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ABSTRACT Influenced by the force of the wind and agricultural operations, fruits often undergo oscillation,
which makes it difficult to automatically monitor their growing status. It is very important to realize dynamic
tracking of these oscillating fruits in order to improve automatic monitoring systems and the efficiency of
picking robots. In order to investigate the accuracy of the tracking of oscillating fruits, three classic tracking
algorithms were adopted and compared: the kernelized correlation filter algorithm (KCF), the compressive
tracking algorithm (CT), and the multi-task tracking algorithm (MTT). The effectiveness of these algorithms
was verified by testing six video sequences acquired in different environments, and three indices (the average
central error, frame loss rate, and time efficiency) were used to verify their performance. The results showed
that the KCF algorithm was most appropriate for the tracking of oscillating fruit objects, as it has a lower
centering error and a much higher frame rate.

INDEX TERMS Object tracking, oscillation, KCF algorithm, CT algorithm, MTT algorithm.

I. INTRODUCTION
Under natural conditions, fruits are prone to undergoing irreg-
ular motion under the influence of the wind and disturbances
caused by pruning, grafting and other agricultural operations.
This affects the accuracy and efficiency of the automaticmon-
itoring of their growth and robot picking operations. Video
tracking technology is used to analyze the target oscillating
fruit to obtain the characteristics of its motion, such as the
velocity and acceleration of the fruit, in order to generate an
accurate estimation of the subsequent motion of the target.
It is very important to improve the efficiency of fruit growth
monitoring systems and intelligent picking systems.

Fast recognition and accurate positioning are two prob-
lems that need to be solved for apple harvesting robots and
growth status monitoring systems [1]. For young apples,
Gao et al. [2] proposed a fruit recognition and location algo-
rithm, which based on the improved connected component
labeling algorithm and the shape feature value circularity.
Then obtained three-dimensional information by binocular
stereo vision system to pick fruits. Zhao et al. [3] developed
a robotic device for harvesting apples, which consisted of a
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manipulator, an end effector and an image-based vision servo
control system. A fruit recognition algorithm, which used
a support vector machine with a radial basis function, was
developed to detect and automatically locate apples within
the trees. Liu et al. [4] proposed the algorithm based on block
classification for apples in plastic bags. The algorithm could
reduce the influence of light and the experimental results
showed that the false negative rate and the false positive rate
were 4.65% and 3.50%.

Many scholars have focused onmoving object tracking and
have done a lot of work in this area [5], [6]. Lv et al. [7]
studied a fast method of tracing target fruit for an apple
harvesting robot. On the basis of an identification of the first
frame image using the Otsu algorithm, the target fruit in the
subsequent image frames were traced and recognized using
an improved, fast template-matching algorithm involving
mean-residual normalized product correlation. The results
showed that the recognition time for the designed tracking
recognition method was 36% lower than that of the Otsu
algorithm. Zhao et al. [8] proposed a fast tracking method
for overlapping fruits, for which the matching recognition
time was 0.185 s without anticipation, and 0.133 s with
anticipation. An experimental comparison demonstrated that
the proposed method improved the tracking velocity of the
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robot and made it more practical. Lee [9] proposed a one-
shot Siamese network (Siam-OS) to improve the real-time
tracking performance of Siam network. The results showed
that Siam-OS could achieve fast and effective visual tar-
get tracking. Zhang et al. [10] proposed a tracking method
combining the Kalman filter and data computing process
for multiple objects. This method had good tracking per-
formance and the accuracy of this method was as high as
92.9%. Henriques et al. [11] used a histogram of oriented
gradient features to build a target tracker based on a combi-
nation of KCF and a double correlation filter, and achieved
good target tracking results. In order to improve the poor
performance of compression tracking (CT) algorithm when
the objects were occluded, Wang et al. [12] proposed an
improved CT algorithm based on target segmentation and
feature points matching. Chan et al. [13] proposed an adap-
tive CT algorithm that significantly improved conventional
CT in four different respects. The results showed that this
tracker achieved state-of-the-art performance. For the prob-
lem of multi-target continuous tracking, Hosseini et al. [14]
extended Rao-Blackwellized Monte Carlo Data Associa-
tion (RBMCDA) to estimate the number of objects. The
modified RBMCDAs had strong adaptability and could be
used in many different situations.

With the improvement in agricultural informatization,
the demand for real-time monitoring of fruit growth informa-
tion and automatic picking is becoming increasingly urgent.
Fruits usually grow in complicated, unstructured environ-
ments, and they are often in an oscillating state and affected
by the surrounding branches and leaves, making automatic
tracking and monitoring of them difficult. Windy and rainy
weather will cause fruit oscillation movement and bring dif-
ficulties to fruit monitoring. The accuracy of tracking for
individual oscillatory fruits is indeterminate. Due to illumi-
nation changes and occlusion caused by irregular movement
and oscillation of fruits, the Kalman filter and optical flow
method are not suitable for fruit tracking. Based on video
analysis technology, the objectives of this research are to
test the performance of three popular object tracking algo-
rithms (the KCF algorithm, the CT algorithm, and the MTT
algorithm) to obtain velocity and acceleration curves for the
oscillating fruits in order to enable fast and accurate tracking
and to lay the foundation for the establishment of intelligent
monitoring systems for fruit growth. The test results also have
significance in terms of improving the efficiency of picking
robots.

II. MATERIALS AND METHODS
A. MATERIALS
The videos of oscillating fruits used in this study were taken
on September 23, 2016 and May 23, 2017, when the weather
was fine and the wind grade was 2. The sites at which
the videos were shot were at the Horticultural College of
Northwest A&FUniversity and the Economic Tree Garden in
the south campus of Northwest A&F University. The videos
were taken by a cell phone (OPPO R7, 1.7Ghz, RAM 3GB,

13 million pixels, Guang Dong OPPO Mobile Telecommu-
nications corp., ltd, Guangdong, China) and the Nikon D90
camera (12.3 million effective pixels, Nikon Corporation,
Tokyo Metropolis, Japan).

Frame loss in a camera can happen due to frames getting
dropped at the sensor, camera driver or application. These
videoswere shot using themobile phone andNikonD90 cam-
era with frame rates of 29 and 24 frames per second, respec-
tively. The possibility of camera frame loss is extremely low.
Fruits didn’t oscillate at a high speed in the videos, and the
difference between the t th frame and the (t+1)th frame or the
(t-1)th frame was small. If the t th frame was lost, it could be
replaced by the (t+1)th frame or the (t-1)th frame.

In order to show the state of fruit oscillation, the fruits in
the initial frame should be in the center of the lens. For each
test video, we moved and mounted the camera to locate the
fruit in the center of the lens field of view according to the
wind direction and wind pressure.

Six experimental video sequences were obtained for dif-
ferent oscillation frequencies, and the resolution of the
video images was 360×240 pixels. The specific information
obtained from the video is shown in Table 1. The test videos
contained different influencing factors such as motion blur,
out-of-view, illumination variation, occlusion and scale vari-
ation. These factors seriously affected the performance of
target tracking. These six videos were representative and fully
showed the performance of the three algorithms from many
aspects.

TABLE 1. Test video information.

All the procedures were run in the MATLAB R2016a
environment, and the hardware used was a Lenovo Z40 laptop
with 4GB RAM and 2.4 GHz dominant frequency.

B. KCF TRACKING ALGORITHM
The KCF algorithm is based on a circulant structure that uses
tracking by detection with kernels, and relies on a histogram
of oriented gradient (HOG) feature instead of the original
grayscale feature. The correlation filter is extended from a
single channel to a multi-channel scheme [11], [15]. The core
of the KCF tracking algorithm involves cyclic shifting of the
training samples. The tracked target is a positive sample, and
the rest of the surrounding environment is a negative sample,
and a training discriminant classifier is constructed based on
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this scheme [11]. The similarity between the target region
and the candidate region is calculated using a kernel function.
The candidate region with the largest similarity is selected as
the new tracking target. The algorithm is accelerated using
a Fourier transform, which greatly improves the tracking
efficiency of the algorithm. The specific process is as follows:

(1) A kernel ridge regression classifier is used as the core,
and the target region is shifted using the circulant matrix
theory. A large number of training samples are constructed
for the classifier.

(2) Training the classifier: The classifier is used to calculate
the probability that all candidate regions become the target
area, and the candidate region with the largest probability is
selected as the tracking target.

(3) Fast detection and appearance model updates. The new
input image is cyclically shifted to construct a candidate
sample set, and the region corresponding to the element with
the largest probability is identified as the tracking target. After
this fast detection, the new target area is cyclically shifted to
construct a new training sample set, and themodel parameters
used in the next frame for the classifier detection process are
updated.

C. CT TRACKING ALGORITHM
Compressed sensing is a new research field that is based
on signal sparse representation and approximation the-
ory [16]–[18]. It makes full use of the sparse character-
istics of the target signal structure through low-resolution,
non-correlated measurements of Nyquist sampling data to
perceive high-dimensional sparse signals [19]. The core of the
CT tracking algorithm involves creating a low-dimensional
compressed subspace by projecting the original image feature
space with a very sparse measurement matrix under a full
restricted isometry property (RIP) condition [20]. The low-
dimensional compressed subspace can effectively preserve
the information from the high-dimensional image feature
space. The sparse measurement matrix extracts the fore-
ground and background characteristics as positive and neg-
ative samples to update the classifier for online learning,
and then uses a naive Bayes classifier to evaluate candidate
samples, where the candidate sample with highest probability
is the target for tracking. More specifically, the process is as
follows:

(1) In the t th frame, a number of images (positive sam-
ples) and backgrounds (negative samples) are obtained by
sampling, and multi-scale transformations are performed on
them. The dimensionality of the multi-scale image is reduced
using a sparse measurement matrix, and the dimension reduc-
tion feature is used for training after the simple Bayesian
classifier is applied.

(2) In the (t+1)th frame, the N scanning window is tracked
at the target position obtained in the previous frame. Using the
sparse measurement matrix to reduce its dimensions, the fea-
tures are extracted, and the t th frame is used to train the naive
Bayes classifier to classify the target window. The window
with the highest classification score is considered to be the

target window. This achieves target tracking from the t th

frame to the (t+1)th frame.

D. MTT TRACKING ALGORITHM
The MTT tracking algorithm is based on the particle filter
framework. Target tracking is considered as a multi-task
sparse learning problem, and the particle model is used for
the dynamic update of the dictionary template linear combi-
nation [21], [22]. The representation of each particle in the
MTT is learned as a single task, and the learning problem
can be solved using a method of accelerating the gradient
(APG), which effectively resolves the closure of the yield
sequence. Thus,MTT is computationally attractive [23], [24].
The specific process is as follows:

(1) Tracking the multi-task representation of the target:
In the multi-task learning (MTL) framework, tasks that share
dependencies in terms of features or learning parameters are
jointly solved in order to capitalize on their inherent relation-
ships. The tracking problem is defined as an MTL problem in
which the representation of the learning particle is treated as a
single task. In general, the particles in the trace are calculated
independently. In the current tracking state, the particles are
randomly sampled around the current state of the tracking
object using a zero mean Gaussian distribution.

(2) Imposing conditions of joint sparsity and mixed norm:
Joint sparsity encourages all particle representations to be
individually sparse and to share the same dictionary tem-
plates. An lp,qmixed norm is used for the reconstruction error.

E. OBTAIN THE TRAJECTORY OF OSCILLATING FRUIT
Based on the accurate tracking of oscillating fruits, kinematic
parameters such as the velocity and acceleration of the target
can be obtained by analyzing and calculating the trajectory
data. This is important in terms of obtaining the best obser-
vation data frame to realize the intelligent monitoring of fruit
growth information and predict the trajectory required from
the picking robot.

1) TARGET VELOCITY
We assume that the positions of the moving target at times
t1 and t2 (t2 > t1) are p1 = (x1, y1) and p2 = (x2, y2),
respectively. The velocity of the moving target at time t2 can
be calculated by Eq. (1):

V =

√
(x2 − x1)2 + (y2 − y1)2

t2 − t1
(1)

where V represents the velocity of the moving target.

2) TARGET ACCELERATION
We assume the moving target has velocity V1 and V2 at times
t1 and t2, respectively. Then the acceleration a of the moving
target at time t2 can be calculated by Eq. (2):

a =
V2 − V1
t2 − t1

(2)
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FIGURE 1. Velocity curve of oscillating fruit: (a) Video 1; (b) Video 2; (c) Video 3; (d) Video 4; (e) Video 5; (f) Video 6.

This acceleration can take positive and negative values,
representing an increase or decrease in the velocity, respec-
tively. The target’s acceleration represents the rate of change
of its velocity.

F. EVALUATION INDICATORS
In order to further objectively evaluate the three algorithms
selected in this research, we used the center point position
error, the frame loss rate, and the number of frames per second
as criteria to quantitatively evaluate the algorithms for the six
videos.

(1) The center point position error is the square of the error
between the central position of the tracked target and the true
target center position, as shown in Eq. (3):

Error =
√(

xg − xt
)2
+
(
yg − yt

)2 (3)

where xg and yg represent the exact position of the manually
calibrated target fruit, and xt and yt represent the center
coordinates of the tracked target. The smaller the error, the
higher the accuracy of the target tracking.

(2) The frame loss rate is the ratio of the number of frames
for which the coincidence of the resulting tracked area is less
than 50% with the actual target area and the total frames. The
smaller the frame loss rate, the better the algorithm.

III. RESULTS AND DISCUSSION
In this research, six experimental videos with different oscil-
lation frequencies were used. The six groups of videos
included challenging problems such as local occlusion, varia-
tions in illumination and scale, and the target moving outside
the field of view. In this manuscript, the KCF, CT, and MTT
algorithms were used to track the oscillating fruit.

A. QUANTITATIVE RESULTS AND DISCUSSION
The velocity curve for the oscillation of the fruit is shown in
Figure. 1, where the abscissa is the number of frames, and the
ordinate is the velocity/pixel.

The red line represents the true velocity of themotion of the
oscillating fruit; the purple line indicates the velocity curve
obtained using theKCF algorithm; the green line indicates the
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FIGURE 2. Acceleration curve of oscillating fruit: (a) Video 1; (b) Video 2; (c) Video 3; (d) Video 4; (e) Video 5; (f) Video 6.

velocity curve obtained using the CT algorithm; and the blue
line indicates the velocity curve using the MTT algorithm.
In the process of fruit picking, fruits with a higher speed of
movement are relatively difficult to pick, and it is much easier
to pick them when they are at rest. From the velocity curve in
Figure. 1, the robot can choose a velocity of zero to locate the
oscillating fruits in the picking operation, in order to improve
the efficiency of picking. There was almost no motion blur
in the lower velocity range; this was beneficial in giving a
clear monitoring image, in order to allow for accurate target
monitoring.

Table 2 shows the correlation coefficients between the
tracked velocity and the real velocity of the oscillating fruit
obtained by the three algorithms, where the closer the abso-
lute value of the correlation coefficient to one, the more
similar the two curves. It can be seen from Table 2 that
the average value of the correlation coefficient for the KCF
algorithm was 0.94, for the CT algorithm the value was 0.97,
and for the MTT algorithm this was 0.91, thus indicating that
the acceleration obtained using the CT algorithm was closest
to the real velocity.

TABLE 2. Velocity correlation coefficient.

The acceleration curve for the oscillating fruit is shown in
Figure. 2, where the abscissa is the number of frames, and
the ordinate is the acceleration/pixel. The red line indicates
the true velocity of motion of the oscillating fruit; the purple
line indicates the acceleration curve obtained using the KCF
algorithm; the green line indicates value from the CT algo-
rithm; and the blue line indicates the value from the MTT
algorithm.
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FIGURE 3. Error curves of tracking the oscillating apples. (a) Video 1; (b) Video 2; (c) Video 3; (d) Video 4;
(e) Video 5; (f) Video 6.

Table 3 shows the correlation coefficient between the
tracked acceleration and the real acceleration of the oscillat-
ing fruit obtained by the three algorithms, where the closer the
absolute value of the correlation coefficient is to one, themore
similar the two curves. It can be seen from Table 3 that the
average value of the correlation coefficient obtained using the
KCF algorithm was 0.65; the average value obtained using
the CT algorithm was 0.78; and the average value for the
MTT algorithm was 0.64. Hence, the acceleration obtained
from the CT algorithm was closest to the real acceleration.

The center point position error of the three algorithms is
shown in Figure. 3, where the abscissa is the number of
frames, and the ordinate is the center point position error.
The black, red and green lines represent the curve of the
mean square error between the coordinates of the center
point of each frame and the coordinates of the true cen-
ter point, for the KCF algorithm, CT algorithm and MTT
algorithm, respectively. The average center errors for each

TABLE 3. Acceleration correlation coefficient.

video sequence are shown in Table 4. It can be seen that
the KCF algorithm achieved the best tracking accuracy for
the six video sequences, with an average center point error
of 3.13 pixels. The CT algorithm achieved good tracking for
five videos, and the tracking was best in Video 4, with an
average center point error of 6.53 pixels. The MTT algorithm
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FIGURE 4. Comparison of three algorithmic tracking results. (a) Video 1; (b) Video 2; (c) Video 3; (d) Video 4; (e) Video 5; (f) Video 6.

achieved good tracking for five videos, although the tracking
effect for Video 4 was relatively poor, with an average center
error of 17.98 pixels.

The frame loss rates for each algorithm for the different
videos are shown in Table 5. It can be seen from Table 5 that
the frame loss rates were 0, 1.67% and 16.33% for the KCF,
CT and MTT algorithms, respectively. It can therefore be

concluded that the tracking effect in the KCF algorithm was
the most stable, the CT algorithm was second, and the MTT
algorithm was the least stable.

The average frame rates of the three algorithms running
on the different video sequences are shown in Table 6. The
data were obtained by running the algorithm 10 times for each
video sequence, and the average values were used. The results

32972 VOLUME 8, 2020



M. Jiang et al.: Study of Dynamic Tracking Algorithms for Apples Under the Influence of Oscillation

TABLE 4. Average center error.

TABLE 5. Tracks the frame loss rate.

show that the average frame rate for target tracking in the
KCF algorithm was 24.73 f/s, and since the running speed
was higher than that of the other algorithms, the algorithm can
give real-time results. The average frame rate for target track-
ing by the CT algorithm was 12.67 f/s, and its average speed
was 51.23% of KCF algorithm’s average speed, which means
that it can basically provide real-time results. The average
frame rate in the MTT algorithm was 0.36 f/s, which cannot
generate real-time results, and this approach was therefore
unsuitable for dynamic tracking of the oscillating fruit.

TABLE 6. Average frame rate.

B. QUALITATIVE RESULTS AND ANALYSIS
The tracking results for the oscillating fruit are shown in
Figure. 4. The red tracking box shows the results for the
KCF algorithm, the green box for the CT algorithm, and
the blue box for the MTT algorithm. Four frames were
randomly selected in each video sequence. It can be seen
from Figure. 4(a)-(f) that there were variations in illumination
and slight variations in scale. The results showed that all
three algorithms could accurately track the oscillated fruits,
indicating that changes in illumination and scale had little
effect on tracking. In Figure. 4c, the oscillating fruit was
occluded by leaves, but the tracking by the three algorithms
did not encounter serious problems, and it was still possible to

accurately track the oscillating fruits. In Figure. 4d, the oscil-
lating fruit becomes blurred as a result of faster movement,
and there were variations in scale and the problem of the
target outside the field of view at the same time. It can be
seen that the KCF algorithmwas not affected by these factors,
and could accurately track the target. Use of the CT algorithm
had little effect on tracking, except in the case of the losing
the target from the field of vision, although when the target
moved back into the field of vision, tracking was resumed.
The MTT algorithm was strongly affected by these factors,
and the tracking target was completely lost from the third
frame onwards.

In summary, for the purposes of tracking the oscillating
fruit, the KCF algorithm was the best for a variety of scenes,
and could track the target accurately without requiring tuning
of the parameters. The CT algorithm tracking was also good,
with a high frame rate, but suffered from over-reliance on the
choice of parameters. Although in general theMTT algorithm
could accurately track the target, the tracking effect was poor
when it encountered more challenging problems. It was also
slow, and was therefore unsuitable for tracking oscillating
fruits.

IV. CONCLUSION
The tracking of oscillating fruit has great research signifi-
cance in terms of obtaining the optimal target monitoring
frame and determining the required trajectory for a picking
robot. In this study, we applied the commonly used KCF,
CT, and MTT algorithms to the accurate and efficient track-
ing of oscillating apples, and the main conclusions were as
follows:

(1) The KCF algorithm had high accuracy when tracking
the moving target in the case where the video sequence
contained challenging tracking problems. The average cen-
ter error was 3.13 pixels, the frame loss rate was zero.
The processing speed was fast, with an average frame rate
of 24.73 f/s, and this ensures real-time performance of the
algorithm, meaning that it can be applied to the tracking of
oscillating fruit targets.

(2) The CT algorithm gave velocity and acceleration curves
that were closer to the real value, but relied too much on
the selected parameters, meaning that the target could be
tracked accurately only when the parameters were selected
appropriately.

(3) If there were no tracking problems such as motion
blur, scale variation, or the target moving out of the field of
view, the MTT algorithm achieved suitable tracking. How-
ever, when there were challenging problems such as motion
blur, out of view, and scale variation, it lost the tracking target,
leading to a failure of tracking. Moreover, the algorithm runs
at a low speed, with an average frame rate of 0.36 f/s, thus
falling below real-time performance.

(4) Three algorithms were used to track fruits and ana-
lyze motion trajectories. However, serious occlusion and
high-speed fruit oscillation may lead to errors in the fruit
motion tracking analysis.
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Deep learning plays an important role in the field of image
processing. It can reduce the influence of various environ-
mental factors such as illumination, occlusion, oscillation and
other factors and make the algorithm more robust. In the
future, more attentions should be paid to deep learning and
use deep learning to solve object tracking problems.
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