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ABSTRACT Northern maize leaf blight is one of the major diseases that endanger the health of maize. The
complex background of the field and different light intensity make the detection of diseases more difficult.
A multi-scale feature fusion instance detection method, based on convolutional neural network, is proposed
to detect maize leaf blight. The proposed technique incorporates three major steps of data set preprocessing
part, fine-tuning network and detection module. In the first step, the improved retinex is used to process
data sets, which successfully solves the problem of poor detection effects caused by high-intensity light.
In the second step, the improved RPN is utilized to adjust the anchor box of diseased leaves. The improved
RPN network identifies and deletes negative anchors, which reduces the search space of the classifier
and provides better initial information for the detection network. In this paper, a transmission module is
designed to connect the fine-tuning network with the detection module. On the one hand, the transmission
module fuses the features of the low-level and high-level to improve the detection accuracy of small target
diseases. On the other hand, the transmissionmodule converts the feature map associated with the fine-tuning
network to the detection module, thus realizing the feature sharing between the detection module and the
fine-tuning network. In the third step, the detection module takes the optimized anchor as input, focuses
on detecting the diseased leaves. By sharing the features of the transmission module, the time-consuming
process of using candidate regions layer by layer to detect is eliminated. Therefore, the efficiency of the
whole model has reached the efficiency of the one-stage model. In order to further optimize the detection
effect of the model, we replace the loss function with generalized intersection over union (GIoU). After
60000 iterations, the highest mean average precision (mAP) reaches 91.83%. The experimental results
indicate that the improved model outperforms several existing methods in terms of greater precision and
frames per second (FPS).

INDEX TERMS Northern maize leaf blight, disease detection, transmission module, retinex, single shot
multiBox detector (SSD).

I. INTRODUCTION
Maize is one of the major food crops in the world. The
planting area and output of maize in the world are only lower
than that of wheat and rice [1]. In addition to be an excellent
feed for animal husbandry, maize is also an important raw
material for the development of light industrial products.

The associate editor coordinating the review of this manuscript and
approving it for publication was Liandong Zhu.

However, maize is usually suffered from Northern leaf blight
(NLB). In recent years, the decrease of maize yield caused
by NLB has been steadily increasing [2] Therefore, it is
extremely important to ensure the accurate detection and
identification of maize leaf blight. The disease is not easy
to be detected in the early period, showing water-stained
cigar-shaped spots, gradually spread to leaf sheath. At the
later period of the disease, the whole plant loses their vitality,
leading to the reduction of maize yield. Traditional maize
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disease detection mainly relies on the experience of agricul-
tural experts and the expertise of plant pathology. Misjudg-
ment of the disease often leads to a large number of inaccurate
pesticide application, which not only leads to environmental
pollution, but also increases the pesticide content of maize.

With the widespread use of machine vision, many scholars
use the method of machine vision to study disease detec-
tion. Hyperspectral imaging combinedwith chemometrics [3]
was successfully proposed to identify the rice sheath blight
disease; Support vector machine (SVM) classifiers [4] were
developed for distinguishing infected and healthy seedlings.
Deep belief networks [5] in the construction of robust meth-
ods was applied to precision agriculture. All the above liter-
atures used traditional target detection methods to manually
select the characteristics of diseased leaves for segmentation
and detection. Although the detection accuracy is relatively
high, the color and texture of manual calibration are sub-
jective that may still affect the objectivity of the disease
detection.

Convolutional neural network (CNN), a popular method of
target detection, has a wide application prospect in the field
of crop disease detection [6]–[9]. As a kind of machine learn-
ing, CNN can achieve the purpose of accurate detection by
training a large number of images. CNN does not depend on
specific features, and has a good detection effect in the field of
generalized identification, such as target detection [10], [11],
target segmentation [12], and target recognition [13], [14].
Zhang et al. established a three-channel convolutional neural
network for the detection of vegetable leaf diseases according
to the different colors of diseased leaves, and the detection
accuracy reached 87.15% [15].Ma et al. [16] proposed a deep
convolution neural network DCNN to identify and detect four
cucumber diseases. In order to reduce the over-fitting of the
model, the data enhancement method is used to expand the
experimental data set. DCNN obtain good detection accuracy
for anthracnose, downy mildew, powdery mildew, and target
leaf spots from 14,208 images. Srdjan et al. [17] established
a plant disease recognition model based on leaf image clas-
sification using deep convolutional neural network, and its
detection accuracy reached 91%. The above literature proves
that it is feasible to detect crop diseases by convolutional neu-
ral networks. However, the above data sets are all collected
from the background of the laboratory (only a single leaf or
a single background), and the detection performance is quite
different from that of the images taken in the field. In addition,
different from the detection of other diseases, the spot area of
maize leaf blight at the initial pathological stage is small and
difficult to detect, so the accuracy of detection requirements
for small targets is relatively high.

To solve the problems that high-intensity light interfered
with disease detection in the field and the traditional model is
insensitive to small-target disease detection, this paper added
retinex model with low-pass output to preprocess the data
set, thus the data set has a higher degree of identification.
Meanwhile, the multi-scale feature fusion and the fine-tuning
network of anchor box was used in the detection network

FIGURE 1. Examples of northern leaf blight. Images are under different
backgrounds.

to improve the detection effect of small targets. General-
ized Intersection over union (GIoU) [18] was adopted to
redefine the original loss function for increasing detection
accuracy. The images with maize leaf blight in the field are
detected by the improved model, and the detection results
was comparedwith the traditional single shotmultiBox detec-
tor (SSD) model to provide reference for the accurate detec-
tion of maize leaf blight.

II. DATA SOURCE
The NLB data set (https://osf.io/p67rz/) is produced in
response to the terrible disease, which is the largest open data
set onNLB. Each image is calibrated by human plant patholo-
gists and has high accuracy. The NLB data set includes three
different parts. The first part is the hand-held set, which is
taken by hand. The second part is the boom set, which is
taken by mounting the camera on a 5 meters boom. The last
data set is unmanned drone set, which is taken by mounting
the camera on a DJI Matrice 600. The hand-held part of the
data set has a higher clarity. Thus, this part is chosen as the
data set in this paper, including 1019 images with different
angles and backgrounds, 7669 annotations. Typical images
are shown in Fig. 1.

The number of images in the hand-held data set is small,
which may affect the training effect. Besides, the uneven
classification of the disease sample labels may affect the
stability of the model. Raw data sets mainly go through
two aspects of data enhancement process. First, the pho-
tometric distortions, including random brightness, random
lighting noise, and random contrast, hue, saturation. Second,
the geometric distortions, including random crop, random
expand, and random mirror. The above two categories of
data enhancement methods are carried out with a probability
of 50% and get 8152 images in total. The augmentation
operation does not change the original number of annotations,
which also ensures the integrity of the data set. The data set
is divided into the training set, validation set, and testing set
by 5:4:1.
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III. MAIZE LEAF BLIGHT DETECTION MODEL STRUCTURE
Target detection includes one-stage and two-stage detection
methods. The main idea of the one-stage method is to use
the multi-scale method to perform intensive sampling on the
image, and then take advantage of the convolutional neural
network to extract features after the classification and regres-
sion. There is no extraction of the region proposal, so the
speed advantage is demonstrated. As a representative of the
single-stage target detection algorithm, SSD [19] improves
the detection effect of targets through the anchor of different
scales. But it uses low-level feature maps to detect small
targets, making the detection of small targets not ideal. The
uniform sampling of SSD also leads to the imbalance of
positive and negative samples, which leads to a decrease in
the accuracy of model detection.

To the best of our knowledge, most of the researches focus
on the extension of the data set, whereas ignore the specific
optimization to the data set problems. The data set studied
in this paper is taken in the field with high light intensity,
causing the appearance of ‘reflection’ phenomenon in some
images. Therefore, it is difficult to detect the diseased posi-
tion clearly. The improved retinex [20] is used to optimize
the original data set, making the images adjusted to visual
acceptance range [21] for better detection results.

The aim of this study is to solve the problems of poor
detection effects caused by high-intensity light, poor detec-
tion effect for small targets [22], and inaccurate reflection
of the loss function in SSD. Thus, this paper makes three
improvements based on SSD:
• The data set is preprocessed by the improved retinex to
deal with the problem of high-intensity light;

• A two-stage structure is used to deal with the problem of
class imbalance while adding multi-scale feature fusion
to improve the detection of small targets;

• GIoU is adopted to optimize the original loss to improve
detection accuracy.

A. RETINEX WITH LOW-PASS OUTPUT
Data set preprocessing is an important part of deep learning.
The filter function of the single-scale retinex [23] is modified
to solve the problem of high-intensity light in this paper. The
high-pass filter is used to instead of the original Gaussian
low-pass filter to obtain a low-pass output image, which
reduces the reflection of the image. Retinex theory points out
that the color of an object is determined by the reflection
ability of the object, rather than by the absolute value of
the intensity of external reflected light [24]. In other words,
the color of the object is not affected by the non-uniformity
of reflection and has universal consistency [25]. The formula
can be expressed as:

S(x, y) = R(x, y) ∗ L(x, y) (1)

where S (x, y) represents a given image, R (x, y) represents a
reflected image, L (x, y) represents a luminance image, and
(x, y) represents each point in the image.

FIGURE 2. The schematic diagram of retinex.

FIGURE 3. Samples of original and optimized pictures. Images a-d are
examples with strong reflection in the data set; Images e-h are the
corresponding images processed by retinex.

The two variables are separated by taking the logarithm
of the reflected image R (x, y) and the luminance image
L (x, y). The formula is as follows:

logS(x, y) = logR(x, y)+ logL(x, y) (2)

Then, by calculating the weighted average of pixel points
(x, y) in the image and pixel points (x, y) in the surround-
ing area, the change of luminance L (x, y) is estimated and
removed in the original image S (x, y). Thus, the reflected
value R (x, y) in the original image S (x, y) is preserved.
The specific transformation process is as follows. Firstly, the
original image is convolved by a high-pass filter function
to obtain a high-pass filtered image H (x, y), and M (x, y)
represents a high-pass filter function. It is defined as:

H (x, y) = S(x, y)⊗M (x, y) (3)

The high-pass filtered imageH (x, y) is subtracted from the
original image S (x, y) to obtain the low-frequency weakened
image D (x, y). The definition can be normalized as follows:

D(x, y) = logS(x, y)− logH (x, y) (4)

Finally, an antilog is used to the low-frequency image, and
the image R (x, y)with appropriate reflection is obtained. The
result is shown as follows:

R(x, y) = expD(x, y) (5)

In this paper, the retinex is performed on the image with
strong reflection in the data set. The specific effect is shown
in Fig. 3.
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FIGURE 4. The improved RPN network.

B. MULTI-LAYER INPUT RPN NETWORK
With the addition of region proposal network (RPN), the divi-
sion of anchor box is more detailed. However, in practical
application, the efficiency and precision are not enough in
the modified SSD with RPN network. Because a feature map
generated more than 45,000 anchor boxes. A large number of
anchor boxes are located in the background and need to be
filtered in the next step. Therefore, it is necessary to adjust
the structure of RPN to detect disease areas effectively.

The two-stage method has solved the problem of class
imbalance well. As is shown in Fig. 4, the three-layer con-
volution of the original RPN [26] network is replaced by one
Kernel (size = 3×3, Channel = 1024), two Kernel (size =
1×1, Channel is 1024 and 256), and a four-layer convolution
of Kernel (size = 1 × 1, Channel = 512). Convolution
calculation in RPN network is adopted to slide on the feature
map. Meanwhile, a series of region proposals are sent out to
provide better initial information for the detection network.

In this paper, the 320∗320 size of feature map is taken as
an example. To deal with the problem of diseased position
with different scales, the anchor is extracted on four feature
layers from the input feature map, stride sizes 5, 10, 20,
and 40 pixels are chosen as four feature layers. Each feature
layers are combined with four different scales (20, 40, 80,
160) and three kinds of aspect ratio (1:1, 1:2, 2:1). Finally,
12 anchors with different sizes are generated. We follow the
design of anchor scales over different layers, which ensure
that anchors of different sizes can have the same density
on the image [27]. In this study, the largest IoU values
and the samples with IoU > 0.5 are selected as positive
samples. Meanwhile, all anchors with negative confidence
> 0.99 are removed, that is to say, most background anchors
are removed. As a result, the complexity of the model was
reduced. The problem of class imbalance is alleviated and the
testing time is shortened [28].

C. TRANSMISSION MODULE
In many researches, fusing features [29], [30] of different
scales is an important measure to improve detection perfor-
mance. Low-level features have higher resolution and contain

more location and detail information. However, due to less
convolution, they have lower semantics and more noise.
High-level features have stronger semantic information, but
their resolution is very low and their perception of details is
poor. How to combine them efficiently is the key to improve
the accuracy of detection model.

Transmission module (TM) is designed to improve the
detection effect on small targets and detection efficiency in
this paper. The feature map associated with the anchor is
adopted to fused feature by transmission module. As shown
in Fig. 5, firstly, two 3 × 3 convolutions are carried to the
feature map and one 4×4 deconvolution is used to expand the
high-level feature map, then they are subjected to elemental
summation to achieve the purpose of feature fusion. In order
to ensure the identifiability of the detection features, one 3×3
convolution is added to the summed feature map. The module
refines the features and sum the corresponding elements with
the deep features. The network takes the summation result
as the feature of the current layer to the detection module,
and it solves the problem that low-level feature used in the
traditional SSD is insufficient. Thus, the detection accuracy
of small target is improved. The fine-tuning network will
only send the anchors judged as target disease to the detec-
tion module through the transmission module, thus realizing
the feature sharing between the detection module and the
fine-tuning network.

D. GENERALIZED IOU
Smooth-L1 is used to optimize the bounding box of the SSD.
The loss measured by distance does not fully reflect the actual
detection situation of the detection box. As shown in Fig. 6,
when the three norm values reach the same value, there is a
big difference in the actual detection effect (a big difference
in the IoU). The phenomenon indicates that the distance norm
cannot accurately reflect the real detection effect. The effect
of the target detection directly affects by the accuracy of the
bounding box regression. Thus, the IoU-based loss can not
only accurately reflect the detection effect of the bounding
box and the ground truth, but also has the scale invariance.
Therefore, the accuracy of target detection can be effectively
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FIGURE 5. Transmission module.

FIGURE 6. IoU of the same norm. The black box indicates the bounding
box and the orange box indicates the ground truth. When the distance
norm (‖.‖) is 6.5, the actual IoU is different (IoU is 0.62, 0.91, 0.34).

improved by using the IoU as a loss function instead of the
original smooth-L1. Using the IoU [31] as a loss function
requires solving the following two problems:

(1) When there is no coincidence between the bounding
box and the ground truth, in other words, IoU = 0, the gradi-
ent is 0, it cannot be optimized.

(2) When the bounding box coincides with the ground
truth, the detection effect is different.

Based on the excellent characteristics of IoU and its short-
comings as a loss function, GIoU is proposed to solve the
problems. The loss function of original SSD is optimized
by GIoU in this paper. First, the IoU is calculated by the
conventional method.

IoU =
|A ∩ B|
|A ∪ B|

(6)

In the formula (6), A,B are the bounding box and the ground
truth, and A,B belong to the set S (S is all the boxes)
(0≤IoU≤1). A minimum closed shape C (C ⊆ S) is intro-
duced.

GIoU = IoU −
|C\A ∩ B|
|C|

(7)

According to the definition of GIoU, it can be seen that:
(1) GIoU also has scale invariance.
(2) There is a symmetric range for GIoU (−1≤GIoU≤1).

(3) When A and B do not intersect, the gradient is not 0 due
to the introduction of variable C , and the optimization can be
continued.

E. MULTI-INPUT RPN NETWORK COMBINED WITH
MULTI-SCALE FUSION DISEASE DETECTION MODEL
In this section, Fig. 7 shows the whole NLB detection model
based on multi-input RPN network and multi-scale fusion.
The model consists of the improved RPN network [32], [33]
and transmissionmodule, a total of 11 layers, and the Softmax
is adopted to be the classifier [34]. The RPN network replaces
the original classification layer with the multi-scale fea-
ture input network (conv1, conv2, conv3, conv4) for anchor
fine-tuning, and use the 4-layer convolution (conv5, conv6,
conv7, conv8) as the detection layer. The transmission mod-
ule includes two convolution layers and one deconvolution
layer (Conv9, Conv10, Deconv11), which is not shown in
the figure due to the limits of picture size. Considering that
different parameter settings will affect the accuracy of the
model, the mean Average Precision of one stage model (SSD)
is compared with the mAP of the new models under images
of different sizes and different loss evaluation indicators.

mAP =
1
|QR|

∑
q∈QR

AP(q) (8)

whereQR is the number of all categories; AP(q) is the average
precision value of the detection.

IV. MODEL TRAINING
A. EXPERIMENTAL PLATFORM
The experimental platform is the Ubuntu 16.04 system,
which uses the Caffe as deep learning framework. The
computer memory is 16GB, and it is equipped with
Intel @CoreTMi7-7 700KCPU@4.00GHzx8 processor. Two
NVIDIA GTX1080Ti GPUs are used in the experiment. The
memory type is GDDR5, with a capacity of 11GB, and core
frequency is 1480-1582MHz.
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FIGURE 7. Detection model of NLB. Conv1, Conv2, Conv3, and Conv4 corresponding to different input image (512∗512, 320∗320) is
64∗64, 32∗32, 16∗16, 8∗8(40∗40, 20∗20, 10∗10, 5∗5), the number of channels is 512, 512, 1024, 512 (512, 512, 1024, 512). P4 is the
highest-level input (no deconvolution) obtained from the feature map after three convolution cores (size 3∗3, step size 1, channel
256) and pooling. P3 is obtained from the feature map after convolution, pooling, and the sum of elements after deconvolution with
P4. P2 and P1 are the same process.

B. SETTING OF TEST PARAMETERS
Batch training combined with momentum factor method is
used to divide the training set and test set into several batches,
and 16 images are trained in each batch. The number of
iteration is 60000. The stochastic gradient descent (SGD)
is adopted [35]. The initial learning rate is 0.001, grad-
ually reducing it to the previous 1/25 in stages, and the
weight-decay is set to 0.0005 to prevent over fitting.

V. EXPERIMENTAL RESULTS
A. COMPARISON OF DISEASED POSITION
In this section, we not merely shows the conclusions obtained
by training the images of the different sizes, but also com-
pare with the result of traditional SSD, which has been
trained from two different data set. The mean Average Pre-
cisions (mAP) and the Frames Per Second (FPS) of the
models are listed in Table 1. As a result, these improvements
have proved to be effective for improving the performance
of the new model. In the following parts, the impact of
these improvements in the overall network framework will
be analyzed.

B. THE EFFECT OF IMPROVED RETINEX MODEL ON MAP
Comparing the mAP of Data set A with that of Data set B
in each model, it can be concluded that the retinex greatly
improves the problem of poor detection accuracy caused

TABLE 1. Model parameter setting and test accuracy.

by high-intensity light. The mAP of SSD is improved from
71.8% to 75.42%. The accuracy of Data set B produces
5.31% higher than the accuracy of Data set A in model 5,
and the mAP improves by 2.26% in model 6. In general,
the accuracy of Data set B is higher than that of Data set A.
In Fig. 8, part of the detection accuracies (model 6) are shown
in Data set A and Data set B. In view of the specific problems
of the data set in this study, the improved retinex model
effectively solve the problem that the disease position is not
obvious.
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FIGURE 8. Detection accuracy of Data set A and Data set B under model 5. Images 1-3 and Images 4-5 show the detection effects of Data set A and Data
set B under model 6 respectively.

FIGURE 9. Comparison of detection accuracy between Model 2 and Model 4.

C. THE EFFECT OF TRANSMISSION MODULE
COMBINED WITH RPN NETWORK ON MAP
It is clear that the proposed architecture for the detection of
maize leaf blight under complex background is more effective
than SSDmodel in Fig. 9. Themulti-layer input RPN network
improves the initial information by adjusting the position
of region proposal for the classification and precise adjust-
ment of the detection network. Compared with the original
SSD model, the mAP of model 3 (320∗320) is improved to
85.65%, but its FPS reduce from 48 to 45.2. Compared with

the model 2 (512∗512) in Data set B, the model 4 (512∗512)
achieves 13.29% mAP. The transmission module performs
feature layer fusion and combines the high-level semantic
features with the previous layer features by deconvolution,
which improves the semantic information of the bottom fea-
ture layer. Therefore, the detection effect of model 3 and 4
on small targets is improved. A partial visualization of the
model 3 and model 4 under Data set B is shown in Fig. 9.
It can be clearly seen from Fig. 9 that the models are more
effective than the original SSD model under Data set B.
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FIGURE 10. Comparison of detection accuracy between model 4 and model 6.

TABLE 2. Comparison with different models.

The images (1-3) show the detection effect of SSD. Although
some small targets are detected, there is still a missing detec-
tion. The images (4-6) show the detection effect of model 4,
more small diseased position are detected and no missed
detection occurred.

D. THE EFFECT OF GIOU ON MAP
From Fig. 10, it is clearly that the mAP is improved by
optimizing the original loss function. Comparing model 3
(320∗320) with model 5 in Data set B, the mAP increases
from 85.65% to 88.79%, and the mAP also has improve-
ment (1.76%) in Data set A. The best performance of our
method is 91.83% (512∗512) in model 6. The mAP is higher
(1.23%) than that of model 4 (512∗512). As can be seen from
Fig. 10, the detection accuracy of diseased position has been
improved. The main explanation is that GIoU is adopted to
redefine the loss. The GIoU can accurately reflect the real
detection situation compared with the traditional smooth-L1.
The images (1-3) and the images (4-6) show the detection
effects of model 4 and model 6 respectively. Adding GIoU
into the basis of original model, the detection accuracy of
diseased position is improved.

E. COMPARISON WITH OTHER MODELS
Based on the preprocessed data set B, Table 2 compares
our model with other detection methods. Our method with
Resnet-101 produces 91.83 mAP that is better than other
detection models based on Resnet-101. If the input picture
(i.e., 512∗512) is further enlarged, a better detection effect
may be obtained. Generally speaking, the one-stage detection
method (e.g., RetinaNet, DSSD) still produces a relatively
good FPS, but the detection accuracy is still worse than the
two-stage method (e.g., RelationNet, SNIP). This is because
the anchor generated by the one-stage detection method is
only a logical structure, which only needs to be classified and
regressed. The anchor generated by the two-stage detection
will map to the area of feature map, and then re-enter the area
to the full connection layer for classification and regression.
Although our proposed method is slightly inferior to the
one-stage detection method in FPS, it has greatly improved
its FPS due to the sharing of features of the transmission
module. As far as the disease data set we use, on the premise
of ensuring the detection accuracy, improving the efficiency
of the overall model will provide greater help to the whole
production process of intelligent agriculture.
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VI. CONCLUSION
In this paper, the convolutional neural network was applied
to the detection of maize leaf blight. A promising detection
performance in complex field was achieved, which could be
attributed to the improvements that we had made based on
SSD. In the proposed method, series of steps were amal-
gamated, including data preprocessing, feature fusion, fea-
ture sharing, disease detection. The main reason behind data
preprocessing was to reduce the influence of high-intensity
light on image identification and improve detection accuracy.
In order to further improve the detection accuracy, feature
fusion was utilized to produce the best possible results. In our
proposed method, we also took into account the improvement
of detection efficiency. The transmission module not only
realized the feature fusion, but also transferred the relevant
anchor information in the fine-tuning network to the detection
modules, realizing the feature sharing between the modules,
and improving the detection efficiency. Compared with the
original SSD model, the mAP of new models was higher
(from 71.80% to 91.83%) than the mAP of original SSD.
The FPS of the new model also had certain improvement
(from 24 to 28.4) and had reached the standard of real-time
detection.

The newmodel of this study was useful for the detection of
maize leaf blight in complex background. The disease detec-
tion model was efficient and accurate, which could replace
the on-site identification of human experts. It could reduce
the labor force and overcome the subjectivity of selecting
features artificially. The model could be moved into the
embedded system, which lays a theoretical foundation for the
development of precise drug application and precise detection
robot for maize leaf blight.
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