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ABSTRACT This paper presents a novel method for segmentation of planar feature from unorganized point
cloud based on 2D Hough Transform and octree. Given the input point cloud, three steps are performed to
segment planar features. Firstly, the original point cloud is sampled and projected to the X-Y plane, and
an extended 2D Hough transform algorithm is employed to extract the line segments. The selecting weight
iteration method is used to calculate line equations and endpoint coordinates of those line segments. The
space geometric equations of the vertical planes are then determined. Secondly, the octree structure of the
original point cloud is established, and then the exact endpoint coordinates of the line segment are used to
design a cube perpendicular to the X-Y plane and all points held by the cube are extracted. The distance
from each of the extracted points inside the cube to its corresponding facade is calculated, if the distance is
less than the predefined threshold, the point is regarded as a point inside the facade. Finally, all the facade
points are removed from the original point cloud, and remaining point cloud is sampled and projected to the
X-Z plane. The above process is repeated to extract horizontal planes. Evaluation experiments are performed
by analyzing the performance of our method in four different scenes. The experimental results indicate
that the proposed algorithm is suitable for segmentation of building planar features in different scenes.
A comparison with competing techniques shows that our approach is considerably faster and scales
significantly better than previous ones.

INDEX TERMS Hough transform, unorganized point clouds, planar feature, selecting weight iteration,
octree.

I. INTRODUCTION
In recent years, light detection and ranging (LiDAR) technol-
ogy has been rapidly developed. The popularization of laser
scanners has led to an increasing growth in the sizes of the
available datasets, and point clouds containing tens of mil-
lions of samples are now commonplace. LiDAR can quickly
and directly acquire 3D geospatial information, which is gen-
erally termed as point cloud [1]. As one of the most common
features inman-made objects, plane plays an important role in
reverse engineering [2]–[4], object recognition [5], [6], aug-
mented reality [7], and heritage preservation [8], [9]. Hence
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segmentation of planar features from unorganized point cloud
has been a research focus, and a large number of methods
have been developed over the last few decades by researchers
from different fields, the most important of which can gener-
ally be classified into four categories: 3D Hough transform,
Random Sample Consensus (RANSAC), Region Growing,
and deep learning-based methods. This section discusses
these algorithms and their various optimization techniques
used to detect planes in point clouds.

The 3D Hough transform [10] is a method for detecting
parameterized objects, typically containing lines [11], [12],
spheres [13], [14], and planes [15]. Given an object and the
type of shape to be identified, the algorithm will perform a
voting process in the parameter space to determine the shape
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of the object, which is determined by the local maximum in
the accumulator space [16]. Currently, the widely used ver-
sion of the algorithm is generalized Hough transform (GHT)
proposed by Duda and Hart [17], making use of angle-radius
rather than slope-intercept parameters to simplify the compu-
tation further. The Standard Hough transform (SHT) for plane
detection iterates over each sample in the point cloud and
casts votes in the accumulator for all possible planes passing
through the sample. Due to the high computational cost of
the SHT, many algorithms have been proposed to acceler-
ate its voting procedure. The Probabilistic Hough transform
(PHT) [18] randomly selects a small subset of points in the
point cloud and uses them for voting. The selection of optimal
subset depends on many characteristics of the point cloud,
which is not a simple task. The Adaptive Probabilistic Hough
transform (APHT) [19] can monitor changes in the ranks of
peaks in the parameter space during the voting procedure.
The APHT is sensitive to noise and may lead to the false
detection of planes that do not present in the point cloud.
The Progressive Probabilistic Hough transform (PPHT) [20]
tries to avoid the influence of random noise by only detect-
ing structures whose number of votes exceeds a threshold
defined as a percentage of the total number of votes. The
Randomized Hough transform(RHT) [21] reduces the SHT’s
voting processing time by exploiting the fact that a plane
can be defined by three non-collinear points. In addition,
Ogundana et al. [22] proposed an optimization model of 3D
sparse matrix to accelerate the voting process.

Another important algorithm for performing shape detec-
tion is the Random Sample Consensus (RANSAC) [23].
The RANSAC algorithm is used for extracting shapes by
randomly choosing minimal number of points to construct
candidate shape primitives. The candidate shapes are checked
against all points in the point cloud to determine the
parameters that best fit the shapes [24]. The method has
been adapted to segment 3D point clouds. For example,
Schnabel et al. [25] adapted RANSAC for precise and fast
plane extraction, in which a point cloud with normal vectors
was used to verify all sampling points before assigning a
candidate shape. An octree was then employed to efficiently
extract sampling points. Similarly, Chen et al. [26] improved
the RANSAC algorithm by the localized sampling to segment
the polyhedral rooftop primitives and then to separate the
coplanar primitives with a region growing based triangulated
irregular network (TIN). Awwad et al. [27] modifies the
RANSAC algorithm by using a clustering technique to divide
the point cloud into small clusters based on normal vectors of
the points.

The third class of techniques used to identify shapes in
point clouds is Region Growing [28], [29]. Compared with
the first two methods, the Region Growing algorithm relies
on the similarity between points and related attributes. The
core is to select the seed points and determine the coplanar
conditions between points. Nurunnabi et al. [30] selected the
point with smallest curvature as the seed point, and used the
relationship between the angles of the tangent planes and

the distance between the points as the coplanar condition.
Vieira and Shimada [31] firstly removed points along sharp
edges using a curvature threshold. Median filtering was then
performed to reduce noise, and the remaining points are
considered as seed points. The Region Growing algorithm is
less efficient due to the requirement of calculating the normal
vector and performing neighborhood search based on points.
In order to improve the processing efficiency, Vo et al. [32]
adopted octree structure to achieve plane extraction using
voxel region growth.

Deep learning-based methods have won numerous con-
tests in pattern recognition and machine learning [33].
Boulch et al. [34] adopted paired RGB and range images
to generate images of 3D scenes. Guerry et al. [35] pre-
sented an approach to obtain dense 3D point markers for
semantic recognition in the context of robotics. Lateef and
Ruichek [36] transformed unorganized point cloud into vox-
els and then carried out feature learning to realize semantic
segmentation of point cloud. Graham [37] designed a sparse
convolution network for 3D segmentation. Qi et al. [38]
proposed the PointNet to deal with tasks such as classification
and segmentation.

As discussed above, the 3D Hough transform and
RANSAC are well established as robust methods for seg-
menting 3D point clouds. However, these algorithms have
some disadvantages. First, many spurious planes that do not
exist in reality may be generated. Second, the segmenta-
tion quality is sensitive to some point cloud characteristics
(e.g., density, positional accuracy, and noise). Third, these
algorithms perform poorly on large datasets or those with
complex geometries. The 3D Hough transform especially
requires significant processing time and high memory con-
sumption for large datasets. To compensate for these defects,
most existing planar segmentation methods have to calcu-
late the normal of each point in the point cloud. Besides,
many artificial input threshold parameters are also required,
which are not always easy to be determined. Although deep
learning-based methods are developing rapidly, these meth-
ods require a large number of samples and are very time
consuming. When faced with the rapid extraction of large-
scale unorganized point clouds, they have no significant
advantages over traditional methods. Considering that man-
made objects are mainly composed of vertical and horizontal
planes, this paper presents a novelmethod for segmentation of
building planar features from unorganized point cloud based
on 2D Hough transform and octree. The algorithm proposed
in this paper has some clear geometric meanings, which are
convenient to implement. Themain contributions of the paper
are summarized as follows:

(1) A novel method for segmentation of building planar
feature from unorganized point cloud is proposed that does
not require connectivity information or information about
normal vector.

(2) The proposed method can effectively segment copla-
nar planes that are not connected and avoid the problem of
misidentification of planar pseudo-intersection regions.
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(3) The proposed method scales well with the size of
the datasets and is robust to the presence of noise. Besides,
the parameters in the algorithm are adaptively estimated.

The remainder of this paper is organized as follows: the
proposed method is presented with details in section II.
In section III, the experiments are described, experimental
results are demonstrated, performance comparison is per-
formed and discussions are provided. The conclusions are
summarized in section IV.

II. THE PROPOSED SEGMENTATION METHOD
Themethod proposed in this paper is based on a very intuitive
phenomenon in the real world, namely most human-made
objects have flat surfaces and those flat surfaces are basically
perpendicular or parallel to the ground. In other words, they
are axis-aligned. As shown in Fig.1, if we project point cloud
to the ground (the X-Y plane), those facades will exhibit
a dense linear distribution, which is significantly different
from other objects. In order to achieve better segmentation,
some pre-processing operations are performed and described
in detail in the subsequent content. In the passing decade,
2D line segment extraction has been well studied and several
efficient algorithms are developed including the 2D Hough
Transform [12], the CANNAY [39] and the widely used
LSD [40]. With these techniques we can easily extract 2D
segments and once the spatial equation and endpoint coordi-
nates of the line segment are determined, the spatial equation
of the vertical plane will be determined accordingly. Then
an octree of the original point cloud is employed to obtain
points near the plane. Finally, the points on vertical planes
are removed from the original point cloud, and the remaining
point cloud is sampled and then projected to the X-Z plane to
extract horizontal planes.

FIGURE 1. A demonstration of the data pre-processing process. Point
cloud is colored in the Z-axis direction.

The algorithm proposed in this paper is mainly aimed at the
segmentation of vertical and horizontal planes. Considering
that the two processes are very similar, the former is taken as
an example, and we will describe the method in detail in the
following subsections.

A. DATA PRE-PROCESSING
The building point clouds are usually very dense and data
processing can be quite time consuming. Based on the fact
that the normal vectors of most planes in building point
clouds are axis-aligned, the raw data is pre-processed in the
following sequences (Fig.1).

1) SUBSAMPLING
Subsampling is performed to reduce the point number of
the original point cloud set Soriginal and maintain the shape
characteristics of the point cloud by employing the spatial
subsample method, which is very efficient in improving the
speed of registration, surface reconstruction, shape recogni-
tion and other functions. We set a distance ε1 between two
points empirically, then pick points from the original cloud
Soriginal to ensure that the distance between any two points
is longer than ε1, and the output point cloud is denoted as
Ssubsample. As shown in Fig.2, we subsample the original
point cloud data and the number of points is reduced from
2,354,332 to 37,528. Although the data volume is greatly
reduced, the facade part projected onto the X-Y plane still
exhibits a dense linear distribution and the average point
spacing is 0.015m.

FIGURE 2. An example of projection results. (a) The projection result with
subsampling. (b) The projection result without subsampling.

2) FILTERING
Next, we calculate the distribution of z coordinates in
Ssubsample and only keep themiddle part (denoted as Sfiltering)
to filter out unrelated features and improve line segment
extraction efficiency.

3) PROJECTION
We project all points in Sfiltering onto the plane, the equation
of which is given by:

ax + by+ cz+ d = 0 (1)

where a= b= d= 0, and c= 1. That is, Sfiltering is projected
onto the X-Y plane, and the output point cloud is denoted
as Sprojection. Note that Sprojection only contains x and y
coordinates. In the stage of horizontal extraction, we specify
a = c = d = 0 and b = 1 to project point cloud onto the
X-Z plane.
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B. LINE SEGMENT EXTRACTION
1) COLLINEAR POINT EXTRACTION
After the original point cloud set Soriginal is pre-processed,
the line segments in Sprojection need to be further extracted.
An extended 2D Hough transform algorithm is employed to
address this problem.

The currently universally used version of the HT is
proposed by Duda and Hart [17], which replaces the
slope-intercept with an angle-radius parameterization based
on the normal equation of the line (Fig.3):

ρ = xcos(θ )+ ysin(θ ) (2)

FIGURE 3. The normal parameters for a line. x and y are the coordinates
of a point in Sprojection. ρ is the distance from a line to the origin of
coordinate system and θ is the angle between the normal of the line and
the x-axis.

Given a 2D point cloud set Sprojection, we calculate the
lower left corner coordinate (xl,yl) of Sprojection, which is
then shifted as a whole, so that the lower left corner coincides
with the origin and the 2D point cloud set after transla-
tion is denoted as Sshift. Since the accumulator matrix is
in units of discretized integers, it will inevitably cause loss
of precision when the polar radius is calculated. To address
this problem, the point coordinates of Sshift are enlarged by
ε2 (ε2 represents an integer multiple of 10, usually set to
1000) to obtain a 2D point cloud set Senlarge. Note that the
distance-related thresholds involved in the calculation should
also be enlarged by the corresponding multiples. Then the top
right corner coordinate (xr,yr) of Senlarge is calculated so that
the maximum polar radius ρmax can be obtained as follows:

ρmax =

√
x2r + y2r (3)

For practical applications, we need to discretize the param-
eter ρ and θ into many small cells. A data structure called
accumulator is employed to store all these cells. We set the
accumulator size to ε3 × ρmax. For each point pi in Senlarge,
the polar radius is calculated as follows:

ρij = xicosθ j + yisinθ j (4)

where 0≤ j≤ ε3, θj = j∗180/ε3 and (xi, yi) is the coordinate
of pi.

In the following, each point is sued to cast a vote at the
corresponding accumulator cell. If the calculation result falls

into a cell of the parameter space, the accumulator cell will
be incremented by+1.
Assuming that the angle and radius corresponding to the

cell with the largest cumulative value are θk and ρk, respec-
tively. For each point pi in Senlarge, the polar radius ρik
corresponding to angle θk is calculated as follows:

ρik = xicosθk + yisinθk (5)

Due to the discretization of the Hough space and the noise
in the input data, it is advisable to search not only for one
cell with a maximal score but for the maximum sum in a
small region of the accumulator. In order to classify those
approximate collinear points into one class, we set a threshold
ε4 (ε4 >0) to perform this task and store collinear point if the
following condition is satisfied:

−ε4 ≤ ρik − ρk ≤ ε4 (6)

2) COLLINEAR POINT SEGMENTATION
The extracted collinear points are denoted as Scol. As shown
in Fig.4, the collinear points Scol may contain some collinear
but discontinuous points, so it is necessary to split those
points into separated segments. The point coordinates in Scol
are sorted by the angle θk obtained in the Hough transform.
If 0◦ ≤ θk ≤ 45◦ or 145◦ ≤ θk <180◦, the x coordinates are
sorted ascendantly and the y coordinates change accordingly;
if 45◦ < θk < 145◦, the y coordinates are sorted ascendantly
and the x coordinates change accordingly. The sorted result
is denoted as Ssort.

FIGURE 4. An illustration of the extracted line segments. The points in
the black rectangles are collinear but not connected.

We calculate the distance di between two adjacent points in
Ssort, and set a threshold value ε5 (ε5 >0) as the farthest dis-
tance between two adjacent points. If di ≤ ε5, it indicates that
the two adjacent points are on the same segment, otherwise,
it means that the last point is not on the same segment with
the previous ones, and then we store the previous points in
an array, and continue to deal with the remaining points until
the collinear points are segmented. The result after collinear
point segmentation is denoted as Lseg.
For each subset in Lseg, we define a threshold value ε6

(ε6 > 0) as the minimum number of points to form a line
segment, if the number of points in the subset exceeds ε6,
it is sorted as a qualifying line segment. The qualifying line
segment Lsubset are stored in Lresult. Then points in Lsubset
are removed from Senlarge and the next cycle is continued
until all the line segments are detected. The point coordinates

30876 VOLUME 8, 2020



P. Tian et al.: Robust Segmentation of Building Planar Features from Unorganized Point Cloud

of Lresult are in the coordinate system of Senlarge. Since
Senlarge is based on a series of transformations on Sprojection,
the original point coordinates stored in LResult in the coordi-
nate system of Sprojection are computed as:{

xResult = xl + xreslut/ε1
yResult = yl + yreslut/ε1

(7)

For the convenience of distinction, the extracted line seg-
ments are marked with different random colors (Fig.4).

3) LINE SEGMENT FITTING
The Hough transform algorithm can suppress noise points in
point cloud data well, but its accuracy is difficult to control,
which is not suitable for precise applications. The fitting
error of least squares method is large when there are too
many noise points in the data. In general, noise points are
inevitable, so we have to seek ways to get accurate parameters
in the presence of noise points. The selecting weight iteration
method in robust estimation is widely used, and it is the
most commonly used method for eliminating gross errors or
suppressing gross errors in data processing.

For a line segment in LResult, the linear equation can be
expressed as:

y = ai ∗ x + bi (8)

where a is the slope of the line, b is the intercept of the y-axis,
and a and b are the parameters to be estimated.
We calculate the approximate values a0 and b0 of a and b

by least squares method as follows:

X = (BTB)
−1
BTL (9)

where

X
2,1
=

(
a0
b0

)
, B

n,2
=


x1 1
x2 1
...

...

xn 1

 , L
n,1
=


y1
y2
...

yn


The error equation is computed as:

vyi =
[
xi 1

] [ δa
δb

]
+ (a0xi + b0 − yi) (10)

Equation (10) can be further expressed as:

Vk = BδXk − lk (11)

where

Vk
n,1
=


vy1
vy2
...

vyn

 B
n,2
=


x1 1
x2 1
...

...

xn 1



δXk
2,1
=

(
δa
δb

)
lk
n,1
=


y1 − a0x1 − b0
y2 − a0x2 − b0

...

yn − a0xn − b0



According to the least squares criterion:

V T
k PkVk = min (12)

where

Pk
n,n
=


v2y1 0 . . . 0
0 v2y2 0
...

...

0 0 . . . v2yn


when k = 1, the parameters in Equation (11) are calculated
as follows: 

δX1 = (BTP1B)−1BTP1l1
V1 = BδX1 − l1

σ =

√
VT
1 P1V1
n− 2

(13)

where

Pk
n,n
=


v2y1 0 . . . 0
0 v2y2 0
...

...

0 0 . . . v2yn

 δX1
2,1
=

(
δa1
δb1

)

Next, each point is re-weighted, and the Danish weight
function is adopted to reduce the influence of noise points on
the adjustment result. The Danish weight function has many
forms. Here, we adopt the following one:

v2yi = 1 |vyi | < 1.5σ

v2yi = v2yie
1−
( vyi
1.5σ

)2
|vyi | ≥ 1.5σ

v2yi = 0 |vyi | > 5σ

(14)

Then we get the weight matrix P2 after the re- weighting
and substitute P2 into Equation (12) to calculate the value of
δX2,V2 and σ . In practice, in order to save computation time
and improve efficiency, we often set a certain number ε7 of
iterations empirically. The final fitting parameters are calcu-
lated as follows: {

a = a0 + δak
b = b0 + δbk

(15)

For each line segment in LResult, we get its exact endpoint
coordinates (xstart, ystart) and (xend, yend). Accurate endpoint
coordinates are important in the planar segmentation process
because some planes are large enough and susceptible to
noise. If the endpoint coordinates are not accurate, some of
the planar points may be excluded from the cube in the next
operation. As shown in Fig.5, the result on the left is based on
the coordinates extracted accurately by the selecting weight
iteration method, while the result on the right is based on
the coordinates directly extracted by the Hough transform.
We can easily observe that some of the points are missing (in
the black rectangle) because there are pots and other debris
near the façade inside the room. Affected by these noise
points, the line parameters extracted by the Hough transform
are inaccurate.
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FIGURE 5. The effects of accurate and inaccurate endpoint coordinates
on the plane segmentation results. (a) Coordinates extracted by the
selecting weight iteration method. (b) Coordinates extracted by the
Hough transform.

III. VERTICAL PLANE SEGMENTATION
Considering that the normal vector of a vertical plane in
Soriginal is parallel to X-Y plane, the normal vector En is
computed as:

En =
(
1,
xend − xstart
yend − ystart

, 0
)

(16)

Then the spatial geometric equation of the vertical plane is
defined as:

A ∗ x + B ∗ y+ D = 0 (17)

The distance from a space point (x, y, z) to its correspond-
ing vertical plane is computed as:

d =
|A ∗ x + B ∗ y+ D|
√
A2 + B2

(18)

where 
A = 1

B = −
xend − xstart
yend − ystart

D =
xend ∗ ystart − xstart ∗ yend

yend − ystart

Considering that the size of point cloud data is generally
very large, if all point cloud data are involved in the operation
to extract a plane, it will be similar to the RANSAC algorithm,
which is undoubtedly a time-consuming process. To address
this problem, we manage to limit the points involved in the
operation to a local range via the following steps.

Firstly, we construct the octree of Soriginal to organize
the point data and define groups of neighboring points for
feature estimation. In this octree form, all nodes are split into
eight identical children, resulting in that all voxels at a single
level with the same size. Additionally, points are stored in
every non-leaf node, thereby explicitly linking the node to its
children to facilitate tree transversal.

Then for a vertical plane in Soriginal, we design a cube
to wrap it and calculate the distribution of the point cloud
along the Z-axis direction in Soriginal. Next, we calculate the
left front lower corner coordinate (Xmin, Ymin, Zmin) and
right rear upper corner coordinate (Xmax, Ymax, Zmax) of
Soriginal. if 0◦ ≤ θk ≤ 90◦, the left front lower corner
coordinate is (xstart, ystart, Zmin+ε4) and right rear upper

corner coordinate is(xend, yend, Zmax−ε4). If 90◦ ≤ θk ≤

180◦, the left front lower corner coordinate is
(xstart, yend, Zmin+ε4) and right rear upper corner coordi-

nate is (xend, ystart, Zmax−ε4). We extract the points SCube
inside the cube. The purpose of designing this cube is to
confine the points participating in the segmentation process
to the vicinity of the vertical plane.

For each point pi in SCube, we calculate its orthophoto
distance di to its target façade according to Equation (18) and
set a threshold value ε8(ε8 >0) as the farthest distance from
a point to the facade. If di ≤ ε8, the point is kept, otherwise
it will be abandoned. All extracted vertical planes are stored
in Svertical. As shown in Fig.6, the extracted vertical planes
are marked with different random colors.

FIGURE 6. A demonstration of the extracted vertical planes.

Since we have established the octree structure of the orig-
inal point cloud data set Soriginal in advance, each point in
Svertical has an explicit index and it is convenient to remove
Svertical from Soriginal. The remaining point cloud is stored in
Sremain. As shown in Fig.7, most vertical planes in the origi-
nal point cloud are extracted and the remaining part is mainly
composed of horizontal planes and other debris points.

FIGURE 7. A demonstration of the remaining point cloud.

Then we use Sremain as the original input point cloud
and perform a process similar to the above to extract the

FIGURE 8. A demonstration of the extracted horizontal planes.
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horizontal plane (Fig.8). Note that (1) the filtering operation
in the facade segmentation process is not used here; (2) point
cloud is projected onto the X-Z plane rather than the X-Y
plane, the parameters in Equation (1) are a = c = d = 0 and
b = 1; (3) only line segments with the angle θk obtained in
the Hough transform between 0◦ and 5◦ are considered as
candidates; (4) the spatial geometric equation of the horizon-
tal plane is also slightly different from the vertical planes.
Finally, we merge the vertical and horizontal planes to get
the segmentation result (Fig.9).

FIGURE 9. A demonstration of the point cloud segmentation result.

IV. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed building planar
feature segmentation method, we tested it on four different
scenes. As shown in Fig.10, scene 1 is an interior stair corner
point cloud and scene 2 is a point cloud of an outdoor plaza
consisting of a number of modern buildings and some trees
at Wuhan University, both of them were scanned using a Faro
Focus s150 laser scanner. For the convenience of displaying
the interior of scene 1, the ceiling part is removed. Scene 3 is
a point cloud captured of the hallways of the 5th floor of Cory
Hall on theUCBerkeley campus using a pushcart system con-
sisting of 3 laser scanners, 2 cameras, and 1 IMU. Scene 4 is a

FIGURE 10. Input point clouds. (a) An interior stair corner point cloud.
(b) A point cloud of an outdoor plaza consisting of a number of modern
buildings and some trees. (c) A point cloud captured of the hallways of
the 5th floor of Cory Hall on the UC Berkeley campus. (d) A point cloud
from the public point cloud dataset: Semantic3D.

point cloud from the public point cloud dataset: Semantic3D.
All algorithms in this paper were implemented using C++
and point cloud library 1.8.0, which were performed on a PC
with Intel Core i5-830H 2.3GHz CPU and 8GB RAM.

A. PARAMETERS SETTING
Aswe can see from the above sections, there are generally two
categories of parameters in our algorithm: number-related
and distance-related. Below, we describe how to set the
parameters.

The subsampling parameter ε1 denotes the closest distance
between any two points. Generally, ε1 cannot be determined
by a fixed value; rather, it depends on the scale of the data and
the noise level. For indoor dense point cloud like scene 1, ε1 is
set to 0.05 m, while for large scale point clouds like scene 2,
scene 3, and scene 4 where points are relatively sparse, ε1
is set to 0.1 m. ε2 denotes the multiple of the coordinate
magnification and usually set to 1000, which is suitable for
most applications. ε3 is the number that divides 180◦ equally
and usually set to 500. ε4 denotes the farthest orthophoto
distance to determine whether a point lies on a line. Here,
we estimate ε4 through statistical analysis, i.e., set ε4 to
5 times the average spacing of Sprojection. This value works
well on a broad spectrum of datasets. As to the remaining
parameters, ε5 is the farthest distance that determineswhether
two adjacent points lie on the same line segment, ε6 is the
minimum number of points to form a line segment, ε7 is
the number of iterations in line segment fitting, and ε8 is
the farthest distance from a point to its corresponding facade.
We used ε5 = 15 ε4, ε6 = 20, ε7= 10, and ε8= ε4 in experi-
ments. Note that all the above parameters are used for vertical
plane segmentation. As to the horizontal plane segmentation,
the value of ε4 depends on the situation, if Sremain consists
mainly of small range of horizontal planes, e.g. for scene 1,
ε4 remains unchanged, otherwise we set ε4 to 10 times the
average spacing of Sprojection. These parameter values were
not tuned throughout all of the following experiments. It is
worth mentioning that fine-tuning these parameters for dif-
ferent types of point clouds would obtain better results.

B. PERFORMANCE
Fig.11 shows the details of the 3D plane segmentation results.
As shown in Fig.11(a) and Fig.11(c), we can see that not
only the large structures, like the walls, floors, and ceilings,
but also the small details, like the windows, doors, and
stairs, are well segmented. Those coplanar but discontinuous
planes are also well separated. As shown in Fig.11(b) and
Fig.11(d), our algorithm preserves most of the important
geometric contents, while filtering out the trees, bush, and
other sundries. However, due to the characteristics of the
method, those inclined planes, such as roofs, cannot be
extracted. Table 1 demonstrates the statistic results about
the experiments performed with our technique on each test
data, from which we can get the following observations:
in general, the proposed method successfully extracts the
major planes of the test data within acceptable time; the total
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FIGURE 11. Segmentation results of the proposed method. (a) Scene 1 plane segmentation results by the
proposed method. (b) Scene 2 plane segmentation results by the proposed method. (c) Scene 3 plane
segmentation results by the proposed method. (d) Scene 4 plane segmentation results by the proposed method.

TABLE 1. Computing results in four different point clouds. Size, Spacing, Bounding Box, Np , Tv, Th, Tall denote the point number, the average distance
between points, the length, width and height of a point cloud, total number of planes, the time for segmentation of vertical planes, the time for
segmentation of horizontal planes, the total time, respectively.

segmentation time is linearly proportional to the number of
input points; the size of bounding box has less impact on
total segmentation time. Note that these time periods were
generated by averaging the time period of 10 executions,
including the time for reading the original point cloud data
and for saving the segmentation result.

C. COMPARISON WITH OTHER METHODS
Further evaluation is performed by comparing our method
with the standard RANSAC, and the Region Growing for
plane detection that are implemented in the PCL library [41],
a modern C++ library for 3D point cloud processing. The
PCL’s RANSAC method is highly optimized and it is further
extended by successive least squares refining applied after

random sample consensus fitting. Exact definition of the
implemented RANSAC algorithm is described in [42]. The
inlier threshold distance is set to ε4 that is applied in vertical
plane segmentation. The maximum number of iterations for
the detection of one plane is set to 50 for scene 1 and 100 for
scene 2, scene 3, and scene 4. The parameters in Region
Growing algorithm are also optimally set for comparisonwith
other methods.

Fig.12 shows the details of the RANSAC segmentation
results and Fig.13 shows the segmentation results of the
region growing algorithm. As shown in Fig.12, the PCL’s
RANSAC algorithm is prone to over-segmentation and under-
segmentation. Taking scene 1 as an example, the floor is
divided into multiple planes and continuous stairs are mistak-
enly identified as one plane. Besides, the algorithm cannot
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FIGURE 12. Segmentation results of PCL’s RANSAC. (a) Scene 1 plane segmentation results by PCL’s
RANSAC. (b) Scene 2 plane segmentation results by PCL’s RANSAC. (c) Scene 3 plane segmentation results
by PCL’s RANSAC. (d) Scene 4 plane segmentation results by PCL’s RANSAC.

FIGURE 13. Segmentation results of PCL’s Region Growing. (a) Scene 1 plane segmentation results by PCL’s
Region Growing. (b) Scene 2 plane segmentation results by PCL’s Region Growing. (c) Scene 3 plane seg-
mentation results by PCL’s Region Growing. (d) Scene 4 plane segmentation results by PCL’s Region Growing.

effectively distinguish among coplanar but discontinuous
planes. While being robust to noise, the random nature of
RANSAC makes it non-deterministic. Depending on the
choice of its parameter values, the algorithm may detect

planes that are not representative of the original data, which
is illustrated in scene 2, scene 3, and scene 4. As shown
in Fig.13, over-segmentation and under-segmentation still
inevitably exist in the Region Growing algorithm, but the
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FIGURE 14. Comparative experiments of the proposed method and the
PCL’s RANSAC. (a) Comparative experiments for Scene 1. (b) Comparative
experiments for Scene 2. (c) Comparative experiments for Scene 3.
(d) Comparative experiments for Scene 4.

algorithm effectively avoids the problem of misidentification
in RANSAC. Note that since Region Growing algorithm is
not as fast as RANSAC and ourmethod, it requires significant
processing time to process the raw data. In order to obtain
the segmentation results within acceptable time, we have
to sample the original point cloud data before running the
Region Growing algorithm.

To investigate the influence of data size (i.e. number of
points) on the running time, the four original point clouds
were sub-sampled at four other density levels. Each point
cloud was sequentially segmented using RANSAC and the
proposed method. The running time of the two methods are
shown in Fig.14. We can clearly see that the running time of
the PCL’s RANSAC increases drastically with the increase
of the size of data. By contrast, the calculation time of our
method grows slowly.

To show the robustness of the proposed method, planes
were extracted from point clouds with noise. We study the

FIGURE 15. Extracted planes in the presence of different levels of
Gaussian noise. From top to bottom: 0 m Gaussian noise, 0.02 m
Gaussian noise and 0.05 m Gaussian noise. (a) Input point cloud.
(b) Extracted vertical planes. (c) Extracted horizontal planes. (d) the point
cloud segmentation results.

robustness of the proposed method by adding Gaussian noise
to a synthetic point cloud. As shown in Fig.15, the origi-
nal point cloud is uniformly sampled from the surface of a
1m× 1m× 1m cube. We can observe that as Gaussian noise
increases, the planes can still be accurately extracted.

D. FAILURE CASES
As we have introduced above, our method is projection-
based, which is suitable for the segmentation of vertical and
horizontal planes but may also lead to failure in the case of
inclined planes. Despite these failure cases, our method is
very efficient and effective in the man-made scene with lots
of structural planes.

V. CONLUSION
In this paper we present and testify a simple but efficient
algorithm for segmentation of building planar features from
unorganized point cloud. We can find applications for this
technology in building construction, object recognition, and
other fields. The proposed method is based on 2D Hough
transform and octree. Compared with the traditional clas-
sic method, (1) it does not require connectivity information
nor information about normal vector; (2) it can effectively
segment coplanar planes that are not connected or parallel
but non-coplanar planes; (3) it scales well with the size of
the datasets and is robust to the presence of noise, and we
do not use denoising operations throughout the algorithm;
(4) unique design makes it possible to avoid the occurrence of
pseudo-planar phenomenon. The proposed method has been
tested on various point cloud data, including the point clouds
obtained by laser devices, and the synthetic point clouds with
noise. We also compared the proposed method with two other
methods and provided visual comparison results. The experi-
mental results show that our algorithm is efficient, insensitive
to noise and outliers, and produces more accurate and com-
plete planes than the compared methods. Since our method
is projection-based, one failure case of our method is on the
inclined planes. As for those non-horizontal and non-vertical
walls, first, we remove the extracted horizontal and vertical
planes from the original point cloud. Next, we use traditional
method such as Region Growing for plane extraction. Since
the remaining valuable planes are mainly outdoor sloping
roofs, in order to save calculation time, only those points with
a height within a certain range are considered as candidate
points to participate in the segmentation calculation.
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