p(1, q2|b, q1) = 0.16,

p(0, q1|b, q2) = 0.12, p(0, q2|b, q2) = 0.28,

p(1, q1|b, q2) = 0.18, p(1, q2|b, q2) = 0.42.

The tropicalized values obtained by taking natural
logarithm are

s0,q1|a,q1 = 1.71, s0,q2|a,q1 = 2.12,

s1,q1|a,q1 = 0.87, s1,q2|a,q1 = 1.27,

s0,q1|a,q2 = 1.90, s0,q2|a,q2 = 1.05,

s1,q1|a,q2 = 1.90, s1,q2|a,q2 = 1.05,

s0,q1|b,q1 = 1.02, s0,q2|b,q1 = 1.43,

s1,q1|b,q1 = 1.43, s1,q2|b,q1 = 1.83,

s0,q1|b,q2 = 2.12, s0,q2|b,q2 = 1.27,

s1,q1|b,q2 = 1.71, s1,q2|b,q2 = 0.87.

IV. ACCELERATING FORWARD ALGORITHM
For large sequence length and state space, the high complex-
ity restricts the usage of the stochastic automata. The huge
performance boosts can be attained by mapping the stochas-
tic automata algorithms on GPU. Researchers have mapped
HMM based applications to GPU and achieved order of mag-
nitude speedup. They have applied task parallel [19]–[23],
data parallel [24]–[27], and combination of task and data
parallel [28]–[32] approaches for HMM. Similar approaches
can be adopted to improve the performance of stochastic
automata.
Different approaches can be used to enhance the perfor-

mance of Tropical_Forward algorithm. One method is to
compute the probabilities in advance and save in the matrix.
The downside is this large matrix should be transferred
into the GPU memory. Moreover, the maximum number of
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FIGURE 2. n times GPU kernel invocation.

sequences and states that can be processed is restricted due to
small GPU memory size.

Another approach to accelerate the Tropical_Forward algo-
rithm is to divide the algorithm into sequential CUDA kernel
calls. In this manner, n kernels are launched for n sequences
(Figure 2). Moreover, the number of blocks and threads for
each kernel are selected according to problem size. Parallel
implementation of this approach uses both coarse and fine
grain granularity depending on the state space. However, each
kernel launch requires to transfer the control to CPU. For
large sequence lengths, multiple kernel launch and execution
overheads can impact the performance.

Dynamic parallelism can be employed to reduce the GPU
kernel launch overhead. Dynamic parallelism can minimize
the need to transfer execution control and data between
CPU and GPU [7]. This approach can be adopted to imple-
ment Tropical_Forward algorithm. This work launches multi-
ple kernels in blocks using dynamic parallelism. Each block
processes an input sequence (Figure 3). Parallel implemen-
tation uses both coarse and fine grain granularity. How-
ever, execution parameters configuration and allocation of
resources is major concern for dynamic parallelism.

V. RESULTS AND DISCUSSION
In this section, performance results of the serial and par-
allel implementations of Forward algorithm for stochastic
automata is presented. We have considered execution time
and speed up for performance evaluation. The execution
times is measured by taking average over twenty runs. More-
over, theoretical floating point operations (FLOPs) are not
considered as performance measure. The reason is single
floating point operation can be transformed to multiple oper-
ations during compilation. Moreover, we considered sin-
gle precision arithmetic and different optimization flags for
experimentation.

The computing environment used for implementation is an
Intel Core i7 6700 CPU (3.40 GHz) the CUDA version 9.0 on
an NVIDIA Titan XP graphics card. Different parameters and
realizations were used to obtain the results. In order to achieve
highest performance results, ECC mode was disabled. The
tests are performed using different optimization flags like
maxrregcount, use_fast_math. The kernel exploited different
memory optimization techniques by considering different
memory types. The test data is generated randomly. The
performance is calculated using constant sequence size and
variable state space and vice versa. The experimental results
are examined for the state space up to 256 and maximum
sequence size is 32,768.

Figures 4 and 5 shows the comparison of the parallel
and serial versions of the Forward algorithm. First, results
are obtained by altering the sequence length and fixing the
number of states (Figure 4). The serial and parallel versions

FIGURE 3. GPU kernel invocation using dynamic parallelism.
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FIGURE 4. Runtime (ms) of the Forward algorithm using variable sequence size and constant number of states.

of Tropical_Forward algorithm have approximately the sim-
ilar runtime for small number of states. The reason is threads
within the block does not fully utilize the hardware. There
exists processing overhead for context switching between
the CPU and GPU. Parallel version of Tropical_Forward

algorithm is not suitable for small state space. However,
parallel version performs better than serial implementation
by an order of magnitude for large state space. Moreover,
the average execution time for parallel version is almost
similar for all states (Table 1).
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FIGURE 5. Runtime (ms) of the Forward algorithm using variable number of states and constant sequence size.

Figure 5 shows the performance by altering the states and
fixing the sequence length. Parallel version performs much
better than the serial version for large number of states.
By increasing the number of states and launching multiple

kernels using dynamic parallelism, the performance of paral-
lel version is increased by an order of magnitude. The average
runtime is directly proportional to the sequence length. This
is valid for all approaches. Table 2 provides more detail.

VOLUME 8, 2020 32275



M. U. Sarwar et al.: Accelerating Forward Algorithm for Stochastic Automata on GPUs

FIGURE 6. Speedup for Forward algorithm using fixed number of states and variable sequence length.

Next, the speedups obtained is calculated by comparing
with serial implementation (Figure 6 and 7). Figure 6 illus-
trates the speedup by altering sequence length and fixing the

number of states. For small state space, the parallel version
shows the non-monotonic behavior. The reason is small
degree of parallelism exhibited by the small number of states.

32276 VOLUME 8, 2020



M. U. Sarwar et al.: Accelerating Forward Algorithm for Stochastic Automata on GPUs

FIGURE 7. Speedup for Forward algorithm using constant sequence size and variable number of states.

Large state space have better speed-up due to large degree of
parallelism. Themaximum average speedup is approximately
49 (Table 3).

Finally, the speedup by altering state space and fixing
the sequence size is shown in Figure 7. For the large

sequence size, the parallel version has performance degrada-
tion. The reason is large number of blocks are created. There
are hardware limitations of parallel executions of the blocks.
The maximum average speedup attained is approximately 21
(Table 4).
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TABLE 1. Maximum and average runtime of the Forward algorithm using
constant number of states.

TABLE 2. Maximum and average runtime of the Forward algorithm using
constant sequence size.

TABLE 3. Maximum and average speedup of the Forward algorithm using
constant number of states and and variable sequence size.

TABLE 4. Maximum and average speedup of the Forward algorithm using
constant sequence size and variable number of states.

VI. CONCLUSION
Stochastic automata is a class of probabilistic automata with
input/output behavior. The high computational complexity
limits the usage of stochastic automata. This study presents
a parallel version of Forward algorithm. The parallel version
was designed using dynmaic parallelism. Forward algorithm
achieves speed-up factor of approximately 49 for 256 states.
This approach should be investigated for learning problem of
Stochastic automata.
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